Contraction Theory for Networked Optimization and Control

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara
https://fbullo.github.io/ctds

Workshop on Emerging Challenges of Network-Enabled Control and Optimization CDC Workshop, Singapore, Dec 12, 2023

Acknowledgments

Veronica Centorrino Scuola Sup Meridionale

Lily Cothren **UC** Boulder

Emiliano Dall'Anese **UC** Boulder

Alex Davydov UC Santa Barbara

Anand Gokhale UC Santa Barbara

Giovanni Russo Univ Salerno

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex optimization. IEEE Transactions on Automatic Control, June 2023. . Submitted

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. IEEE Control Systems Letters, Sept. 2023. . To appear

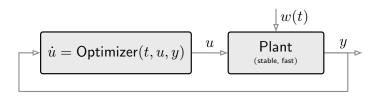
L. Cothren, F. Bullo, and E. Dall'Anese. Singular perturbation via contraction theory. IEEE Transactions on Automatic Control, Oct. 2023 Submitted

2/38

Solving optimization problems via dynamical systems

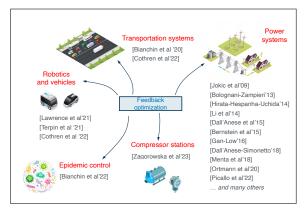
- studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
- neural networks (Hopfield and Tank 1985)
- analog circuits (Kennedy and Chua 1988)
- optimization on manifolds (Brockett 1991)

• . . .



Continuous-time optimizations solvers

- online feedback optimization
- distributed optimization
- parametric convex optimization
- model predictive control
- control barrier functions



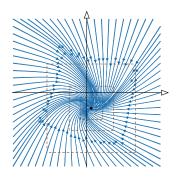
Online feedback optimization

Slide courtesy of Emiliano Dall'Anese, University of

Colorado Boulder

contractivity = robust computationally-friendly stability

fixed point theory + Lyapunov stability theory + geometry of metric spaces

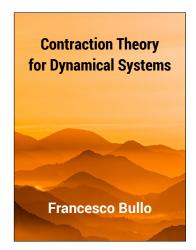


search for contraction properties

design engineering systems to be contracting

verify correct/safe behavior via known Lipschitz constants

Recent education and research on Contraction Theory



"Continuous improvement is better than delayed perfection" Mark Twain

- 2023 ACC Workshop "Contraction Theory for Systems, Control, and Learning" http://motion.me.ucsb.edu/contraction-workshop-2023
- 2021 IEEE CDC Tutorial session "Contraction Theory for Machine Learning" https://sites.google.com/view/contractiontheory (PDFs and youtube videos)
- 2022 IEEE CDC plenary presentation "Contraction Theory in Systems and Control" https://fbullo.github.io/talks/2022-12-FBullo-ContractionSystemsControl-CDC.pdf
- Textbook: Contraction Theory for Dynamical Systems, Francesco Bullo, rev 1.1, Mar 2023. (Book and slides freely available) https://fbullo.github.io/ctds
- 2023 Comprehensive tutorial slides: https://fbullo.github.io/ctds
- 2023 Sep: Youtube lectures: "Minicourse on Contraction Theory" https://youtu.be/FQV5PrRHks8 12h in 6 lectures

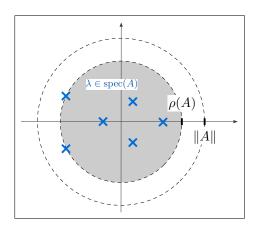
 Three CDC2023 invited sessions on Contraction Theory for Analysis, Synchronization and Regulation, tomorrow Wednesday!

