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Solving optimization problems via dynamical systems

studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
neural networks (Hopfield and Tank 1985)

analog circuits (Kennedy and Chua 1988)

optimization on manifolds (Brockett 1991)

J]w(t)

u Plant Yy

’_> U= Optimizer(t, u, y) (stable, fast)
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Continuous-time optimizations solvers

© online feedback optimization
@ distributed optimization
© parametric convex optimization
@ model predictive control

@ control barrier functions

Transportation systems
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[Cothren et al'22]

e

Robotics

and vehicles ‘\
v &

[Lawrence et al'21]

[Terpin et al '21]

[Cothren et al '22]

Feedback
optimization

Compressor stations

[Zagorowska et al'23]

g

“4  Epidemic control

[
o %5\ [Bianchin et al'22]
oSS

¥

Power
systems

B

[Jokic et al'09]
[Bolognani-Zampieri'13]
[Hirata-Hespanha-Uchida’14]
[Lietal14]

[Dall’Anese et al'15]
[Bernstein et al'15]
[Gan-Low'16]
[Dall’Anese-Simonetto’18]
[Menta et al'18]

[Ortmann et al’20]

[Picallo et al'22]

... and many others

Online feedback optimization

Slide courtesy of Emiliano Dall’Anese, University of

Colorado Boulder
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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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Recent education and research on Contraction Theory

Contraction Theory
for Dynamical Systems

-

Francesco Bullo

" Continuous improvement is

better than delayed perfection”

Mark Twain

2023 ACC Workshop " Contraction Theory for Systems, Control, and
Learning” http://motion.me.ucsb.edu/contraction-workshop-2023

2021 IEEE CDC Tutorial session " Contraction Theory for Machine
Learning” https://sites.google.com/view/contractiontheory (PDFs
and youtube videos)

2022 IEEE CDC plenary presentation " Contraction Theory in Systems
and Control” https://fbullo.github.io/talks/2022-12-FBullo-
ContractionSystemsControl-CDC.pdf

Textbook: Contraction Theory for Dynamical Systems, Francesco
Bullo, rev 1.1, Mar 2023. (Book and slides freely available)
https:/ /fbullo.github.io/ctds

@ 2023 Comprehensive tutorial slides: https://fbullo.github.io/ctds

@ 2023 Sep: Youtube lectures: "Minicourse on Contraction Theory”

https://youtu.be/FQV5PrRHks8 12h in 6 lectures

Three CDC2023 invited sessions on Contraction Theory for Analysis,
Synchronization and Regulation, tomorrow Wednesday!
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§2. Basic contractivity concepts
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Induced matrix norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
el =3 lail
n
— 2
lzll2 = Zizl i

l2llee = . |zl

{1}

Al = max a;
Al = max 377 o

= max column “absolute sum” of A

HAH2 = /\maX(ATA)

4o = i, 370l

= max row “absolute sum” of A

m(4) = Je?faxn} (aJJ + Z, L |‘1m|)
absolute value only off-diagonal

o) = A (EA)

2
n
A) = max (a--+ a--)
,Uoo( ) el ii Zj:l,j#il z]|
absolute value only off-diagonal
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Continuous-time dynamics and one-sided Lipschitz constants

& = F(z) on R™ with norm || - || and induced log norm ()

One-sided Lipschitz constant

osLip(F) = inf{b € R such that [F(z) — F(y),z — y] < bllz —y||> for all z,y}
= sup, p(DF(z))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az + a
= AP+ AP = 2P

= i+ Y laijlni/n; < ¢
i

IN

osLipy p(Fa) = pa,p(A)

14
OSLipoo,n(FA) = MOO,W(A) ¢

IN
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Banach contraction theorem for continuous-time dynamics:
If —c:= osLip(F) < 0, then

@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e =)
O F has a unique, glob exp stable equilibrium x*

© global Lyapunov functions Vi(z) = ||z — z*||? and Va(z) = ||F(=)]|?

