Network Systems in Science and Technology

Francesco Bullo

Department of Mechanical Engineering Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

3rd Indian Control Conference Indian Institute of Technology Guwahati, January 5, 2017

Network systems in technology

Smart grid

Amazon robotic warehouse

Industrial chemical plant

Network systems in sciences

Sociology: opinion dynamics, propagation of information, performance of teams

Ecology: ecosystems and foodwebs **Economics**: input-output models Medicine/Biology: compartmental systems

Acknowledgments

Gregory Toussaint Todd Cerven Jorge Cortés* Sonia Martínez* G. Notarstefano Anurag Ganguli

Ketan Savla Kurt Plarre* Ruggero Carli* Nikolaj Nordkvist Sara Susca Stephen Smith

Gábor Orosz* Shaunak Bopardikar Karl Obermeyer Sandra Dandach Joey Durham

Fabio Pasqualetti A. Mirtabatabaei Rush Patel Pushkarini Agharkar

Florian Dörfler ETH

UCSB

Peng Jia UCSB

Vaibhav Srivastava

Outline

$\dot{x}(t) = Ax(t) + b$ x(k+1) = Ax(k) + bor Intro to Network Systems Models, behaviors, tools, and applications 2 Power Flow "Synchronization in oscillator networks" by Dörfler et al, PNAS '13 systems of interest "Voltage collapse in grids" by Simpson-Porco et al, NatureComm '16 2 asymptotic behavior 3 tools Social Influence "Opinion dynamics and social power" by Jia et al, SIREV '15 network structure \iff function = asymptotic behavior Perron-Frobenius theory Algebraic graph theory **Powers of** $A \sim$ **paths in** G: irreducible $(\sum_{k=0}^{n-1} k > 0)$ non-negative primitive (≥ 0) (there exists $(A^{k})_{ii} > 0$ there exists directed path of length ksuch that k > 0from i to j in Gif A non-negative **Primitivity of** $A \sim$ **paths in** G: • eigenvalue $\lambda \ge |\mu|$ for all other eigenvalues μ A is primitive *G* strongly connected and aperiodic $(A \ge 0 \text{ and } A^k > 0)$ (exists path between any two nodes) and 2 right and left eigenvectors $v_{right} \ge 0$ and $v_{left} \ge 0$ (exists no *k* dividing each cycle length) if A irreducible **3** $\lambda > 0$ and λ is simple • $v_{right} > 0$ and $v_{left} > 0$ are unique if *A* primitive **5** $\lambda > |\mu|$ for all other eigenvalues μ • $\lim_{k\to\infty} A^k/\lambda^k = v_{\text{right}}v_{\text{left}}^T$, with normalization $v_{\text{right}}^T v_{\text{left}} = 1$ digraph strongly connected components condensation

Linear network systems

Averaging systems

row-stochastic: non-negative and row-sums equal to 1

convex combinations elsewhere

where $v_{\text{left}} = \text{convex combination} = \text{influence centrality}$

For general G with multiple condensed sinks

(assuming each condensed sink is aperiodic) consensus at sinks

consensus: $\lim_{k\to\infty} x(k) = (v_{\text{left}} \cdot x(0))\mathbb{1}_n$

Compartmental flow systems

Analysis tools: PF for quasi-positive, inverse positivity, algebraic graph

system (= each condensed sink) is outflow-connected

C is Hurwitz

 $\lim_{t\to\infty} q(t) = -C^{-1}u \ge 0$ $(-C^{-1}u)_i > 0 \iff i \text{th compartment is inflow-connected}$

Nonlinear network systems

Rich variety of emerging behaviors

- equilibria / limit cycles / extinction in populations dynamics
- **2** epidemic outbreaks in spreading processes
- **3** synchrony / anti-synchrony in coupled oscillators

Population systems in ecology

Lotka-Volterra: $x_i = quantity/density$

$$\dot{\frac{x_i}{x_i}} = b_i + \sum_j a_{ij} x_j$$
$$\dot{x} = \operatorname{diag}(x)(Ax + b)$$