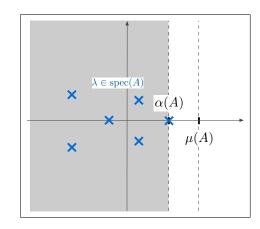
Outline

- §1. Introduction
- §2. Basic contractivity concepts
- §3. Examples: Gradient systems defined by strongly convex functions are contracting
- §4. Theory: Equilibrium tracking in parametric optimization
- §5. Application: Online feedback optimization
- §6. Conclusions

Induced matrix norms

Vector norm	Induced matrix norm	Induced matrix log norm
$ x _1 = \sum_{i=1}^n x_i $	$ A _1 = \max_{j \in \{1, \dots, n\}} \sum_{i=1}^n a_{ij} $	$\mu_1(A) = \max_{j \in \{1,\dots,n\}} \left(a_{jj} + \sum_{i=1,i \neq j}^{n} a_{ij} \right)$
	= max column "absolute sum" of A	absolute value only off-diagonal
$ x _2 = \sqrt{\sum_{i=1}^n x_i^2}$	$\ A\ _2 = \sqrt{\lambda_{\max}(A^\top A)}$	$\mu_2(A) = \lambda_{\sf max}\Bigl(rac{A+A^{ op}}{2}\Bigr)$
$ x _{\infty} = \max_{i \in \{1, \dots, n\}} x_i $	$ A _{\infty} = \max_{i \in \{1,\dots,n\}} \sum_{j=1}^{n} a_{ij} $	$\mu_{\infty}(A) = \max_{i \in \{1, \dots, n\}} \left(a_{ii} + \sum_{j=1, j \neq i}^{n} a_{ij} \right)$
	= max row "absolute sum" of A	absolute value only off-diagonal





Continuous-time dynamics and one-sided Lipschitz constants

$$\dot{x} = \mathsf{F}(x)$$
 on \mathbb{R}^n with norm $\|\cdot\|$ and induced log norm $\mu(\cdot)$

One-sided Lipschitz constant

$$\operatorname{osLip}(\mathsf{F}) = \inf\{b \in \mathbb{R} \text{ such that } \llbracket \mathsf{F}(x) - \mathsf{F}(y), x - y \rrbracket \le b \|x - y\|^2 \quad \text{ for all } x, y\} \\ = \sup_x \mu(D\mathsf{F}(x))$$

For scalar map
$$f$$
, $\operatorname{osLip}(f) = \sup_x f'(x)$

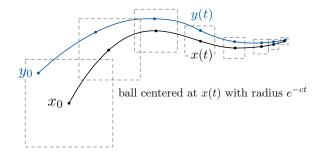
For affine map $F_A(x) = Ax + a$

$$\begin{aligned} \operatorname{osLip}_{2,P}(\mathsf{F}_A) &= \mu_{2,P}(A) \leq \ell &\iff & A^\top P + AP \preceq 2\ell P \\ \operatorname{osLip}_{\infty,\eta}(\mathsf{F}_A) &= \mu_{\infty,\eta}(A) \leq \ell &\iff & a_{ii} + \sum_{i \neq i} |a_{ij}| \eta_i / \eta_j \leq \ell \end{aligned}$$

Banach contraction theorem for continuous-time dynamics:

If $-c := \operatorname{osLip}(\mathsf{F}) < 0$, then

- F is infinitesimally contracting = distance between trajectories decreases exp fast (e^{-ct})
- $oldsymbol{9}$ F has a unique, glob exp stable equilibrium x^*
- 3 global Lyapunov functions $V_1(x) = ||x x^*||^2$ and $V_2(x) = ||F(x)||^2$



Euler discretization theorem for contracting dynamics

Given arbitrary norm $\|\cdot\|$ and differentiable $F:\mathbb{R}^n\to\mathbb{R}^n$, equivalent statements

- \bullet $\dot{x} = F(x)$ is infinitesimally contracting
- ② there exists $\alpha > 0$ such that $x_{k+1} = x_k + \alpha F(x_k)$ is contracting

Interconnected subsystems: $x_i \in \mathbb{R}^{N_i}$ and $x_{-i} \in \mathbb{R}^{N-N_i}$:

$$\dot{x}_i = F_i(x_i, x_{-i}), \quad \text{for } i \in \{1, \dots, n\}$$

Network contraction theorem. Assume

- contractivity wrt x_i : osLip $_{x_i}(\mathsf{F}_i) \leq -c_i < 0$, uniformly in x_{-i}
- $\bullet \ \, \textbf{Lipschitz wrt} \, \, x_j \text{, } j \neq i \text{:} \quad \, \text{Lip}_{x_j}(\mathsf{F}_i) \leq \ell_{ij} \text{,} \qquad \qquad \text{uniformly in } x_{-j}$
- the Lipschitz constants matrix $\Gamma = \begin{bmatrix} -c_1 & \dots & \ell_{1n} \\ \vdots & & \vdots \\ \ell_{n1} & \dots & -c_n \end{bmatrix}$ is **Hurwitz**