ct
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Euler discretization theorem for contracting dynamics
Given arbitrary norm || - || and differentiable F : R* — R", equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that ;1 = x + aF(xy) is contracting
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Interconnected subsystems: z; € RV and z_; € RV —Vi;

i = Fi(xi, m_y), fori e {1,...,n}

Network contraction theorem. Assume
@ contractivity wrt z;: osLip,, (F;) < —¢; <0, uniformly in z_;
e Lipschitz wrt z;, j # i Llpmj(Fi) < ey, uniformly in x_;
—C1 ... Eln
@ the Lipschitz constants matrix I' = | .| is Hurwitz
Enl Lo —Cpy
= interconnected system is contracting wrt rate |a(T")]
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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior, no anonymous constants/functions:
@ unique globally exponential stable equilibrium
& two natural Lyapunov functions
@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics
periodic input, periodic output
modularity and interconnection properties
accurate numerical integration and equilibrium point computation

000

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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§3. Examples: Gradient systems defined by strongly convex functions are contracting
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Convexity and contractivity

Kachurovskii’s Theorem: For differentiable f : R — R, equivalent statements:
Q f is strongly convex with parameter v (and minimum z*)

@ —Vf is v-strongly infinitesimally contracting (with equilibrium z*), that is

(= VI@) +VF®) (@ —y) < —v]z - yl3

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960
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Example #1: Gradient dynamics for strongly convex function

Given differentiable, strongly convex f : R” — R with parameter v > 0, gradient dynamics

i = Fo(a) = —Vf(a)

Fg is infinitesimally contracting wrt || - |2 with rate v
unique globally exp stable point is global minimumJ
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Example #2: Primal-dual gradient dynamics

strongly convex function f s.t. 0 < Umindn < Hess f = VmaxIn
constraint matrix A sit. 0 < aminlm < AAT < amaxIm (independent rows)
linearly constrained optimization:

min - f()
subj. to Ax =1b

primal-dual gradient dynamics:

[ﬂ = Fppg(z,A) == [_vﬁi)_—bATA]

Fppg is infinitesimally contracting wrt || - ||, p1/2 with rate c

T 1 1 ; 1 i i
P= [In %, ] with @ = = min { —, | and e= gmin {72, D |

aA Im Vmax amax Vmax amax
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Example #3: Laplacian-based distributed gradient

Given II,, = I,, — 1,1, /n = orthogonal projection onto span{1,},
0 <Xl X LN,

decomposable cost: min,cr >, fi(x) where each f; is v;-strongly convex

minx[i]GR Z?:l fZ ("B[Z])
subj. to Z?:1 aij(z; —x;) =0

Laplacian-based distributed gradient (primal-dual gradient, 2n vars):

. n .
iy = —Vfi(ac[i]) — ijl aij(Ai — Aj) for each node ¢
n
N\ = Zaij(xi —z5) for each node ¢
j=1
e e . . 1 /A2 |
FLaplacian-DistributedG is infinitesimally contractmgT with ¢ = 1 (—) min v; J

n (2
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Detour: Composite optimization and the proximal operator

composite minimization (cost = sum of terms with structurally different properties):

*

x* = argmin f(z,u) + g(z)

rERM
f(z,u) is convex and differentiable in g:R™ — R is convex, closed, and proper (ccp)
. . 1 2
proximal operator: prox,,(z) = argming(z) + |z — 2|3
TERM 27

generalized form of projection for nonsmooth /constrained/large-scale/distributed optimization

Equivalence property:
© 2* is minimizer for: rreliRn flx,u) + g(x)
xT n

@ =z is fixed point for: T = prox,,(z — YV f(z,u)) for all ~
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Example #4: Proximal gradient dynamics

Equivalence property motivates:
proximal gradient dynamics:
& = Fpyoxg(z) := —x + prox.,(z — YV f(x))

projected gradient descent is special case

FproxG is infinitesimally contracting wrt || - ||2
2 .
for0<'y<z, with rate c=1—max{|l —yv|, |1 — ¢},
2 2
for v* = with maximal rate  ¢* = ——

v+ v+4
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Example #b5: Firing-rate recurrent neural network and /.

