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Figure 2-5. City of Portland Water Supply Schematic Diagram

Portland water network Industrial chemical plant

Network systems in sciences

Sociology: opinion dynamics, propagation of
information, performance of teams

Ecology: ecosystems and foodwebs
Economics: input-output models
Medicine/Biology: compartmental systems
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Outline

1 Intro to Network Systems
Models, behaviors, tools, and applications

2 Power Flow
“Synchronization in oscillator networks” by Dörfler et al, PNAS ’13
“Voltage collapse in grids” by Simpson-Porco et al, NatureComm ’16

3 Social Influence
“Opinion dynamics and social power” by Jia et al, SIREV ’15

Linear network systems

x(k + 1) = Ax(k) + b or ẋ(t) = Ax(t) + b

1 systems of interest

2 asymptotic behavior

3 tools

network structure ⇐⇒ function = asymptotic behavior

Perron-Frobenius theory

non-negative
(A � 0)

irreducible
(
Pn�1

k=0 A
k > 0)

primitive
(there exists k

such that Ak > 0)

if A non-negative

1 eigenvalue λ ≥ |µ| for all other eigenvalues µ

2 right and left eigenvectors vright ≥ 0 and vleft ≥ 0

if A irreducible

3 λ > 0 and λ is simple

4 vright > 0 and vleft > 0 are unique

if A primitive

5 λ > |µ| for all other eigenvalues µ

6 limk→∞ Ak/λk = vrightv
T
left, with normalization vTrightvleft = 1

Algebraic graph theory

Powers of A ∼ paths in G :

(Ak)ij > 0 there exists directed path of length k
from i to j in G

Primitivity of A ∼ paths in G :

A is primitive
(A ≥ 0 and Ak > 0)

G strongly connected and aperiodic
(exists path between any two nodes) and
(exists no k dividing each cycle length)

digraph strongly connected components condensation



Averaging systems

Swarming via averaging

x+
i := average

(
xi , {xj , j is neighbor of i}

)

x(k + 1) = Ax(k)

A influence matrix:
row-stochastic: non-negative and row-sums equal to 1

For general G with multiple condensed sinks
(assuming each condensed sink is aperiodic)

consensus at sinks
convex combinations elsewhere

consensus: limk→∞ x(k) =
(
vleft · x(0)

)
1n

where vleft = convex combination = influence centrality

Compartmental flow systems

herbivory

uptake

drinking

precipitation

evaporation

soil

animals

plants

evaporation, drainage, runo↵

transpiration

Water flow model for a desert ecosystem

q̇i =
∑

j
(Fj→i − Fi→j)− Fi→0 + ui

Fi→j = fijqi , F = [fij ]

q̇ =
(
FT − diag(F1n + f0)

)
︸ ︷︷ ︸

=: C

q + u

C compartmental matrix:
quasi-positive (off-diag ≥ 0), f0 ≥ 0 =⇒ weakly diag dominant

Analysis tools: PF for quasi-positive, inverse positivity, algebraic graph

system (= each condensed sink)
is outflow-connected

C is Hurwitz

limt→∞ q(t) = −C−1u ≥ 0
(−C−1u)i > 0 ⇐⇒ ith compartment is inflow-connected

Nonlinear network systems

Rich variety of emerging behaviors

1 equilibria / limit cycles / extinction in populations dynamics

2 epidemic outbreaks in spreading processes

3 synchrony / anti-synchrony in coupled oscillators

Population systems in ecology

Mutualism between clownfish and anemones

Lotka-Volterra: xi = quantity/density

ẋi
xi

= bi +
∑

j
aijxj

ẋ = diag(x)
(
Ax + b)

A interaction matrix:
(+,+) mutualism, (+,−) predation, (−,−) competition
rich behavior: persistence, extinction, equilibria, periodic orbits, . . .

1 logistic growth: bi > 0 and aii < 0

2 bounded resources: A Hurwitz (e.g., irreducible and neg diag dom)

3 mutualism: aij ≥ 0

exists unique steady state −A−1b > 0
limt→∞ x(t) = −A−1b from all x(0) > 0



Network propagation in epidemiology

Susceptible Infected

� (infection rate)

� (recovery rate)

Network SI model

Network SIS: (xi = infected fraction)

ẋi = β
∑

j
aij(1− xi )xj − γxi

(rescaling)

ẋ =
(
In − diag(x)

)
Ax − x

A contact matrix: irreducible with dominant pair (λ, vright)

below the threshold: λ < 1

0 is unique stable equilibrium
vTrightx(t)→ 0 monotonically & exponentially

above the threshold: λ > 1

0 is unstable equilibrium
unique other equilibrium x∗ > 0
limt→∞ x(t) = x∗ from all x(0) 6= 0