A interaction matrix:

(+,+) mutualism, (+,-) predation, (-,-) competition rich behavior: persistence, extinction, equilibria, periodic orbits,

1 logistic growth: $b_i > 0$ and $a_{ii} < 0$

- **2 bounded resources:** A Hurwitz (e.g., irreducible and neg diag dom)
- **3** mutualism: $a_{ii} \ge 0$

exists unique steady state $-A^{-1}b > 0$ $\lim_{t\to\infty} x(t) = -A^{-1}b \text{ from all } x(0) > 0$

Network propagation in epidemiology

above the threshold: $\lambda > 1$

0 is unstable equilibrium unique other equilibrium $x^* > 0$ $\lim_{t\to\infty} x(t) = x^*$ from all $x(0) \neq 0$

Incomplete references on linear network systems

Averaging: multi-sink, concise proofs, etc

- F. Harary. A criterion for unanimity in French's theory of social power. Studies in Social Power, ed D. Cartwright, 168–182, 1959, University of Michigan.
- J. N. Tsitsiklis and D. P. Bertsekas and M. Athans. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. *IEEE Trans Automatic Control*, 31(9):803:812, 1986.
- P. M. DeMarzo, D. Vayanos, and J. Zwiebel. Persuasion bias, social influence, and unidimensional opinions. The Quarterly Journal of Economics, 118(3):909-968, 2003.
- J. M. Hendrickx. Graphs and Networks for the Analysis of Autonomous Agent Systems. PhD thesis, Université Catholique de Louvain, Belgium, 2008.
- A. Tahbaz-Salehi and A. Jadbabaie. A necessary and sufficient condition for consensus over random networks. IEEE Trans Automatic Control, 53(3):791-795, 2008.

Compartmental and positive systems

- G. G. Walter and M. Contreras. Compartmental Modeling with Networks. Birkhauser, 1999.
- J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993.
- D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications. John Wiley & Sons, 1979.

Analysis methods

- **1** nonlinear stability theory
- 2 passivity
- **§** cooperative/competitive system and monotone generalizations

Mutualistic Lotka-Volterra:

 $\dot{x} = diag(x)(Ax + b)$

A quasi-positive and Hurwitz ⇒ inverse positivity cooperative systems theory: (if Jacobian is quasi-positive, then almost all bounded trajectories converge to an equilibrium)

Network SIS:

 $\dot{x} = (I_n - \operatorname{diag}(x))Ax - x$

A irreducible, above the threshold $\lambda>1$ monotonic iterations and LaSalle invariance

Incomplete references on nonlinear network systems

Lotka-Volterra models

- B. S. Goh. Stability in models of mutualism. American Naturalist, 261–275, 1979
- Y. Takeuchi. Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, 1996.
- J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge, 1998.

Network SI/SIS/SIR models

- A. Lajmanovich and J. A. Yorke. A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical Biosciences, 28(3):221-236, 1976
- H. W. Hethcote. An immunization model for a heterogeneous population, Theoretical Population Biology, 14:3(338-349), 1978
- A. Fall, A. Iggidr, G. Sallet, and J.-J. Tewa. Epidemiological models and Lyapunov functions, Mathematical Modelling of Natural Phenomena, 2(1):62-68, 2007
- A. Khanafer and T. Başar and B. Gharesifard. Stability of epidemic models over directed graphs: a positive systems approach. Automatica, 74:126-134, 2016

New free text "Lectures on Network Systems"

Francesco Bullo

With contributions by

Florian Dörfler

Sonia Martínez

Lectures on Network Systems

Lectures on Network Systems, v. .85 For students: free PDF for download For instructors: slides and answer keys

Linear Systems:

- motivating exampless from social, sensor and compartmental networks,
- matrix and graph theory, with an emphasis on Perron–Frobenius theory and algebraic graph theory,
- averaging algorithms in discrete and continuous time, described by static and time-varying matrices, and
- positive and compartmental systems, described by Metzler matrices.