& = Fer(z) := —z + &(Wax + Bu)

tanh(y) ReLU(y)

sigmoid, hyperbolic tangent ' , ‘[ )
ReLU = maX{x,O} = (x)_"_ 2 —1 1 2 o A | ]
0< ®j(y) <1 ) )
Fer is infinitesimally contracting wrt || - || with rate 1 — (W), if
poo(W) < 1 (i.e., wi + Zj lwiz| < 1 for all i)

Note: clear graphical interpretation + generalization to interconnection theorem
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Example #6: Firing-rate network with symmetric synapses and /5

0<®(y) <1 and W =W" with Ay = Amax(W)

For Aw < 1 and A # 0, Feg is infinitesimally contracting with rate —1 + (A\y)+

For A\yw = 1, Fgr is weakly infinitesimally contracting

Note: when W = W, sharper result, but no graph interpretation and hard to generalize
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Example #7: Saddle dynamics

Assume f: R” x R™ = R
e x — f(x,y) is v,-strongly convex, uniformly in y
e y— f(x,y) is vy-strongly concave, uniformly in =
saddle dynamics (primal-descent / dual-ascent):

m = Fs(z,y) = TVY}@Zﬂ

Fs is infinitesimally contracting wrt || - |2 with rate min{v,,v,}
unique globally exp stable point is saddle point (min in 2, max in y)J
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Example #8: Pseudogradient play

Each player ¢ aims to minimize its own cost function J;(z;, x_;) (not a potential game)

pseudogradient dynamics (aka gradient play in game theory):

& = Fpseudoc(z) = — (V11 (@1, 2-1), ..., Vdn(Tn, 2-n)) (stacked vector)
<~ T; = —viji(l‘i,l‘_i)

@ strong convexity wrt x;: J; is u; strongly convex wrt x;, uniformly in z_;
e Lipschitz wrt z_;: Lipxj(ViJi) = uniformly in z_;
@ Fpeseudog gain matrix is Hurwitz

=—>  FpseudogG is infinitesimally contracting wrt appropriate diag-weighted || - |2
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Example #9: Best response play

Each player ¢ aims to minimize its own cost function J;(x;, x_;)
BR; : x_; — argmin,, Ji(zi,x_;) best response of player i wrt other decisions x_;

best response dynamics:

T = FBR(I‘) = BR(l‘) — T
< T; = BRl(iL‘fz) — Z;

@ strong convexity wrt x;: J; is u; strongly convex wrt x;, uniformly in z_;

@ Lipschitz wrt z_;: Lip,, (ViJi) < i, uniformly in z_;
=  BR; is Lipschitz wrt z; with constant ¢;;//.;

@ Fggr gain matrix is Hurwitz <= BR is a discrete-time contraction

=  BR —Id is infinitesimally contracting wrt appropriate diag-weighted || - |2
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Equivalent statements:

[— ..

© Fpeeudog gain matrix: : : is Hurwitz
RS T T
[ -1 AT

@ FgRr gain matrix: 5 : is Hurwitz
Unt /oo =1
[0 .. Eln/,ul_

© discrete-time Fpr gain matrix: : : is Schur
Unt/pin - 0 |

Aggregative games: J;(z;,7_;) = fi(z;, £ > i1 T5)
assume f; is p;-strongly convex wrt x; and  ¢; = Lip,(Vz, fi(zi,y))

Wi > £; for each agent ¢ =  gain matrix is Hurwitz
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§4. Theory: Equilibrium tracking in parametric optimization
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Parametric and time-varying convex optimization

Many convex optimization problems can be solved with contracting dynamics

& = F(x)

contracting dynamics for parametric strongly-convex optimization

& = F(z,0)

contracting dynamics for time-varying strongly-convex optimization

= F(a:, H(t))

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex optimization. /EEE
Transactions on Automatic Control, June 2023. 49, Submitted
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Equilibrium tracking

For parameter-dependent vector field F : R” x R — R™ and differentiable 6 : R>o =+ © C R

Assume there exist norms || - ||x and || - || s.t.
e contractivity wrt z: osLip,(F) < —¢ <0, uniformly in 6
e Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

Theorem: Equilibrium tracking for contracting dynamics

© for each fixed 6, there exists a unique equilbrium x*(6)