Analysis methods

1 nonlinear stability theory

2 passivity

3 cooperative/competitive system and monotone generalizations

Mutualistic Lotka-Volterra: ẋ = diag(x)
(
Ax + b)

A quasi-positive and Hurwitz =⇒ inverse positivity
cooperative systems theory: (if Jacobian is quasi-positive,

then almost all bounded trajectories converge to an equlibrium)

Network SIS: ẋ =
(
In − diag(x)

)
Ax − x

A irreducible, above the threshold λ > 1
monotonic iterations and LaSalle invariance

Incomplete references on linear network systems

Averaging: multi-sink, concise proofs, etc

F. Harary. A criterion for unanimity in French’s theory of social power. Studies in Social Power, ed D. Cartwright,

168–182, 1959, University of Michigan.

J. N. Tsitsiklis and D. P. Bertsekas and M. Athans. Distributed asynchronous deterministic and stochastic gradient

optimization algorithms. IEEE Trans Automatic Control, 31(9):803:812, 1986.

P. M. DeMarzo, D. Vayanos, and J. Zwiebel. Persuasion bias, social influence, and unidimensional opinions. The

Quarterly Journal of Economics, 118(3):909-968, 2003.

J. M. Hendrickx. Graphs and Networks for the Analysis of Autonomous Agent Systems. PhD thesis, Université

Catholique de Louvain, Belgium, 2008.

A. Tahbaz-Salehi and A. Jadbabaie. A necessary and sufficient condition for consensus over random networks. IEEE

Trans Automatic Control, 53(3):791-795, 2008.

Compartmental and positive systems

G. G. Walter and M. Contreras. Compartmental Modeling with Networks. Birkhauser, 1999.

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993.

D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications. John Wiley & Sons, 1979.

Incomplete references on nonlinear network systems

Lotka-Volterra models

B. S. Goh. Stability in models of mutualism. American Naturalist, 261–275, 1979

Y. Takeuchi. Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, 1996.

J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge, 1998.

Network SI/SIS/SIR models

A. Lajmanovich and J. A. Yorke. A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical

Biosciences, 28(3):221-236, 1976

H. W. Hethcote. An immunization model for a heterogeneous population, Theoretical Population Biology, 14:3(338-349),

1978

A. Fall, A. Iggidr, G. Sallet, and J.-J. Tewa. Epidemiological models and Lyapunov functions, Mathematical Modelling of

Natural Phenomena, 2(1):62-68, 2007

A. Khanafer and T. Başar and B. Gharesifard. Stability of epidemic models over directed graphs: a positive systems

approach. Automatica, 74:126-134, 2016



New free text “Lectures on Network Systems”

Lectures on
Network Systems

Francesco Bullo

With contributions by
Jorge Cortés

Florian Dörfler
Sonia Martínez 

Lectures on Network Systems, v. .85
For students: free PDF for download
For instructors: slides and answer keys

Linear Systems:

1 motivating exampless from social, sensor and
compartmental networks,

2 matrix and graph theory, with an emphasis on
Perron–Frobenius theory and algebraic graph theory,

3 averaging algorithms in discrete and continuous time,
described by static and time-varying matrices, and

4 positive and compartmental systems, described by
Metzler matrices.

Nonlinear Systems:

5 formation control problems for robotic networks,

6 coupled oscillators, with an emphasis on the
Kuramoto model and models of power networks, and

7 virus propagation models, including lumped and
network models as well as stochastic and
deterministic models, and

8 population dynamic models in multi-species systems.

Outline

1 Intro to Network Systems
Models, behaviors, tools, and applications

2 Power Flow
“Synchronization in oscillator networks” by Dörfler et al, PNAS ’13
“Voltage collapse in grids” by Simpson-Porco et al, NatureComm ’16

3 Social Influence
“Opinion dynamics and social power” by Jia et al, SIREV ’15

Power flow equations

voltage magnitude
and phase

active and
reactive power

1 secure operating conditions

2 feedback control

3 economic optimization

while accurate numerical solvers in current use,
much ongoing research on optimization,

network structure ⇐⇒ function = power transmission

Power networks as quasi-synchronous AC circuits

1 generators �� and loads •◦
2 physics: Kirchoff and Ohm laws

3 today’s simplifying assumptions:
1 quasi-sync: voltage and phase Vi , θi

active and reactive power Pi , Qi

2 lossless lines
3 approximated decoupled equations
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Decoupled power flow equations

active: Pi =
∑

j aij sin(θi − θj)
reactive: Qi = −∑j bijViVj



Power Flow Equilibria

Pi =
∑

j aij sin(θi − θj) Qi = −∑j bijViVj

As function of network structure/parameters
1 do equations admit solutions / operating points?
2 how much active / reactive power can network transmit?
3 how to quantify stability margins?