$$\Longrightarrow$$
 interconnected system is contracting wrt rate $|\alpha(\Gamma)|$

contractivity = robust computationally-friendly stability

fixed point theory + Lyapunov stability theory + geometry of metric spaces

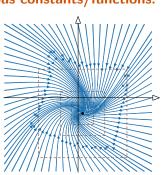
highly-ordered transient and asymptotic behavior, no anonymous constants/functions:

- unique globally exponential stable equilibrium& two natural Lyapunov functions
- Probustness properties bounded input, bounded output (iss) finite input-state gain robustness margin wrt unmodeled dynamics robustness margin wrt delayed dynamics
- periodic input, periodic output
- modularity and interconnection properties
- accurate numerical integration and equilibrium point computation

search for contraction properties

design engineering systems to be contracting

verify correct/safe behavior via known Lipschitz constants



Outline

- §1. Introduction
- §2. Basic contractivity concepts
- §3. Examples: Gradient systems defined by strongly convex functions are contracting
- §4. Theory: Equilibrium tracking in parametric optimization
- §5. Application: Online feedback optimization
- §6. Conclusions

Convexity and contractivity

Kachurovskii's Theorem: For differentiable $f: \mathbb{R}^n \to \mathbb{R}$, equivalent statements:

- f is strongly convex with parameter ν (and minimum x^*)

$$\left(-\nabla f(x) + \nabla f(y)\right)^{\top} (x - y) \le -\nu ||x - y||_2^2$$

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960

Example #1: Gradient dynamics for strongly convex function

Given differentiable, strongly convex $f: \mathbb{R}^n \to \mathbb{R}$ with parameter $\nu > 0$, gradient dynamics

$$\dot{x} = \mathsf{F}_\mathsf{G}(x) := -\nabla f(x)$$

 ${\sf F_G}$ is infinitesimally contracting wrt $\|\cdot\|_2$ with rate ν unique globally exp stable point is global minimum

Example #2: Primal-dual gradient dynamics

strongly convex function f s.t. $0 \prec \nu_{\min} I_n \preceq \operatorname{Hess} f \preceq \nu_{\max} I_n$ constraint matrix A s.t. $0 \prec a_{\min} I_m \preceq AA^\top \preceq a_{\max} I_m$ (independent rows) linearly constrained optimization:

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
 subj. to $Ax = b$

primal-dual gradient dynamics:

$$\begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} = \mathsf{F}_{\mathsf{PDG}}(x,\lambda) := \begin{bmatrix} -\nabla f(x) - A^{\top} \lambda \\ Ax - b \end{bmatrix}$$

$$\mathsf{F}_{\mathsf{PDG}}$$
 is infinitesimally contracting wrt $\|\cdot\|_{2,P^{1/2}}$ with rate c

$$P = \begin{bmatrix} I_n & \alpha A^\top \\ \alpha A & I_m \end{bmatrix} \text{ with } \alpha = \frac{1}{2} \min \left\{ \frac{1}{\nu_{\text{max}}}, \frac{\nu_{\text{min}}}{a_{\text{max}}} \right\} \qquad \text{and} \qquad c = \frac{1}{4} \min \left\{ \frac{a_{\text{min}}}{\nu_{\text{max}}}, \frac{a_{\text{min}}}{a_{\text{max}}} \nu_{\text{min}} \right\}$$

Example #3: Laplacian-based distributed gradient

Given $\Pi_n = I_n - \mathbb{1}_n \mathbb{1}_n^\top / n = \text{orthogonal projection onto } \operatorname{span}\{\mathbb{1}_n\}^\perp$,

$$0 \prec \lambda_2 \Pi_n \preceq L \preceq \lambda_n I_n$$

decomposable cost: $\min_{x \in \mathbb{R}} \sum_{i=1}^{n} f_i(x)$ where each f_i is ν_i -strongly convex

$$\begin{cases} \min_{x_{[i]} \in \mathbb{R}} & \sum_{i=1}^n f_i(x_{[i]}) \\ \text{subj. to} & \sum_{j=1}^n a_{ij}(x_i - x_j) = 0 \end{cases}$$

