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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior, no anonymous constants/functions:
@ unique globally exponential stable equilibrium
& two natural Lyapunov functions
@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics
periodic input, periodic output
modularity and interconnection properties
accurate numerical integration and equilibrium point computation

000

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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Outline

§1. History and resources

§2. Basic definitions: discrete and continuous-time dynamics on vector spaces
@ The linear algebra of matrix norms; see CTDS Chapter 2
@ Properties of induced matrix norms and Lipschitz constants

§3. Example systems
@ Constrained, distributed and proximal gradient dynamics
@ Continuous-time recurrent neural networks
@ Nonlinear dynamics in Lur’e form

§4. Properties of contracting dynamics
@ Equilibria, Lyapunov functions, and Euler discretization
@ Incremental input-to-state stability
@ Contractivity of interconnected systems
@ Additional properties: entrainment, robustness wrt unmodeled dynamics and delays

§5. Example applications
@ Gradient dynamics and Nash equilibria in games
Time-varying gradient dynamics and feedback optimization
@ Recurrent and implicit neural networks

§6. Generalizations with examples
@ G1: Local contractivity: Small-residual theorem and the Kuramoto coupled oscillators
@ G2: Weak contractivity: Biologically-plausible circuits for sparse reconstruction
@ G3: Contractivity on Riemannian manifolds and the Karcher mean
@ G4: Semicontractivity: Primal-dual gradient with redundant constraints

§7. Conclusions and future research

§8. Advanced Topics
@ More on semicontractivity: ergodic coefficients and duality
@ Network small-gain theorem for Metzler matrices
@ Proof of semicontractivity of saddle matrices
@ Proof of Euler discretization theorem
@ Non-Euclidean Monotone Operator Theory
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Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux &
équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922. €

@ Dynamics:

G. Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology,
No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differen-
tial equations. |. /zvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90,
1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian)

@ Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972. d

@ Systems and control:
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):

683-696, 1998. ¢
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http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3

o Incomplete list of scientists who influenced me
Aminzare, Arcak, Chung, Coogan, Corless, Di Bernardo, Manchester, Margaliot, Martins,
Pavel, Pavlov, Pham, Proskurnikov, Russo, Sepulchre, Slotine, Sontag, ...

e Surveys:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In IEEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014b. ¢

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of

complex networks via contraction theory. In Complex Systems and Networks. Springer, 2016. @

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview. Annual Reviews in Control, 52:135-169, 2021. ¢

P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of contraction

metrics. Journal of Computational Dynamics, 10(1):1-47, 2023. @

6/221


http://dx.doi.org/10.1109/CDC.2014.7039986
http://dx.doi.org/10.1007/978-3-662-47824-0_12
http://dx.doi.org/10.1016/j.arcontrol.2021.10.001
http://dx.doi.org/10.3934/jcd.2022018

Figure: Stefan Banach (Krakow, 30 Mar 1892 — Lviv, 31 Aug
1945) was a self-taught Polish mathematician

1920: doctoral thesis on Banach spaces @ University of Lviv
1920-1922: Assistant Professor @ Lwow Polytechnic

1922: Full Professor @ Lwow Polytechnic

1924: Member of the Polish Academy of Arts and Sciences
1929: Founder, Lvov School of Mathematics

1931: first functional analysis: “Theory of Linear Operations”
1939-45: dark years

S. Banach. Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales. Fundamenta

Mathematicae, 3(1):133-181, 1922. @
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http://dx.doi.org/10.4064/fm-3-1-133-181

The Banach Contraction Theorem is also referred to as the Picard-Banach-Caccioppoli,
because of the earlier work by Picard (1890) on the “method of successive approximations”
and the later independent work by Renato Caccioppoli (1930).

Figure: Renato Caccioppoli (Napoli, 20 Jan 1904 — Napoli, 8
May 1959) was an ltalian mathematician

1921-1932 student and researcher @ Napoli
1931-1934 professor @ Padova
1934-1959 professor @ Napoli

R. Caccioppoli. Un teorema generale sull’esistenza di elementi
uniti in una trasformazione funzionale. Rendiconti
dell’Accademia Nazionale dei Lincei, 11:794-799, 1930
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Contraction conditions without Jacobians

@ one-sided Lipschitz maps in: G. Dahlquist. Error analysis for a class of methods for stiff non-linear initial
value problems. In G. A. Watson, editor, Numerical Analysis, pages 60~72. Springer, 1976. & and
E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I|. Nonstiff Problems.
Springer, 1993. & (Section 1.10, Exercise 6)

@ uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic
nonlinear networks: Stability of autonomous networks. /[EEE Transactions on Circuits and Systems, 23(6):
355-379, 1976. @

© no-name in: A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer, 1988.
ISBN 902772699X (Chapter 1, page 5)

@ maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new
approach to exponential stability analysis for Hopfield-type neural networks. |[EEE Transactions on Neural
Networks, 12(2):360-370, 2001. ¢

@ dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under
environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 461(2059):2257-2267, 2005. @

@ maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History and
modern theory. BIT Numerical Mathematics, 46(3):631-652, 2006. 4

@ QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled
ordinary differential systems. Physica D: Nonlinear Phenomena, 213(2):214-230, 2006. ¢

@ incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability.
Numerical Algebra, Control and Optimization, 3:175-201, 2013. ¢
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http://dx.doi.org/10.1007/BFb0080115
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1109/TCS.1976.1084228
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1007/s10543-006-0069-9
http://dx.doi.org/10.1016/j.physd.2005.11.009
http://dx.doi.org/10.3934/naco.2013.3.175

Contraction conditions with Jacobians

@ Demidovich LMI condition in: B. P. Demidovi¢. On the dissipativity of a certain non-linear system of
differential equations. |. Vestnik Moskovskogo Universiteta. Serija |. Matematika, Mehanika, 6:19-27, 1961

Krasovskii's method for Lyapunov functions
common Lyapunov function approach
Pointwise quadratic constraints

Incremental multiplier matrices

©0000

Lyapunov functions for the variational system
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Links to recent related educational and research events

2023 ACC Workshop on " Contraction Theory for Systems, Control, and Learning”
http://motion.me.ucsb.edu/contraction-workshop-2023

Tutorial session: https://sites.google.com/view/contractiontheory " Contraction Theory for Machine
Learning” (PDFs and youtube videos) at the 2021 IEEE CDC conference, by Soon-Jo Chung,
Jean-Jacques Slotine, and Hiroyasu Tsukamoto