Active power dynamics and mechanical analogy

Pgenerators

Ploads

Coupled swing equations

Mi θ̈i + Di θ̇i = Pi −
∑

j
aij sin(θi − θj)

Kuramoto coupled oscillators

θ̇i = Pi −
∑

j
aij sin(θi − θj)

Lessons from linear spring networks

x

Force ∝ displacement:

Fi =
∑

aij(xj − xi ) = −(Lx)i

Laplacian / stiffness matrix and connectivity strength:

L = diag(A1n)− A

λ2 = second smallest eigenvalue of L

x

x = L†Fload

x

x − xrest = L−1
groundedFload

Active power / frequency equilibrium conditions

Pgenerators

Ploads

Given balanced P, do angles exist?

Pi =
∑

j
aij sin(θi − θj)

connectivity strength vs. power transmission:
#1: “torques” ∼ active powers Pi

“displacements” ∼ power angles (θi − θj)
#2: with increasing power transmission,

(θi − θj) approach π/2 = sync loss

Equilibrium angles (neighbors within π/2 arc) exist if

∥∥pairwise differences of P‖2 < λ2(L) for all graphs
∥∥pairwise differences of L†P‖∞ < 1 for trees, 3/4-cycles, complete

Reactive power / voltage equilibrium condition

vo
lt

a
ge

Qloads

voltage collapse boundary

Given reactive Qloads, do voltages Vloads exist?

Qi = − Vi

∑
j
bij(Vj − Vrest,j)

where Vrest = open-circuit voltages

connectivity strength vs. power transmission:
#1: “force” ∼ reactive load Qloads

“displacement” ∼ relative voltage variation

#2: with increasing inductive Qloads,
Vloads falls until voltage collapse

Equilibrium voltage (high-voltage solution) exist if

∥∥∥L−1
grounded,scaledQloads

∥∥∥
∞
< 1



Summary (Power Flow)

New physical insight

1 sharp sufficient conditions for equilibria

2 upper bounds on transmission capacity

3 stability margins as notions of distance from bifurcations

Applications

1 secure operating conditions:
realistic IEEE testbeds (Dörfler et al, PNAS ’13)

2 feedback control:
microgrid design (Simpson-Porco et al, TIE ’15)

3 economic optimization:
convex voltage support (Todescato et al, CDC ’15)

Incomplete references on power flow equations

C. Tavora and O. Smith. Equilibrium analysis of power systems. IEEE Transactions on Power Apparatus and Systems, 91,

1972.

Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In Araki, H. (ed.) Int. Symposium on

Mathematical Problems in Theoretical Physics, vol. 39 of Lecture Notes in Physics, (Springer, 1975).

A. Araposthatis, S. Sastry, P. Varaiya Analysis of power-flow equation. Int. Journal of Electrical Power & Energy

Systems, 3, 1981.

F. Wu and S. Kumagai Steady-state security regions of power systems. IEEE Trans Circuits and Systems, 29, 1982.

M. Iĺıc Network theoretic conditions for existence and uniqueness of steady state solutions to electric power circuits. IEEE

Int. Symposium on Circuits and Systems, (San Diego, CA, USA, 1992).

S. Grijalva and P. W. Sauer. A necessary condition for power flow Jacobian singularity based on branch complex flows.

IEEE Trans Circuits and Systems I: Fundamental Theory and Applications, 52, 2005.

Our recent work
F. Dorfler and F. Bullo. Synchronization and Transient Stability in Power Networks and Non-Uniform Kuramoto

Oscillators. SIAM Journal on Control and Optimization, 50(3):1616-1642, 2012.

J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Voltage Collapse in Complex Power Grids. Nature Communications, 7,

2016.

J. W. Simpson-Porco, Q. Shafiee, F. Dorfler, J. M. Vasquez, J. M. Guerrero, and F. Bullo. Secondary Frequency and

Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Transactions on Industrial Electronics,
62(11):7025-7038, 2015.

F. Dorfler and F. Bullo. Synchronization in Complex Networks of Phase Oscillators: A Survey. Automatica,

50(6):1539-1564, 2014
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3 Social Influence
“Opinion dynamics and social power” by Jia et al, SIREV ’15

Social power along issue sequences

Deliberative groups in social organization
government: juries, panels, committees
corporations: board of directors
universities: faculty meetings

Natural social processes along sequences:

levels of openness and closure?
influence accorded to others? emergence of leaders?
rational/irrational decision making?