14
@ the equilibrium map z*(-) is Lipschitz with constant -
c

© Df|lz(t)—2"(0(t)llx < —cllzt)—2"(O®))lx + éllé(t)lle
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Consequences for tracking error

D|lz(t)—z*(0(t)llx < —clla(t)=2*(0@)]x + gHé(t)He

bounded input, bounded error
with asymptotic bound:

) 2 .
limsup [|z(t) — 2*(0())]|x < ) hinsup 10(t)]le
— 00

t—o00 -

bounded energy input, bounded energy error

vanishing input, vanishing error

h min{c,h}t

exponentially vanishing input ~ e~ exponentially vanishing error ~ e~

periodic input, periodic error
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§5. Application: Online feedback optimization

32/38



Application: Online feedback optimization

()
- g U Plant 4
’—> u = Optimizer(t, u, y) (mbszm
online feedback optimization
online optimization, optimization-based feedback, input/output regulation ... J
min cost; (u) + costa(y) . @ = Optimizer(t,u, y)
subj. to y = Plant(u, w(t)) y = Plant(u, w(t))

A. Hauswirth, S. Bolognani, G. Hug, and F. Dorfler. Timescale separation in autonomous optimization. /[EEE Transactions on Automatic
Control, 66(2):611-624, 2021. ¢

G. Bianchin, J. Cortés, J. |. Poveda, and E. Dall'Anese. Time-varying optimization of LTI systems via projected primal-dual gradient
flows. |IEEE Transactions on Control of Network Systems, 9(1):474-486, 2022. €
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Example #10: Gradient controller

o fast/stable LTI plant with control input u and state/measurement disturbance w(t):

et = Az + Bu+ Fw(t) A Hurwitz
y = Cx + Dw(t)

@ in singular perturbation limit as ¢ — 0T, steady state map (Y, and Y,))

y = —CA'Bu + (D-CA'E) w
—— —_————
=Y, =Y,

o define cost function £ on u and y:
E(u,w) = p(u) + Y (Yyu + Yyw), (¢ is v-strongly convex and 1) is convex)
and note

Vo (u,w) = Vo(u) + Y, Vi (Yyu + Yyw)
= Vo(u) +Y, Vi(y) (no need to measure w(t))
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Example #10: Gradient controller

equilibrium trajectory let u*(t) be solution to

min  ¢(u) + ¥(y(t)) (v-strongly convex ¢, convex 1))
subj to  y(t) = Yyu + Y,w(t)

gradient controller

i = Faradcen (u, w) = —VE,(u,w) = =V (u) — Y, Vip(Yyu + Yyw)

Equilibrium tracking for the gradient controller
Q osLip, (Fgradctrl) < —v (gradient of v-strongly convex function)
@ Lip, (Faradcn) = bw := ||, || Lin(Ve)) || Yy |

by . :
limsup [[u(t) —u* ()] < —5 limsup |lw()]|
14 t—00

t—o00
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Example #11: Projected gradient controller

Constrained feedback optimization:
min E(u,w) = ¢(u) + P(Yyu + Yyw) (v strongly convex, £, strongly smooth, £,,)
u

subj. to uel (nonempty, closed, convex. P, = orthogonal projection)

Projected gradient controller (example of proximal gradient dynamics):

i = Fpoc(u,w) 1= —u+ Fy(u—VuE(u,w))
Equilibrium tracking for projected gradient controller At v = ﬁ,
2
Q osLip,(Fpeec) < —cpge := — Y (contractivity prox gradient)
v+4,
2
Lip,, (F = lpgc = 14
Q@ Lip,(Fpec) = frac st
. . lpGe . . .
imsup |lu(t) —u*(t)]| < —S— limsup ||w(t)] (eq tracking)
t—00 Cpgc t—@

v
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Conclusions

contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

@ theory
@ examples

@ control application

Ongoing work
@ applications to ML and biologically-inspired neural networks

@ applications to optimization-based control designs:
model predictive control, control barrier functions, low-gain integral control

© equilibrium tracking with noise
applications to optimization-based control
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