Laplacian-based distributed gradient (primal-dual gradient, 2n vars):

$$\begin{cases} \dot{x}_{[i]} = -\nabla f_i(x_{[i]}) - \sum_{j=1}^n a_{ij}(\lambda_i - \lambda_j) & \text{for each node } i \\ \dot{\lambda}_i = \sum_{j=1}^n a_{ij}(x_i - x_j) & \text{for each node } i \end{cases}$$

$$\mathsf{F}_{\mathsf{Laplacian-DistributedG}}$$
 is infinitesimally contracting with $c = \frac{1}{4} \left(\frac{\lambda_2}{\lambda_m} \right)^2 \min_i \nu_i$

Detour: Composite optimization and the proximal operator

composite minimization (cost = sum of terms with structurally different properties):

$$x^* = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x, u) + g(x)$$

$$f(x,u)$$
 is convex and differentiable in x $g:\mathbb{R}^n \to \overline{\mathbb{R}}$ is convex, closed, and proper (ccp)

proximal operator:
$$\operatorname{prox}_{\gamma g}(z) := \operatorname*{argmin}_{x \in \mathbb{R}^n} g(x) + \frac{1}{2\gamma} \|x - z\|_2^2$$

generalized form of projection for nonsmooth/constrained/large-scale/distributed optimization

Equivalence property:

- 2 x^* is fixed point for: $x = \text{prox}_{\gamma q}(x \gamma \nabla f(x, u))$ for all γ

Example #4: Proximal gradient dynamics

Equivalence property motivates:

proximal gradient dynamics:

$$\dot{x} = \mathsf{F}_{\mathsf{ProxG}}(x) := -x + \mathsf{prox}_{\gamma g}(x - \gamma \nabla f(x))$$

projected gradient descent is special case

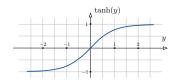
$$\mathsf{F}_{\mathsf{ProxG}}$$
 is infinitesimally contracting wrt $\|\cdot\|_2$

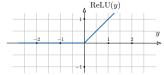
$$\begin{aligned} &\text{for } 0<\gamma<\frac{2}{\ell}, & \text{with rate} & c=1-\max\{|1-\gamma\nu|,|1-\gamma\ell|\}, \\ &\text{for } \gamma^{\star}=\frac{2}{\nu+\ell}, & \text{with maximal rate} & c^{\star}=\frac{2\nu}{\nu+\ell} \end{aligned}$$

Example #5: Firing-rate recurrent neural network and ℓ_{∞}

$$\dot{x} = \mathsf{F}_{\mathsf{FR}}(x) := -x + \Phi(Wx + Bu)$$

sigmoid, hyperbolic tangent ReLU = $\max\{x,0\} = (x)_+$ $0 \le \Phi'_i(y) \le 1$





 F_{FR} is infinitesimally contracting wrt $\|\cdot\|_{\infty}$ with rate $1-\mu_{\infty}(W)_{+}$ — if

$$\mu_{\infty}(W) < 1$$
 (i.e., $w_{ii} + \sum_{i} |w_{ij}| < 1$ for all i)

Note: clear graphical interpretation + generalization to interconnection theorem

Example #6: Firing-rate network with symmetric synapses and ℓ_2

$$\begin{split} \dot{x} &= \mathsf{F}_{\mathsf{FR}}(x) := -x + \Phi(Wx + Bu) \\ 0 &\leq \Phi_i'(y) \leq 1 \quad \text{ and } \quad W = W^\top \text{ with } \lambda_W = \lambda_{\mathsf{max}}(W) \end{split}$$

For $\lambda_W < 1$ and $\lambda_W \neq 0$, F_{FR} is infinitesimally contracting with rate $-1 + (\lambda_W)_+$

For $\lambda_W = 1$, F_{FR} is weakly infinitesimally contracting

Note: when $W=W^{\top}$, sharper result, but no graph interpretation and hard to generalize