Tutorial paper at CDC2021 “Contraction-Based Methods for Stable Identification and Robust Machine
Learning: a Tutorial” by lan Manchester and coauthors: https://arxiv.org/abs/2110.00207,
https://ieeexplore.ieee.org/abstract/document /9683128

Plenary presentation: (Slides
https://fbullo.github.io/talks/2022-12-FBullo-ContractionSystemsControl-CDC.pdf) " Contraction
Theory in Systems and Control” by Francesco Bullo at the 2022 IEEE CDC

Youtube lectures: "Lectures on Nonlinear Systems” by Jean-Jacques Slotine, Fall 2013:
https://web.mit.edu/nsl/www/videos/lectures.html, Lectures 14-20 (approximately 1h20min each)

Youtube lectures: " Minicourse on Contraction Theory” by Francesco Bullo, Fall 2022. Youtube lectures
https://youtu.be/RvR47ZbqJjc: 10h in 4 lectures, with chapters

Textbook: Contraction Theory for Dynamical Systems, Francesco Bullo, rev 1.1, Mar 2023. (Book and
slides freely available) https://fbullo.github.io/ctds
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http://motion.me.ucsb.edu/contraction-workshop-2023
https://sites.google.com/view/contractiontheory
https://arxiv.org/abs/2110.00207
https://ieeexplore.ieee.org/abstract/document/9683128
https://fbullo.github.io/talks/2022-12-FBullo-ContractionSystemsControl-CDC.pdf
https://web.mit.edu/nsl/www/videos/lectures.html
https://youtu.be/RvR47ZbqJjc
https://fbullo.github.io/ctds

Contraction Theory
for Dynamical Systems

Francesco Bullo

Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.2 edition, 2024, ISBN 979-8336646806

o

(2}

Textbook with exercises and answers. Format: textbook, slides,
and paperbook

Content:

Fixed point theory

Theory of contracting dynamics on vector spaces

Applications to nonlinear and interconnected systems

Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/B0B4K1BTF4

PDF Freely available at
https://fbullo.github.io/ctds

10h minicourse on youtube:
https://youtu.be/RvR47ZbqJjc

Future version to include: systems on Riemannian manifolds,
homogeneous spaces, and solid cones

" Continuous improvement is better than delayed perfection”
Mark Twain
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https://www.amazon.com/dp/B0B4K1BTF4
https://fbullo.github.io/ctds
https://youtu.be/RvR47ZbqJjc

Selected references from my

Contraction theory on normed spaces and Riemannian manifolds:

@ A Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE Transactions on Automatic Control, 67(12):
6667-6681, 2022a. 4

@ S. Jafarpour, A. Davydov, and F. Bullo. Non-Euclidean contraction theory for monotone and positive systems. |[EEE Transactions on Automatic Control,
68(9):5653-5660, 2023. ¢

@ J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters, 65:74-80, 2014. €

Contracting neural networks:
@ s Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information
Processing Systems, Dec. 2021. 4
@ A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In American Control Conference, pages
1527-1534, Atlanta, USA, May 2022c. L
@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with symmetric weights. /EEE Control Systems
Letters, 7:1724-1729, 2023. 4

Weak and semicontraction theory:
@ S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. /EEE Transactions on
Automatic Control, 67(3):1285-1300, 2022a. €
@ G. De Pasquale, K. D. Smith, F. Bullo, and M. E. Valcher. Dual seminorms, ergodic coefficients, and semicontraction theory. IEEE Transactions on
Automatic Control, 69(5):3040-3053, 2024. €
@ R. Delabays and F. Bullo. Semicontraction and synchronization of Kuramoto-Sakaguchi oscillator networks. /EEE Control Systems Letters, 7:1566-1571,
2023. 4

Optimization:

@ F. Bullo, P. Cisneros-Velarde, A. Davydov, and S. Jafarpour. From contraction theory to fixed point algorithms on Riemannian and non-Euclidean spaces.
In IEEE Conf. on Decision and Control, Dec. 2021. &

@ A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. Journal of Machine Learning
Research, June 2023b. €. Submitted

@ A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking approach. /EEE
Transactions on Automatic Control, June 2023a. 4. Submitted
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http://dx.doi.org/10.1109/TAC.2022.3183966
http://dx.doi.org/10.1109/TAC.2022.3224094
http://dx.doi.org/10.1016/j.sysconle.2013.12.016
http://dx.doi.org/10.48550/arXiv.2106.03194
http://dx.doi.org/10.23919/ACC53348.2022.9867357
http://dx.doi.org/10.1109/LCSYS.2023.3278250
http://dx.doi.org/10.1109/TAC.2021.3073096
http://dx.doi.org/10.1109/TAC.2023.3302788
http://dx.doi.org/10.1109/LCSYS.2023.3275169
http://dx.doi.org/10.1109/CDC45484.2021.9682883
http://dx.doi.org/10.48550/arXiv.2303.11273
http://dx.doi.org/10.48550/arXiv.2305.15595

§2. Basic definitions: discrete and continuous-time dynamics on vector spaces
@ The linear algebra of matrix norms; see CTDS Chapter 2
@ Properties of induced matrix norms and Lipschitz constants
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For a non-empty set X, a map d : X x X — R is a metric (or a distance) on X if

(separation): d(z,y)=0ifandonlyifz =y
(symmetry): d(z,y) =d(y,x) forall z,y € X
(triangle inequality): d(z,y) < d(z,z)+d(zy) for all x,y,z € X

AmapT: X - Xis
© Lipschitz if there exists £ > 0, called a Lipschitz constant of T, such that

d(T(x),T(y)) < ld(x,y) forall z,y € X,

@ a contraction if it is Lipschitz with constant £ < 1. In this case, £ is called the contraction
factor of T.
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Banach Contraction Theorem Let (X, d) be a complete metric space
If T:X — X is Lipschitz with constant ¢ < 1 (called the contraction factor), then
@ T has a unique fixed point £* in X

@ the sequence {x}ren generated by the Picard iteration xy1 = T(xy) converges to x*
for all initial conditions zy € X

© the following error estimates hold for all £ € N:

(geometric convergence): d(zy, %) < 0Fd(zo, z*)
ek
(a-priori upper bound): d(zg,z") < = ed(xo,xl)
14
(a-posteriori upper bound): d(zg, ") < ——d(xg_1, Tk)