Groupthink = “deterioration of mental efficiency . . . from
in-group pressures,” by I. Janis, 1972

Wisdom of crowds = “group aggregation of information results
in better decisions than individual’s” by J. Surowiecki, 2005



Opinion dynamics and social power along issue sequences

DeGroot opinion formation

y(k + 1) = Ay(k)

Dominant eigenvector vleft is social power:

lim
k→∞

y(k) = (vleft · y(0))1n

Aii =: xi are self-weights / self-appraisal

Aij for i 6= j are interpersonal accorded weights

assume Aij =: (1− xi )Wij for constant Wij

A(x) = diag(x) + diag(1n − x)W

wleft = (w1, . . . ,wn) = dominant eigenvector for W

Opinion dynamics and social power along issue sequences

Reflected appraisal phenomenon (Cooley 1902 and Friedkin 2012)

along issues s = 1, 2, . . . , individual dampens/elevates
self-weight according to prior influence centrality

self-weights relative control on prior issues = social power

self-appraisal

reflected appraisal mechanism

x(s + 1) = vleft(A(x(s)))

x(s) A(x(s)) vleft(A(x(s)))

influence network social power

vleft(A(x)) =
( w1

1− x1
, . . . ,

wn

1− xn

)
/

n∑

i=1

wi

1− xi

Influence centrality and power accumulation

Existence and stability of equilibria?
Role of network structure and parameters?
Emergence of autocracy and democracy?

For strongly connected W and non-trivial initial conditions

1 convergence to unique fixed point (= forgets initial condition)

lim
s→∞

x(s) = lim
s→∞

vleft(x(s)) = x∗

2 accumulation of social power and self-appraisal
fixed point x∗ = x∗(wleft) > 0 has same ordering of wleft

social power threshold p: x∗i ≥ wi ≥ p and x∗i ≤ wi ≤ p

Emergence of democracy

If W is doubly-stochastic:

1 the non-trivial fixed point is 1n
n

2 lims→∞ x(s) = lims→∞ vleft(x(s)) = 1n
n

Uniform social power

No power accumulation = evolution to democracy

issue 1 issue 2 issue 3 . . . issue N



Emergence of autocracy

If W has star topology with center j :

1 there are no non-trivial fixed points

2 lims→∞ x(s) = lims→∞ vleft(x(s)) = ej

Autocrat appears in center node of star topology

Extreme power accumulation = evolution to autocracy

issue 1 issue 2 issue 3 . . . issue N

Analysis methods

1 existence of x∗ via
Brower fixed point theorem

2 monotonicity:
imax and imin are forward-invariant

imax = argmaxj
xj(0)

x∗j

=⇒ imax = argmaxj
xj(s)

x∗j
, for all subsequent s

3 convergence via variation on classic “max-min” Lyapunov function:

V (x) = max
j

(
ln

xj
x∗j

)
−min

j

(
ln

xj
x∗j

)
strictly decreasing for x 6= x∗

Summary (Social Influence)

New perspective on influence networks and social power

dynamics and feedback in influence networks

novel mechanism for power accumulation / emergence of autocracy

measurement models and empirical validation

Open directions

robustness for distinct models of opinion dynamics and appraisal

cognitive models for time-varying interpersonal appraisals

appraisals and power accumulation mechanisms

Incomplete references on social power

Social Influence

J. R. P. French. A formal theory of social power,Psychological Review, 63 (1956), pp. 181–194.

R. P. Abelson. Mathematical models of the distribution of attitudes under controversy, Contributions to Mathematical

Psychology, 1964, pp. 142–160.

V. Gecas and M. L. Schwalbe. Beyond the looking-glass self: Social structure and efficacy-based self-esteem. Social

Psychology Quarterly, 46 (1983), pp. 77–88.

N. E. Friedkin. A formal theory of reflected appraisals in the evolution of power. Administrative Science Quarterly, 56

(2011), pp. 501–529.

Our recent work

P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo. Opinion Dynamics and The Evolution of Social Power in

Influence Networks. SIAM Review, 57(3):367-397, 2015.

P. Jia, N. E. Friedkin, and F. Bullo. The Coevolution of Appraisal and Influence Networks leads to Structural Balance.

IEEE Transactions on Network Science and Engineering, 3(4):286-298, 2016

A. MirTabatabaei and F. Bullo. Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems.

SIAM Journal on Control and Optimization, 50(5):2763-2785, 2012.



Network systems in science and technology

averaging compartmental flows mutualism virus spread coupled oscillators social power

Models, behaviors, tools, and applications
PF and algebraic graphs for linear behaviors
variety of nonlinearities — elegant methods and broad impact

Power Networks and Social Influence
fundamental prototypical problems
nonlinear variations from linear framework
key outstanding questions remain

Outreach and collaboration opportunity for control community
biologists, ecologists, economists, physicists ...