Nonlinear Systems:

- formation control problems for robotic networks,
- coupled oscillators, with an emphasis on the Kuramoto model and models of power networks, and
- virus propagation models, including lumped and network models as well as stochastic and deterministic models, and
- opulation dynamic models in multi-species systems.

Outline

 Intro to Network Systems Models, behaviors, tools, and applications

Power Flow

"Synchronization in oscillator networks" by Dörfler et al, PNAS '13 "Voltage collapse in grids" by Simpson-Porco et al, NatureComm '16

Social Influence

"Opinion dynamics and social power" by Jia et al, SIREV '15

Power flow equations

economic optimization

while accurate numerical solvers in current use,

much ongoing research on optimization,

network structure \iff function = power transmission

Power networks as quasi-synchronous AC circuits

- **④** generators and loads ●
- **2** physics: Kirchoff and Ohm laws
- **o** today's simplifying assumptions:
 - quasi-sync: voltage and phase V_i , θ_i active and reactive power P_i , Q_i
 - lossless lines
 - o approximated decoupled equations

Decoupled power flow equations

active: $P_i = \sum_j a_{ij} \sin(\theta_i - \theta_j)$ reactive: $Q_i = -\sum_j b_{ij} V_i V_j$

Power Flow Equilibria

$$P_i = \sum_j a_{ij} \sin(\theta_i - \theta_j)$$
 $Q_i = -\sum_j b_{ij} V_i V_j$

As function of network structure/parameters

- I do equations admit solutions / operating points?
- I how much active / reactive power can network transmit?
- I how to quantify stability margins?

Active power dynamics and mechanical analogy

Coupled swing equations

$$M_i\ddot{ heta}_i + D_i\dot{ heta}_i = P_i - \sum_j a_{ij}\sin(heta_i - heta_j)$$

Kuramoto coupled oscillators

$$\dot{ heta}_i = extsf{P}_i - \sum_j extsf{a}_{ij} \sin(heta_i - heta_j)$$

Lessons from linear spring networks

Force \propto displacement:

$$F_i = \sum a_{ij}(x_j - x_i) = -(Lx)_i$$

Laplacian / stiffness matrix and connectivity strength:

 $L = \operatorname{diag}(A\mathbb{1}_n) - A$

 $\lambda_2 =$ second smallest eigenvalue of L

Active power / frequency equilibrium conditions

Given balanced P, do angles exist?

$$P_i = \sum_j a_{ij} \sin(heta_i - heta_j)$$

connectivity strength vs. power transmission: #1: "torques" ~ active powers P_i "displacements" ~ power angles $(\theta_i - \theta_j)$ #2: with increasing power transmission, $(\theta_i - \theta_j)$ approach $\pi/2 =$ sync loss

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

$\ $ pairwise differences of $P\ _2$	$<\lambda_2(L)$	for all graphs
$\ $ pairwise differences of $L^{\dagger}P\ _{\infty}$	< 1	for trees, $3/4$ -cycles, complete

Reactive power / voltage equilibrium condition

Given reactive Q_{loads} , do voltages V_{loads} exist?

$$Q_{i} = -V_{i} \sum_{j} b_{ij} (V_{j} - V_{\text{rest},j})$$

where $V_{\text{rest}} = \text{open-circuit voltages}$

connectivity strength vs. **power transmission**: #1: "force" ~ reactive load Q_{loads} "displacement" ~ relative voltage variation

#2: with increasing inductive Q_{loads} , V_{loads} falls until voltage collapse

Equilibrium voltage (high-voltage solution) exist if

 $\left\| L_{\text{grounded, scaled}}^{-1} Q_{\text{loads}} \right\|_{\infty} < 1$

Summary (Power Flow)

New physical insight

- sharp sufficient conditions for equilibria
- **2** upper bounds on transmission capacity
- Stability margins as notions of distance from bifurcations