1-7

16/221



Proof of Banach Contraction Theorem
For 41 = T'(zx), note d(xgi1,xk) < ld(zk, TK—1).
@ we show the sequence {xy}ren is Cauchy. For all k and h,

d(@ryny k) < d(Tppn, Thypn1) + -+ d(Tpq1, T) (triangle inequality)
< (T D d(apgr, T) (Lipschitzness)
1
< ﬁd(.’]}k+1,$k> (geometric series, ¢ < 1)
gk
< . gd(xl,xo) (Lipschitzness)

@ hence {z} is Cauchy sequence, i.e., elements become arbitrarily close to each other as
the sequence progresses

@ since X’ is complete, sequence converges to a point x*
@ uniqueness from £ < 1

@ geometric convergence
d(zg, x*) = d(T(zp_1), z*) < ld(zp_1, %) < Fd(xg, %)
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Examples of metric spaces
© finite dimensional vector spaces with a norm (R™ and d(z,y) = ||z — y||)
@ Riemannian manifolds (e.g., matrix Lie groups, Grassmanian/Stiefel ...)
@ infinite-dimensional Hilbert and Banach spaces

© cones with the Thomson metric (e.g., positive definite matrices)

o ..

Note: in this slides, contractivity = contractivity on (R". || - ||). Available for this case: all
discrete/continuous-time theorems, numerous examples, amenable to analysis.
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Linear algebra: induced norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
lall = 3" Jai]
n 2
lalla = /32" &

[elloc = max o]

i€{l,...,n}

AL = ma

" lail

x D lai

jef{1,...,n} i=1"
= max column “absolute sum” of A

HAHQ = /\maX(ATA)

A =
41 = o 570 o

= max row “absolute sum” of A

MI(A) - Jer(lllifn} (a” * ZZ Li#j | ”|)
absolute value only off-diagonal

pa(4) = A ()

2
n
Hool4) = iellon) (% + Zj:u# 225 |>
absolute value only off-diagonal

& &

A
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Discrete-time dynamics and Lipschitz constants

ZTpt1 = F(ag) on R™ with norm || - || and induced norm || - ||

Lipschitz constant

Lip(F) = inf{¢ > 0 such that |F(z) — F(y)|| < {||lx —y|| for all z,y}
= sup, || DF(z)||

For scalar map f, Lip(f) = sup, |f'(z)|
For affine map F4(z) = Ax +a

[2llg,pr/2 = (l’TPl')l/2 Lipy p1/2(Fa) = |Allg p1/2 < £ — ATPA <P
|zl o = m?x\xi] Lipoo(Fa) = |A]|co < ¢ — |AlL, < /1,
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Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then
@ F is contracting = distance between trajectories decreases exp fast (p")

© F has a unique, glob exp stable equilibrium x*

Fmmmmmnn- Lo Yk

! ¥ i

| | | ] R

| AR R A

| . R . TE oo R
,,,,,,,,, \,,,,,‘ o [N

|

|

|

ball centered at xj, with radius p*
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From induced norms to induced log norms

The induced log norm of A € R™ "™ wrt to || - ||:
. |+ hA|| -1
A):= lim ————
wld) = I =, |
subadditivity: u(A+ B) < u(A)+ p(B)
scaling: w(bA) = bu(A), Vb >0
= convexity:  pu(xA+ (1 —x)B) < xu(4) + (1 —x)u(B), Vx € [0,1]
g ///,)/\Gspcc(A) \\\\\ \\\\ A € spec(A) ] !
¥ X p4) % X a(4) !
\ x x |/‘/,AH % x M(:A)
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Example induced log norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
el =3 lail
n
— 2
lzll2 = Zizl i

el = o o]

Al = max Z
|| ”1 jellon} | l]l
= max column absolute sum” of A

HAH2 = /\maX(ATA)

4o = i, 370l

= max row “absolute sum” of A

m(4) = Je?faxn} (aJJ + Z, L |‘1m|)
absolute value only off-diagonal

o) = A (EA)

2
n
A) = max (a--+ a--)
,Uoo( ) el ii Zj:l,j#il z]|
absolute value only off-diagonal
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Continuous-time dynamics and one-sided Lipschitz constants

& =F(x) on R™ with norm || - || and induced log norm p(-)

One-sided Lipschitz constant

osLip(F) = inf{b € R such that [F(z) — F(y),z —y] < b|lz —y||*> for all z,y}
= sup, p1(DF(z))

For scalar map f, osLip(f) = sup, f'(x)
For affine map F4(z) = Az +a
OSLip27P1/2(FA) = l’LQ,Pl/Z (A) S 6 < ATP + PA j QEP
OSLipOO(FA) = ,LLOO(A) </ < ai; + Z \aij| </
i
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Banach contraction theorem for continuous-time dynamics:
If —c:= osLip(F) < 0, then
@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

t
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Key properties of inner products

Curve norm derivative formula: %DJer(t)H2 = (&(t),z@t)) =i x
Sup of Euclidean numerical range: pa(A) = )\max(A+2AT) = sup (Az,z)) = sup xAx
|z]|=1 zlo=1

An inner product is ((-,-)) : R” x R™ — R satisfying
Q (z1+x2,9) = (1, 9) + {z2, ) (additivity)
Q (bz,y) = (z,by)) = b((z,y) for beR (homogeneity)
Q (z,z)) >0, forall z# 0, (definiteness)
Q | (= y)| < (a,x)" (v, u)"/? (Cauchy-Schwarz)
Given norm || - ||, compatibility: {(x,z)) = ||x||* for all x )
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Key properties of weak pairings

Curve norm derivative formula: %D"’Hal:(t)”2 = [2(t), z(t)]
Sup of non-Euclidean numerical range (Lumer): w(A) = sup [Az,z]
lzl|=1

A weak pairing is [-,-] : R” x R" — R satisfying

Q [z1+ z2,y] < [z1,y] + [z2, 9], (sub-additivity)

Q [bz,y] = [x,by] = b]x,y] for b > 0 and [—z, —y] = [, y]. (positive homogeneity)

Q [z,z] >0, for all x # Oy, (definiteness)

Q |[z,y]| < [z, 2]y, y]"/> (Cauchy-Schwarz)
Given norm || - ||, compatibility: [z, 2] = ||z||? for all =

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, 67(12):6667-6681, 2022a. @
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http://dx.doi.org/10.1109/TAC.2022.3183966