Example #7: Saddle dynamics

Assume $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$

- $x \mapsto f(x,y)$ is ν_x -strongly convex, uniformly in y
- ullet $y\mapsto f(x,y)$ is u_y -strongly concave, uniformly in x

saddle dynamics (primal-descent / dual-ascent):

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \mathsf{F}_{\mathsf{S}}(x,y) := \begin{bmatrix} -\nabla_x f(x,y) \\ \nabla_y f(x,y) \end{bmatrix}$$

F_S is infinitesimally contracting wrt $\|\cdot\|_2$ with rate $\min\{\nu_x,\nu_y\}$ unique globally exp stable point is saddle point (min in x, max in y)

Example #8: Pseudogradient play

Each player i aims to minimize its own cost function $J_i(x_i,x_{-i})$ (not a potential game) pseudogradient dynamics (aka gradient play in game theory):

$$\dot{x} = \mathsf{F}_{\mathsf{PseudoG}}(x) = -\left(\nabla_1 J_1(x_1, x_{-1}), \dots, \nabla_n J_n(x_n, x_{-n})\right) \tag{stacked vector}$$

$$\iff \dot{x}_i = -\nabla_i J_i(x_i, x_{-i})$$

- strong convexity wrt x_i : J_i is μ_i strongly convex wrt x_i , uniformly in x_{-i}
- Lipschitz wrt x_{-i} : Lip $_{x_j}(\nabla_i J_i) \le \ell_{ij}$, uniformly in x_{-j}
- F_{PseudoG} gain matrix is Hurwitz
 - \implies F_{PseudoG} is infinitesimally contracting wrt appropriate diag-weighted $\|\cdot\|_2$

Example #9: Best response play

Each player i aims to minimize its own cost function $J_i(x_i,x_{-i})$ BR $_i:x_{-i}\to \mathop{\rm argmin}_{x_i}J_i(x_i,x_{-i})$ best response of player i wrt other decisions x_{-i} best response dynamics:

$$\dot{x} = \mathsf{F}_{\mathsf{BR}}(x) := \mathsf{BR}(x) - x$$
 $\iff \dot{x}_i = \mathsf{BR}_i(x_{-i}) - x_i$

- strong convexity wrt x_i : J_i is μ_i strongly convex wrt x_i , uniformly in x_{-i}
- Lipschitz wrt x_{-i} : Lip $_{x_j}(\nabla_i J_i) \le \ell_{ij}$, uniformly in x_{-j}
- \Rightarrow BR $_i$ is Lipschitz wrt x_j with constant ℓ_{ij}/μ_i FBR gain matrix is Hurwitz \iff BR is a discrete-time contraction
- \implies BR Id is infinitesimally contracting wrt appropriate diag-weighted $\|\cdot\|_2$

Equivalent statements:

FBR gain matrix:

$$\begin{bmatrix} -\mu_1 & \dots & \ell_{1n} \\ \vdots & & \vdots \\ \ell_{n1} & \dots & -\mu_n \end{bmatrix}$$
 is Hurwitz

$$\begin{bmatrix} \ell_{n1} & \dots & -\mu_n \end{bmatrix}$$

$$\begin{bmatrix} -1 & \dots & \ell_{1n}/\mu_1 \\ \vdots & & \vdots \\ \ell_{n1}/\mu_n & \dots & -1 \end{bmatrix}$$
 is Hurwitz

discrete-time
$$F_{BR}$$
 gain matrix:

 $\begin{bmatrix} 0 & \dots & \ell_{1n}/\mu_1 \\ \vdots & & \vdots \\ \ell_{n1}/\mu_n & \dots & 0 \end{bmatrix} \text{ is Schur}$

Aggregative games:
$$J_i(x_i,x_{-i}) = f_i\left(x_i,\frac{1}{n}\sum_{j=1}^n x_j\right)$$
 assume f_i is μ_i -strongly convex wrt x_i and $\ell_i = \operatorname{Lip}_y(\nabla_{x_i}f_i(x_i,y))$

 $\mu_i > \ell_i$ for each agent $i \implies gain matrix$ is Hurwitz

Outline

- §1. Introduction
- §2. Basic contractivity concepts
- §3. Examples: Gradient systems defined by strongly convex functions are contractin
- §4. Theory: Equilibrium tracking in parametric optimization
- §5. Application: Online feedback optimization
- §6. Conclusions