Applications

- secure operating conditions: realistic IEEE testbeds (Dörfler et al, PNAS '
- edback control: microgrid design (Simpson-Porco et al, TIE '1)
- economic optimization:
 - convex voltage support (Todescato et al, CDC '15)

Outline

Intro to Network Systems
 Models, behaviors, tools, and applications

Power Flow

"Synchronization in oscillator networks" by Dörfler et al, PNAS '13 "Voltage collapse in grids" by Simpson-Porco et al, NatureComm '16

Social Influence

"Opinion dynamics and social power" by Jia et al, SIREV '15

Incomplete references on power flow equations

	C. Tavora and O. Smith. Equilibrium analysis of power systems. <i>IEEE Transactions on Power Apparatus and Systems</i> , 91, 1972.
	Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In Araki, H. (ed.) Int. Symposium on Mathematical Problems in Theoretical Physics, vol. 39 of Lecture Notes in Physics, (Springer, 1975).
	A. Araposthatis, S. Sastry, P. Varaiya Analysis of power-flow equation. Int. Journal of Electrical Power & Energy Systems, 3, 1981.
	F. Wu and S. Kumagai Steady-state security regions of power systems. <i>IEEE Trans Circuits and Systems</i> , 29, 1982.
	M. Ilíc Network theoretic conditions for existence and uniqueness of steady state solutions to electric power circuits. IEEE Int. Symposium on Circuits and Systems, (San Diego, CA, USA, 1992).
	S. Grijalva and P. W. Sauer. A necessary condition for power flow Jacobian singularity based on branch complex flows. IEEE Trans Circuits and Systems I: Fundamental Theory and Applications, 52, 2005.
112)	Our recent work
13)	F. Dorfler and F. Bullo. Synchronization and Transient Stability in Power Networks and Non-Uniform Kuramoto Oscillators. SIAM Journal on Control and Optimization, 50(3):1616-1642, 2012.
'15)	J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Voltage Collapse in Complex Power Grids. Nature Communications, 7, 2016.
'15)	J. W. Simpson-Porco, Q. Shafiee, F. Dorfler, J. M. Vasquez, J. M. Guerrero, and F. Bullo. Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging. <i>IEEE Transactions on Industrial Electronics</i> , 62(11):7025-7038, 2015.
	F. Dorfler and F. Bullo. Synchronization in Complex Networks of Phase Oscillators: A Survey. Automatica, 50(6):1539-1564, 2014
	Social power along issue sequences
	• Deliberative groups in social organization
	 government: juries, panels, committees
	 corporations: board of directors universities: faculty meetings
	 Natural social processes along sequences:
	levels of openness and closure?

- influence accorded to others? emergence of leaders?
- rational/irrational decision making?

Groupthink = "deterioration of mental efficiency . . . from in-group pressures," by I. Janis, 1972

Wisdom of crowds = "group aggregation of information results in better decisions than individual's" by J. Surowiecki, 2005

Opinion dynamics and social power along issue sequences

DeGroot opinion formation

$$y(k+1) = Ay(k$$

Dominant eigenvector v_{left} is social power:

$$\lim_{k\to\infty}y(k)=(v_{\mathsf{left}}\cdot y(0))\mathbb{1}_n$$

- $A_{ii} =: x_i$ are self-weights / self-appraisal
- A_{ij} for $i \neq j$ are interpersonal accorded weights
- assume $A_{ij} =: (1 x_i) W_{ij}$ for constant W_{ij}

 $A(x) = diag(x) + diag(\mathbb{1}_n - x)W$

• $w_{\text{left}} = (w_1, \dots, w_n) = \text{dominant eigenvector for } W$

Influence centrality and power accumulation

Existence and stability of equilibria? Role of network structure and parameters? Emergence of *autocracy* and *democracy*?