Example weak pairings

Norms From inner products to From LMls to
sign and max pairings log norms
||:z:||§7pl/2 =z Px [z, yls pr/2 = z' Py fo p1/2(A) = min{b | AP+ PA < 2bP}
]l = Z || 2,51 = Iyllisign(y) e p1(4) = max (a” + Z laig )
T
|z]|co = mftx ;] [z, y]oo = enlljé) YiTi Hoo(A) = max (am 4 Z aijl >

where I (z) = {i € {1,...,n} such that |z;| = ||z] e}
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Table of continuous-time contractivity conditions

Log Norm Demidovich One-sided Lipschitz

bound condition condition

piz,p1/2(DF(x)) < b PDF(z) + DF(z)" P < 2bP (z —y)"P(F(z) — F(y)) < blle —yl}/

p1(DF(z)) < b sign(v) " DF(z)v < blo|ly sign(z —y) T (F(x) — F(y)) < bllz — ylh

too(DF(2)) < b _max v; (DF()v); < bllv[l3 ~max (z; — 4i)(Fi(2) — Fi(y)) <bllz — yll%
€150 (v) 1€l (z—y)

Equivalent contractivity conditions

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993. 4

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. |[EEE Transactions
on Neural Networks, 12(2):360-370, 2001. 4

G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. /[EEE
Transactions on Control of Network Systems, 2(1):57-67, 2015. d
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http://dx.doi.org/10.1137/1035003
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1109/TCNS.2014.2367361

Advantages of non-Euclidean approaches

© well suited for certain class of systems
¢1 for monotone flow systems

© computational advantages
01/l constraints lead to LPs, whereas /5 constraints leads to LMls

© robustness to structural perturbations
{1/l contractions are connectively robust (i.e., edge removal)

© adversarial input-output analysis
lo better suited for the analysis of adversarial examples than ¢

© asynchronous distributed computation
{+ contractions converge under fully asynchronous distributed execution

NonEuclidean contractions: biological transcriptional systems (Russo, Di Bernardo, and Sontag, 2010), Hopfield
neural networks (Fang and Kincaid, 1996; Qiao, Peng, and Xu, 2001), chemical reaction networks (Al-Radhawi,
Angeli, and Sontag, 2020), traffic networks (Coogan and Arcak, 2015; Como, Lovisari, and Savla, 2015;
Coogan, 2019), multi-vehicle systems (Monteil, Russo, and Shorten, 2019), and coupled oscillators (Russo,

Di Bernardo, and Sontag, 2013; Aminzare and Sontag, 2014a)
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Practical stability problem and the counter-intuitive nature of R"

Boris Polyak (1935-2023) used to say “R™ contradicts our intuition”

Q Aim: compute settling time inside a desired set

@ since norms on R™ are equivalent, no formal difference in the choice of norm
@ assume: can tolerate £1 error in each coordinate

—> desired set is hypercube = /,-ball
@ assume: Lyapunov function is V(z) = ||z|3

— need to wait until solution enters unit #y-ball C unit {.-ball

@ but n-sphere inscribed in n-hypercube is very small fraction!
as n — 0o, the ratio of volumes decreases faster than any exponential function

for large n, quadratic Lyap fnctns may provide exponentially conservative estimates

Courtesy of Anton Proskurnikov, Politecnico di Torino (see also https://youtu.be/sZqGWy0hxe8)
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Proof of Banach contraction theorem for continuous-time dynamics
For & = F(z) with osLip(F) = —c < 0 and unit-time flow map ¢:
@ using the properties of the weak pairing, we compute

|z —y| DF |z —y|| = [& — 9,2 — 9] (curve norm derivative)
= [F(z) = F(y),z — y] (# = F(x))
< —cllz —yll” (osLip(F) = —c)

@ By the Gronwall Comparison,
Dfflz —yll < —cllz —yll = [la(t) —y@®)] < e [x(0) —y(0)]

and ¢ is a contraction with factor e™¢ < 1
@ recall (R™, || - ||) is complete metric space,
@ the Banach Contraction Theorem implies existence of a unique z* fixed point of ¢
@ ¢(z*) = z* implies that
e either ™ is an equilibrium
e or x* is a point in a periodic orbit with period 1,
@ by contradiction, assume a periodic orbit of period 1 exists. Then each point in the orbit
is a fixed point of ¢, which violates the uniqueness of x* as a fixed point,

@ hence, z* is the unique equilibrium of F.
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The upper right Dini derivative of a continuous function f :]a,b[ — R at a point ¢ € |a, b| is

. F(t+ At) — [(t)
DU = Jimsup S

where the limit superior of a sequence {a, }nen C R is limsup,, . a, = lim, 0 SUD,,>,, G-

Properties of the upper right Dini derivative
Given a continuous function f : Ja,b[ — R,

Q if f is differentiable at ¢ € |a, b, then DT f(t) = %f(t) is the usual derivative of f at ¢,

@ if DT f(t) <0 for all t € ]a, b, then f is non-increasing on |a, b|.

Gronwall Comparison Lemma for absolutely continuous functions
Given a € R and a continuous function ¢ — ~(t) € R, assume the absolutely continuous function
t — z(t) satisfies the differential inequality

Dt 2(t) < az(t) +v(t).
Then, for t € [to, 00),
t
2(t) < ea(t_t‘))z(to) +/ e“(t_T)'y(T)dT.

to

v

In other words, z(t) is upper bounded by the solution to the corresponding differential equality.
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Equivalence between integral and differential osLip For continuously-diff F : R™ — R™

Lip(F) = sup, [|DF(z)|  and  osLip(F) = sup, u(DF(x))

Proof Mean Value Theorem for vector-valued C'! function F(z) — F(y (fo DF(y + s(z — y))ds)(z — y) for any z,y:
DF(y + s(z — ds)(x —y),z —
osLip(F) = sup [(Jo DF(y+s(z —v)) ' )@ =),z —y]
zFy lz — yll
1 DF — —y), T —
< sup [DF(y + s(= )(3; v, y] ds (subadditivity of [-,-])
oy Jo llz =yl
1 DF - — 1 DF
S/ qup [P+ 5@ )(fz Y,z y}]dS:/ [ (y+822)z,Z]]d
0 ay llz =yl 0 y,2#0n I
1
= / sup pu(DF(y + sz))ds < sup,ern u(DF(z)) (Lumer's equality)
0 y,2#0n

Vice versa, recall DF(y)v = lim,,_, 4+ (F(y + hv) — F(y))/h. Pick @ =y + hwv for arbitrary v € R™, ||[v|| =1, and h > 0,

F(z) — F(y),z —
osLip(F) = sup [F(=) - F(y) v yl
yER™ WER™ ||v||=1,h>0 |z —yl| z=y+hv