Parametric and time-varying convex optimization

Many convex optimization problems can be solved with contracting dynamics

$$\dot{x} = \mathsf{F}(x)$$

contracting dynamics for parametric strongly-convex optimization

$$\dot{x} = \mathsf{F}(x,\theta)$$

contracting dynamics for time-varying strongly-convex optimization

$$\dot{x} = \mathsf{F}(x, \theta(t))$$

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex optimization. *IEEE Transactions on Automatic Control*. June 2023. Submitted

Equilibrium tracking

For parameter-dependent vector field $\mathsf{F}:\mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^n$ and differentiable $\theta:\mathbb{R}_{\geq 0} \to \Theta \subset \mathbb{R}^d$

$$\dot{x}(t) = \mathsf{F}(x(t), \theta(t))$$

Assume there exist norms $\|\cdot\|_{\mathcal{X}}$ and $\|\cdot\|_{\Theta}$ s.t.

- contractivity wrt x: osLip $_x(\mathsf{F}) < -c < 0$, uniformly in θ
- $\bullet \ \, \operatorname{Lipschitz} \ \operatorname{wrt} \ \theta \colon \qquad \qquad \operatorname{Lip}_{\theta}(\mathsf{F}) \le \ell, \qquad \qquad \text{uniformly in } x$

Theorem: Equilibrium tracking for contracting dynamics

- for each fixed θ , there exists a unique equilbrium $x^*(\theta)$
- 2 the equilibrium map $x^{\star}(\cdot)$ is Lipschitz with constant $\frac{\ell}{c}$

Consequences for tracking error

$$D^{+} \| x(t) - x^{\star}(\theta(t)) \|_{\mathcal{X}} \le -c \| x(t) - x^{\star}(\theta(t)) \|_{\mathcal{X}} + \frac{\ell}{c} \| \dot{\theta}(t) \|_{\Theta}$$

bounded input, bounded error with asymptotic bound:

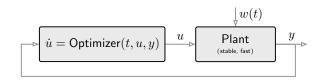
$$\limsup_{t \to \infty} \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} \leq \frac{\ell}{c^2} \limsup_{t \to \infty} \|\dot{\theta}(t)\|_{\Theta}$$

- bounded energy input, bounded energy error
- vanishing input, vanishing error
- exponentially vanishing input $\sim e^{-ht}$, exponentially vanishing error $\sim e^{-\min\{c,h\}t}$
- periodic input, periodic error

Outline

- §1. Introduction
- §2. Basic contractivity concepts
- §3. Examples: Gradient systems defined by strongly convex functions are contractin
- §4. Theory: Equilibrium tracking in parametric optimization
- §5. Application: Online feedback optimization
- §6. Conclusions

Application: Online feedback optimization



online feedback optimization

online optimization, optimization-based feedback, input/output regulation . . .

$$\begin{cases} \min & \mathsf{cost}_1(u) + \mathsf{cost}_2(y) \\ \mathsf{subj. to} & y = \mathsf{Plant}\big(u, w(t)\big) \end{cases} \implies \begin{cases} \dot{u} = \mathsf{Optimizer}(t, u, y) \\ y = \mathsf{Plant}\big(u, w(t)\big) \end{cases}$$

A. Hauswirth, S. Bolognani, G. Hug, and F. Dorfler. Timescale separation in autonomous optimization. *IEEE Transactions on Automatic Control*, 66(2):611–624, 2021.

G. Bianchin, J. Cortés, J. I. Poveda, and E. Dall'Anese. Time-varying optimization of LTI systems via projected primal-dual gradient flows. *IEEE Transactions on Control of Network Systems*, 9(1):474–486, 2022.