For strongly connected W and non-trivial initial conditions

• convergence to unique fixed point (= forgets initial condition)

$$\lim_{s\to\infty} x(s) = \lim_{s\to\infty} v_{\text{left}}(x(s)) = x^*$$

2 accumulation of social power and self-appraisal

- fixed point $x^* = x^*(w_{\text{left}}) > 0$ has same ordering of w_{left}
- social power threshold $p: x_i^* \ge w_i \ge p$ and $x_i^* \le w_i \le p$

Opinion dynamics and social power along issue sequences

Reflected appraisal phenomenon (Cooley 1902 and Friedkin 2012)

along issues s = 1, 2, ..., individual dampens/elevates self-weight according to prior influence centrality

self-weights 🣛 rel

relative control on prior issues = social power

Emergence of democracy

If W is doubly-stochastic:

- **1** the non-trivial fixed point is $\frac{\mathbb{1}_n}{n}$
- 2 $\lim_{s\to\infty} x(s) = \lim_{s\to\infty} v_{\text{left}}(x(s)) = \frac{\mathbb{1}_n}{n}$
- Uniform social power
- No power accumulation = evolution to democracy

Emergence of autocracy

If W has star topology with center j:

- **1** there are no non-trivial fixed points
- 2 $\lim_{s\to\infty} x(s) = \lim_{s\to\infty} v_{\text{left}}(x(s)) = e_j$
- Autocrat appears in center node of star topology
- Extreme power accumulation = evolution to autocracy

Analysis methods

- existence of x* via
 Brower fixed point theorem
- emprovement and image of the second secon

$$i_{\max} = \operatorname{argmax}_{j} \frac{x_{j}(0)}{x_{j}^{*}}$$

$$\arg\max_{j} \frac{x_{j}(s)}{x_{j}^{*}}$$
, for all subsequent s

(3) convergence via variation on classic **"max-min"** Lyapunov function:

 $i_{max} =$

$$V(x) = \max_{j} \left(\ln \frac{x_j}{x_j^*} \right) - \min_{j} \left(\ln \frac{x_j}{x_j^*} \right)$$
 strict

strictly decreasing for $x
eq x^*$

Summary (Social Influence)

New perspective on influence networks and social power

- dynamics and feedback in influence networks
- novel mechanism for power accumulation / emergence of autocracy
- measurement models and empirical validation

Open directions

- robustness for distinct models of opinion dynamics and appraisal
- cognitive models for time-varying interpersonal appraisals
- appraisals and power accumulation mechanisms

Incomplete references on social power

Social Influence

- J. R. P. French. A formal theory of social power, Psychological Review, 63 (1956), pp. 181–194.
- R. P. Abelson. Mathematical models of the distribution of attitudes under controversy, Contributions to Mathematical Psychology, 1964, pp. 142–160.
- V. Gecas and M. L. Schwalbe. Beyond the looking-glass self: Social structure and efficacy-based self-esteem. Social Psychology Quarterly, 46 (1983), pp. 77–88.
- N. E. Friedkin. A formal theory of reflected appraisals in the evolution of power. Administrative Science Quarterly, 56 (2011), pp. 501–529.

Our recent work

- P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo. Opinion Dynamics and The Evolution of Social Power in Influence Networks. *SIAM Review*, 57(3):367-397, 2015.
- P. Jia, N. E. Friedkin, and F. Bullo. The Coevolution of Appraisal and Influence Networks leads to Structural Balance. IEEE Transactions on Network Science and Engineering, 3(4):286-298, 2016
- A. MirTabatabaei and F. Bullo. Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems. SIAM Journal on Control and Optimization, 50(5):2763-2785, 2012.

Network systems in science and technology

- Models, behaviors, tools, and applications
 PF and algebraic graphs for linear behaviors
 variety of nonlinearities elegant methods and broad impact
- Power Networks and Social Influence fundamental prototypical problems nonlinear variations from linear framework key outstanding questions remain
- Outreach and collaboration opportunity for control community biologists, ecologists, economists, physicists ...