[F(y + hv) — F(y), ]

> sup lim (weak homogeneity)
VER™ wERM, [[v]| =1 h—0T h

= sup [DF(y)v,v] (continuity of w — [w, v])
YER™,wER™, [v]|=1

= sup u(DF(y)). (Lumer’s equality)
yeR™
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For all matrices A, B € R™*", Lipschitz maps F,G: R®" =+ R"™ and a € R

“the modulus properties”

matrix norms Lipschitz constants
(positive definiteness) Al >0and ||[A] =0 < A=0,x, Lip(F)>0andLip(F)=0 <= F is constant
(homogeneity) ladll = [a 4] Lip(aF) = [a] Lip(F)
(subadditivity) |A+ B|| < ||A| + Bl Lip(F + G) < Lip(F) + Lip(G)
(sub-multiplicativity) |AB| < [JA|||IB Lip(F o G) < Lip(F) Lip(G)

“the real part properties”

matrix log norms one-sided Lipschitz constants
(positive homogeneity)  u(aA) = |a| u(sign(a)A) osLip(aF) = |a| osLip(sign(a)F)
(subadditivity) w(A+ B) < u(A) + p(B) osLip(F + G) < osLip(F) + osLip(G)
(translation property) w(A+al,) =p(A) +a osLip(F + ald) = osLip(F) + a
(uniform monotonicity)  p(A) <0 osLip(F) <0

= A invertible,

[A7L] < —1/u(4) = F injective, Lip(F~!) < —1/osLip(F)

F. Bullo. Contraction Theory for Dynamical Systems. Kindle Direct Publishing, 1.1 edition, 2023. ISBN 979-8836646806. URL https://fbullo.github.io/ctds
36/221


https://fbullo.github.io/ctds

The linear algebra of matrix norms and log

Now review Chapter 2 in CTDS

norms

) for anycigenalue ) of A the spectat.radis norm property s

Then

) ) with RN ()

0 forany < > 0. P, i wel defined and | . i ogarithmicalyc-optma for 4,

Gpecuatradios norm propery) 1< |3 < p(4) < 4] @n
and,if A ismertie,
02 1/J47 £ £ L0 < 41 @)
amaticA ¢ R Ry
i) for any egenalue  of A, the specta-absciss log-norm property i Theo
Gpectiatabscissalog-vorm propery)  —|4 <R £ al4) < 44 < 11 @ ontonictypropety ofpecat i) . .
(i) fthe norm | i monotonic and A s diagona,then (monotonicity property f induced norm) vStan s o1 @)
1A= o, @ and
)= s @ (monotonicty poperty o spectal bscsa) () < (A1) < allAln+ B), am)
% (monotonicity property f log norms) W) < 1A < Al + B). am)
Lemma norms via the Jord A form). Givena matrix A € & and
20 defne
s an vt matri such that AT is i Jordan normal fom, @) e upon matrix weights). Gienany A € R”
= ccn ki St QAT v et s N
5= </l > 0, where o s Jordan block with genalue ) and dimersion . s  thefuncionP €Ky = syl s quasconsecwith blewel s
e Pes i 8%, ATP 4 PAZ D) @9
) the norm g 1. =-optimal and = logarithmicalyoptmt: (i the funcions € Ry =gy (4)andn € Ry =g y+(4) e qusicomes wth sublee s
G i A e {9€ RS iyl A) <0} = (€ Ry o7 Al < ") s
(i) the n0rm |1 -aptimal and =logarithmiclly optimal for suficietly smal 5. (12 R « g A) < B = (7 By « [ Al < b} @55
A € RYS" and a Mealr malri M € R Fr any € [1,55] and3 0, deine
and i€ R, 1o bethe rightand It dominnt cigenvectos of A + 1.1
(rspecively, M+ 61,15)
€ [1x] tosatisy 1/p-+ 1/a = 1 (uith he comention 1/ = 0. and
e
lognorms and Givena matix A € A Then
forany nonnegatv olerance
0 forsffcenly smat 5. the nom |1, =<optima or A (spectively =logrithmically ptial or ). and
P. = any clement of (P €52 : AP + PA<2(a(4) + 1P} @ e

)i A frespct

the o |13 optimatfor A optimal for M)

€2}

A= Al = Wl = A 29
1)

alM ) = ). 2

decompasition of K" consider a matrix A "““"‘ A ""‘”’1
@ lamp is @ well-defined, i Al = Anii™) el ::“ i i e} ki Lo
M i R = A )
o= o e
and p(A) = u(RAR"Y), @) x4 Pl ATn). s e o " e
perie. G matic A € R and e |

37/221



§3. Example systems
@ Constrained, distributed and proximal gradient dynamics
@ Continuous-time recurrent neural networks
@ Nonlinear dynamics in Lur’e form
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Constrained, distributed and proximal gradient dynamics

>

f+R™ = R is v-strongly convex if, for all z,y,
@ f(xa+ (1= x)y) < xf(x)+ (1= x)f(y) — gvx(L = x)llz —yl3 for each 0 < x <1

@ (if f is differentiable) /(y) > /() + V/() " (y — ) + & Iy — I}

@ (if f is differentiable) (Vf(z) — Vf(y)) (z —y) > v|z — yl3
Q (if f is twice differentiable) Hess f(z) = vI,
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Example #1: Gradient dynamics for strongly convex function

Given differentiable, strongly convex f : R™ — R with parameter v > 0, gradient dynamics

i = Fo(a) == —Vf(a)

Fg is infinitesimally contracting wrt || - |2 with rate v
unique globally exp stable point is global minimumJ

If f is twice-differentiable, then Hess f(z) = v, for all =

D(=V[)(z) = —Hess f(z) X —vI,
e L,D(-Vf)(z)+D(-Vf)(x) I, < —20I,
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Convexity and contractivity

Kachurovskii’'s Theorem: For differentiable f : R — R, equivalent statements:
Q f is strongly convex with parameter v (and minimum x*)

@ —Vf is v-strongly infinitesimally contracting (with equilibrium z*), that is

(- V(@) + Vi) (@ —y) < —vllz —yl3

For map F : R® — R"™, equivalent statements:

© F is a monotone operator? (or a coercive operator) with parameter v,

© —F is v-strongly contracting wrt || - |2

F : R™ — R™ is a v-strongly monotone operator if {F(x) — F(y),z —v) > v|z — y|3

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960
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Example #2: Primal-dual gradient dynamics

strongly convex function f s.t. 0 < Umindy X Hess f =< UmaxIn
constraint matrix A st. 0 < amindy < AAT < amaxm (independent rows)
linearly constrained optimization:

min T

zER” f( )

subj. to Ax =1b

primal-dual gradient dynamics:

] =Fevcten = |7V AT*]

A Az —b
Fppg is infinitesimally contracting wrt || - ||, p1/2 with rate ¢
P= [I” s ] with a = _min{ , } and ‘T min{am'" - Vmi"}
aA 1, 2 Ve Crmese 4 Vmax Omax

.
| QAT @ -AT]
For each vminl, = Q = Vmaxdn, [ A 0 P+ P A 0 =< —2cP
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undirected, weighted and connected graph with n nodes and m edges
Laplacian L € R™*", Xy = algebraic connectivity, A2/A,, = synchronizability
oriented incidence matrix B € R™*"™

Distributed optimization setup
cost function f is decomposable into sum of private cost function

flz) = Zé_l fi(x) where each f; is private to node i

each node i has a local estimate z;) of global variable 2 and x = [x[l], . ,x[n]]
consensus constraints among estimates are imposed in two ways:

@ incidence constraint: B'x = 0,,

@ Laplacian constraint: Lx =0,

F. Dorfler. Distributed consensus-based optimization. Advanced Topics in Control 2018: Distributed Systems & Control, 2018

G. Qu and N. Li. On the exponential stability of primal-dual gradient dynamics. /EEE Control Systems Letters, 3(1):43-48, 2019. @
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Example #3: Incidence-based distributed gradient

Assume graph is a tree, so that (see LNS.Exercise9.2)
0 < Xoln—1 X B'B = Al

decomposable cost: minger Y, fi(x) where each f; is v;-strongly convex

{minx[i]eR >y filzpy) — {minzmeR >y filzpy)

subj. to B'x =0, subj. to x;) — ;) =0 for each edge e = (i, j)

incidence-based distributed gradient (primal-dual gradient, n + m vars):

3:3[1'] = =V/fi(@) = Xemij) Ae T Xem(ii) Ae for each node 4
Ae = T} — T[] for each edge e = (i, )

e e . . 1A .
Fincidence-DistributedG 1S infinitesimally contracting with ¢ = YW min v; J

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. /[EEE Control Systems Letters,

7:3896-3901, 2023. 4
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Example #4: Laplacian-based distributed gradient

Given II,, = I,, — 1,1, /n = orthogonal projection onto span{1,}+,
0 <Xl 2 LN,

decomposable cost: min,cr >, fi(x) where each f; is v;-strongly convex

{minz[i]GR Z?:l fl(x[’t]) — {minx[i]ER Z?:l fl('x[l])

subj. to Lx =0, subj. to Z;'l:1 agj(z; — ;) =0

Laplacian-based distributed gradient (primal-dual gradient, 2n vars):

i) = =V filzp) — 2521 aii(Ai — Aj) for each node i
i = > g1 g (i — xj) for each node ¢
1 2
FLaplacian-DistributedG iS infinitesimally contracting’ with ¢ = 1 (%) min v; J
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A2 /A, = synchronizability parameter from study of oscillator networks via the MSF approach

Empirically, define private functions ¢;(z; — vi)Q, for x; € R, v; and ¢; uniformly sampled from
[0, 10]

symmetric connected ErdGs-Rényi graph with V = 40 nodes, with varying edge probability
parameters, 50 graphs for each probability value

Dominant Eigenvalues for saddle matrices

024 —e— Incidence Matrix
: Laplacian Matrix /

L 04 /
S
=
g
) 0.6
o
=
ER
£
3
& 1ot

-1.2

0.2 0.4 0.6 0.8 1.0
Probability of edge

L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Physical Review Letters, 64(8):821-824, 1990

G. Chen. Searching for best network topologies with optimal synchronizability: A brief review. |IEEE/CAA Journal of Automatica Sinica, 9
(4):573-577, 2022. @
46/221


http://dx.doi.org/10.1109/jas.2022.105443

Composite optimization

composite minimization (cost = sum of terms with structurally different properties):

x* = argmin f(z) + g(z)

rER”

f :R™ — R is strongly convex and strongly smooth
g : R™ — R is convex, closed, and proper (ccp)

proximal operator: for v > 0, define prox,, : R" — R™ by

. 1 2
prox.,(z) = argming(x) + —|x — 2
vg( ) oeRn ( ) 27" H2

Equivalence:

Q 2™ is minimizer for: mingern f(x) + g(x)

Q z* is fixed point for: ¥ = prox, (z — vV f(z)) for all ~

proximal gradient dynamics: i = FpoxG(T) := —z + prox,,(z — YV f(z)) J
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1
9(z) = 5lol3

o0 otherwise

o(2) = 1o(z) = {0 ifxeC

g(z) = {

g(x) = |lz[h

1 if x| <0
8lz| — 562 if |z| > 6

v
1+ A

prosey (1) =
prox,,(v) = Ile(v)

prox,,(v) = sign(v) - max(Jv| — A, 0)

v if [u] <8+

_ )=
Proxyg (v) {v)\sign(v) if o] > 6+ A

48/221



F(x) dom(f) prox (x) ssur Reference
1xTAx + - (A+1) ' (x—b) e Section 6.2.3
b x +ec ’
Az® Ry LA >
i 0,0l NE min{masx{z — 4,0}, a} poE R
[0.5¢]
I - 6.19
Al E (1= mrdery) x Example 6.19
1+ 7)) % x#0,
—Allxl E ( ”*‘) * |- |—Euclide: Example 6.21
{u:fu=2}). x=0. | norm A>0
Allxlls B" Ta(x) = [[x| - Ael+ ©sgn(x) | A>0 Example 6.8
lwex|y | Box[-eaal S alx) a € [0,2) Example 6.23
w ERY
Al e 3 x = APg) | 0.y (/) x>0 Example 6.48
Alxla E X = AP 0. (c/A) ]| Example 6.47
o arbitrary
norm, X > 0
Allxllo Hogx(@) X x Hogz(an) | A>0 Example 6.10
Al E — 2 ___x |-||—Euclidean | Example 6.20
[ERVaEaey norm, A > 0,
o o ferran)
A loga; R, ( v ) A>0 Example 6.9
= _
50 (x) E Po(x) 6.24
Aoc(x) E X = APc(x/A) Theorem 6.46
Amax{z:} R x = APa, (x/\) A>0 Example 6.19
AXE a R X — APc(x/A), A>0
C = He,x N Box[0, ¢]
AT 2 R" x — APc (x/A), A>0
C = By, [0.K] N Box|—e, e]
AMY (x) E x+
¥
x (s 20 - )
Ade(x) E
2dZ(x) E
AH ;. (x) E
plix|? Lemma 6.70
Al Ax]2 Lemma 6.68

erwise, [V~
(AAT +al) ' Ax

proximal operator
well-defined for all ccp functions,
generalized form of projection,
non-expansive

helps generalize gradient algorithms/dynamics
to proximal algorithms/dynamics, useful for
nonsmooth, constrained, large-scale, and dis-
tributed optimization

evaluation of proximal operator requires small
convex optimization,
see Summary of prox computations, Beck 2017