Example #10: Gradient controller

ullet fast/stable LTI plant with control input u and state/measurement disturbance w(t):

$$\begin{split} \epsilon \dot{x} &= Ax + Bu + Ew(t) & A \text{ Hurwitz} \\ y &= Cx + Dw(t) \end{split}$$

• in singular perturbation limit as $\epsilon \to 0^+$, steady state map $(Y_u \text{ and } Y_w)$

$$y = \underbrace{-CA^{-1}B}_{=: Y_u} u + \underbrace{(D - CA^{-1}E)}_{=: Y_w} w$$

• define cost function \mathcal{E} on u and y:

$$\mathcal{E}(u,w) = \phi(u) + \psi(Y_u u + Y_w w),$$
 (ϕ is ν -strongly convex and ψ is convex)

and note

$$\nabla_u \mathcal{E}(u, w) = \nabla \phi(u) + Y_u^\top \nabla \psi(Y_u u + Y_w w)$$

$$= \nabla \phi(u) + Y_u^\top \nabla \psi(y) \qquad \text{(no need to measure } w(t)\text{)}$$

Example #10: Gradient controller

equilibrium trajectory let $u^*(t)$ be solution to

$$\min_{u} \quad \phi(u) + \psi(y(t))$$
 subj to
$$y(t) = Y_{u}u + Y_{w}w(t)$$

gradient controller

$$\dot{u} = \mathsf{F}_{\mathsf{GradCtrl}}(u, w) := -\nabla \mathcal{E}_u(u, w) = -\nabla \phi(u) - Y_u^{\top} \nabla \psi(Y_u u + Y_w w)$$

Equilibrium tracking for the gradient controller

- $\bullet \ \, \mathrm{osLip}_u(\mathsf{F}_{\mathsf{GradCtrl}}) \leq -\nu$
 - $\text{Lip}_{w}(\mathsf{F}_{\mathsf{GradCtrl}}) = \ell_{w} := \|Y_{w}^{\top}\| \operatorname{Lip}(\nabla \psi) \|Y_{w}\|$

$$\limsup_{t \to \infty} \|u(t) - u^*(t)\| \le \frac{\ell_w}{\nu^2} \limsup_{t \to \infty} \|\dot{w}(t)\|$$

(ν -strongly convex ϕ , convex ψ)

(gradient of ν -strongly convex function)

Example #11: Projected gradient controller

Constrained feedback optimization:

$$\min_{u} \quad \mathcal{E}(u,w) = \phi(u) + \psi(Y_{u}u + Y_{w}w) \qquad \text{(ν strongly convex, ℓ_{u} strongly smooth, ℓ_{w})}$$
 subj. to $\quad u \in \mathcal{U} \qquad \qquad \text{(nonempty, closed, convex. $P_{\mathcal{U}}$ = orthogonal projection)}$

Projected gradient controller (example of proximal gradient dynamics):

$$\dot{u} = \mathsf{F}_{\mathsf{PGC}}(u, w) := -u + P_{\mathcal{U}}(u - \gamma \nabla_u \mathcal{E}(u, w))$$

Equilibrium tracking for projected gradient controller At
$$\gamma = \frac{2}{\nu + \ell_u}$$
,

- $2 \operatorname{Lip}_w(\mathsf{F}_{\mathsf{PGC}}) = \ell_{\mathsf{PGC}} := \frac{2}{\nu + \ell_{\mathsf{PGC}}} \ell_w$

$$\operatorname{Lip}_w(\mathsf{FPGC}) = \ell_{\mathsf{PGC}} := \frac{1}{\nu + \ell_u} \ell_w$$

$$u + \ell_u^{vw}$$

 $\limsup_{t \to \infty} \|u(t) - u^*(t)\| \leq \frac{\ell_{\mathsf{PGC}}}{c_{\mathsf{PGC}}^2} \limsup_{t \to \infty} \|\dot{w}(t)\|$

(eq tracking)

(contractivity prox gradient)

Outline

- §1. Introduction
- §2. Basic contractivity concepts
- §3. Examples: Gradient systems defined by strongly convex functions are contracting
- §4. Theory: Equilibrium tracking in parametric optimization
- §5. Application: Online feedback optimization
- §6. Conclusions

Conclusions

contractivity = robust computationally-friendly stability

fixed point theory + Lyapunov stability theory + geometry of metric spaces

- theory
- examples
- control application

Ongoing work

- applications to ML and biologically-inspired neural networks
- applications to optimization-based control designs: model predictive control, control barrier functions, low-gain integral control
- equilibrium tracking with noise applications to optimization-based control