A. Beck. First-Order Methods in Optimization. SIAM, 2017. ISBN
978-1-61197-498-0

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends
in Optimization, 1(3):127-239, 2014. d
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Example #5: Proximal gradient dynamics

proximal gradient dynamics:
& = Fproxg(2) == —2 + proxvg(x — 7V f(z))

f :R™ = R is v-strongly convex and {-strongly smooth
g : R™ — R is convex, closed, proper

O Fproxc is infinitesimally contracting wrt || - ||2
2 .
for 0 < v < 7’ with rate c=1—max{|1 — |, |1 — ¢},
2 2
for v* = L with maximal rate ¢* = > :E
@ Fproxc is infinitesimally contracting wrt || - ||27(7A_In)1/2 with rate c = 1
if f(z) =127 Az +bT2  with A= 0 and > 1/Amin(A)
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Neural network models

Feedforward NN Recurrent NN
@)
@)
| 8 -y
@)
O
Tk ; o Bu+b
zit1 = @(Wiz; +b;), x0 =u, = = O B
y=Cxp+d y=Cz+d
square matrix W = synaptic matrix =~ —  diagonal nonlinear ® = activation function

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In American Control Conference,
pages 1527-1534, Atlanta, USA, May 2022c. ¢

V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with symmetric weights. /EEE
Control Systems Letters, 7:1724-1729, 2023. ¢
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Example #6: Firing-rate recurrent neural network

& =Fer(z) := —z + ®(Wx + Bu)
tanh(y) ReLU(y)

sigmoid, hyperbolic tangent ‘ )
ReLU = max{z,0} = (z)+ 2 L L 1 1}

0<j(y) <1 j )

Fer is infinitesimally contracting wrt | - || with rate 1 — (W), if
W) <1 i.e., wi + w;qi| < 1 f Il 1
oo (V) (e, w le|w]\ or all i)
osLipa, (FFR) = SUP poo ( — Iy + (D®(Wa + Bu))W) = —1 4 Sup oo (D2 (Wz + Bu)W)
T, z,u
< -1+ drr[la)i oo (diag(d)W) (max convex polytope, 2" vertices)
€lo,1]"

= —1+max {MOO(O),/LOO(W)} =1+ poc(W)4
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For each row ¢, define the ith absolute row-sum of A by
ri(A) = a; + ijljj# ;]
and note i (A) = max; I;.
Since d; > 0 and ([d]A);; = d;a;;, we note
and compute
(by def)
ax ([d]A) s, max (4)
(the n functions are decoupled)

max max d;I;(A)
i d;€[0,1]

) . ifr;,(A) >
(di € [0,1]) max(A) {rz, !f rzEA; > 8
i It r; <

(dropping the if clause)
< max{max ;(A),0} = max{p(A4),0}.
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Example #7: Firing-rate network with symmetric synapses

0<®)(y)<1 and W =W" with A\ = Anax(W)

Fer is infinitesimally contracting:

(for A\w < 0) with rate 1 wrt [ - [[5 )12
(for A\ = 0) with rate 1 — ¢ wrt [ - [[2,p ., for each ¢ >0
(for 0 < Ay < 1) with rate 1 — Ay wrt [ - |20 s,

For A\yw = 1, Fegr is weakly infinitesimally contracting wrt || -

‘ZQFR,AW

® Qrrq = Uha(A)UT =0, where W = UAU " and hy(z) :=2a(1+ /1 — z/a)
@ optimal rates

@ proof based upon LMI calculations and Sylvester's law of inertia
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Systems in Lur'e form

nonlinear system in Lur’'e foorm zxec€R™» ueR,y€eR:

z = Ax + Bu
u = Y(y)

‘ &= Ax + Bu; y=Cx ':|
Y

y=Cz
Y :R—R

M = M7 € R?*2 is an incremental multiplier matrix for 1 if

v ) u o

Eg, slope constraint o1 < 9¢'(y) < o3 is described by My, 5, = [

] >0 for all y1,90 € R

—0109
(01 +02)/2

(01-+-02)/2

=1l

v
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Example #8: Systems in Lur'e form

FLure(z) = Az + By(Cx)
assume
@ nonlinearity ¢ : R — R described by incremental multiplier M
@ there exist an n x n matrix P = P" = 0 and a scalar ¢ > 0 satisfying LMI

T T
PA+ ATP +2¢P PB}jL[C’ o] M[C 0

<
B'P 0 Oixpn 1 O1xn 1]—0

FLure() is infinitesimally contracting wrt || - ||, p1/> with rate ¢ |

@ proof based upon S-lemma
@ LMiIs defining P and M together imply contractivity LMI
@ typical vector valued constraints: monotonic or sector bound

L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and Optimization, 3:175-201, 2013.

M. Giaccagli, V. Andrieu, S. Tarbouriech, and D. Astolfi. Infinite gain margin, contraction and optimality: An LMI-based design. European

Journal of Control, 68:100685, 2022. @
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Example #8: Systems in Lur'e form: multivariable characterization

For A € R™*", B € R™*™ and C' € R™*™, nonlinear system in Lur’e form
= Az + BY(Cz) =:FLyre()
where ¥ : R™ — R™ is p-cocoercive, that is, for all y1,y2 € R™

(W) — T(y2) " (v — v2) = pll T (1) — U(w2)|3

For P = PT > 0, following statements are equivalent:
© Fpure infinitesimally contracting wrt || - ||o p1/2 with rate > 0 for each p-cocoercive ¥

ATP+PA+2nP PB+XCT g

i >
@ there exists A > 0 such that BTP+AC —2pl,, | —
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Outline

§4. Properties of contracting dynamics
@ Equilibria, Lyapunov functions, and Euler discretization
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Equilibria, Lyapunov functions, and Euler discretization

Equilibrium and Lyapunov functions for a contracting vector field
For a time-invariant F, c-strongly contracting wrt || - ||

@ for each t > 0, flow at time ¢ of F is a contraction with factor e~
i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, that is unique, globally exponentially stable with global
Lyapunov functions

Vi(z) = [lz —2*|> and  Va(z) = |[F(2)|?
@ if additionally DF(z) = DF(z)" for all z, then another global Lyapunov function is
1
Vs3(z) = —/ o F(te)dt + w for each scalar w
0

Also, V3 is c-strongly convex and F = —V V3
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Proof of global Lyapunov functions
Regarding Vi(z) = ||z — 2*|]?, from D ||z — y|| < —c||z — y|, we immediately have

lo(t) — 2| < e™[l2(0) — 2|

Regarding Va(z) = ||F(z)||%, note iF(m(t)) = DF(x(t))a(t) = DF(x(t))F(z(t)) and

dt
IF(z(®)|| DY||F(z()|| = [[%F(a:(t)), F(x(t))] (curve norm derivative)
= [DF(z(t))F(z(t)), F(z(t))]
< w(DF(x(t)))[F(x(t)), F(z(t))] (Lumer inequality)
< sup p(DF(2))|F(z(t)|* = —c||F(x(t))]1?

Regarding V3, see M. Fitzsimmons and J. Liu. A note on the equivalence of a strongly convex function and its
induced contractive differential equation. Automatica, page 110349, 2022. 4. URL
https://doi.org/10.1016/j.automatica.2022.110349
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Euler discretization theorem

Euler discretization theorem for contracting dynamics
Given arbitrary norm || - || and Lipschitz F : R — R™, equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that x5 = xx + aF(xy) is contracting

Optimal® contractivity of Euler discretization Id +aF

Given ¢ := —osLip(F) > 0 and ¢ := Lip(F), define condition number k = £/c > 1:
1 a2£2 —1
—_— Lip(ld+aF) < (1 - 1
°0<a<cn(1+/<;) — ip( —|—a)_< + ac 1_(%) <

© the optimal* step size and contraction factor are

a*:%(%—g%—i-(’)(%)), Lip(ld +a*F) = 1 — 4/{;24_8/134_0( )

v

v

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in
Neural Information Processing Systems, Dec. 2021. 4
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Optimal* contractivity of Euler discretization Id +aF: inner-product norms || - ||y p1/2
Given ¢ := —osLip(F) > 0 and ¢ := Lip(F), define condition number k = {/c > 1:

2
00<a<@ — Lip(ld—l—aF)§\/1—2ac+a2£2<1

@ the optimal* step size and contraction factor are

* 1 : . 1 1

Standard proof from monotone operator theory. For av > 0, compute

[(1d +aF)z — (Id +aF)y[|* = [l — y + a(F(z) - F(y))|?
= [lz = y|* + 2a (F(x) — F(y),z — y)) + o*||F(x) — F(y)|*
< (1—2ac+ a??)||z — y|?

Next, study convex parabola a ++ 1 — 2ac + a?(?. Eg, 1 — 2ac + o202 < 1iff 0 < a < 2¢/1?
E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016
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Incremental ISS of systems with inputs

Fot time and input-dependent vector F,

& = F(t,z,u(t)), z(0) =z9 € X, u(t) el
Given norms || - ||x and || - ||z, assume
e contractivity wrt z: osLip,(F) < —¢ <0, uniformly in t, u
e Lipschitz wrt u: Lip,(F) < ¢, uniformly in ¢,z
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Incremental ISS of systems with inputs

Then
Q any soltns: x(t) with input u, and y(t) with input u,

D||lz(t) —y(@)llx < —clla() —yOllx + Clua(t) — uy(®)]u

Yo
0
- ball centered at x(t) with radius — sup [|0,(7)—0,(7)||

T 1’ | € refo,t]

@ F is incrementally ISS, that is, for all xg, 3o

lz() —y®llx < elloo —wollx +
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Proof of ilSS property
Using the properties of the weak pairing, we compute

l2(t) =y DT [ (t) — y(®)]| = [2(t) — 9(t),z - y]

<

<
<
<

[F(t, 2, ug) — F(t,y,uy), 2 — y]
[F(t 2, ue) — F(t,y, ug), 2 — ]

+ [F(t,y,ua) — F(t,y,uy), 2 — 4]
—cllz = y|I* + [F(t,y, ux) — F(t,y,uy), 2 — y]
—cllw = ylI* + [[F(t, y, uz) — F(t,y, uy)|l[|z =yl
—cllz = ylI* + llue — uy| |z = y].

(curve norm derivative)

(subadditivity)
(contractivity)
(Cauchy-Schwarz)
(Lipschitzness)
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Incremental ISS of systems with inputs

Signal norms and system gains
Given norm || - ||x on R™ (or || - |lx on R¥),

o L%, g € [1,00], is vector space of continuous signals, = : R>9 — R", with well-defined
bounded norm

& 1/q
[z (t) |5 dt if g €[1,00]
lz()llxq = (/o * ) _
sup;>o [z (t) | x if g = o0

@ Input-state system has £g(_u—induced gain upper bounded by v > 0 if, for all u € ﬁg,,
the state x from zero initial state satisfies

() llg < v llul)leq

© F has incremental L% ;, gain equal to //c, for ¢ € [1, oq],

() =y(llxg < é lue () = uy(lleag — (for 2o = o)
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Application: Parametrized fixed point problem

0, =F(z,u), ze€X uecld

Given norms || - ||x and || - ||z, assume
@ contractivity wrt z: osLip,(F) < —¢ <0, uniformly in u
@ Lipschitz wrt u: Lip,(F) <, uniformly in z

© for each fixed u, there exists a unique equilibrium z*(u)

l
@ the equilibrium map z* : Uf — X is Lipschitz with constant —
c

Sensitivity analysis in convex optimization
If f(z,u) is v-strongly convex and differentiable wrt z,
V. f is £-Lipschitz wrt u,

- — o 14
then  global minimum w — x*(u) is Lipschitz with constant —
1%
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Proof of Parametrized continuous-time Banach Contraction Theorem
Recall ilSS: any soltns x1(t) with input uq (%) and x2(t) with input ug(t)

Dff|lz1(t) —z2(t)lx < —cllan(t) —@2(t)llx + Llua(t) — ua(t)llu
For constant w;(t) = u; and uy(t) = ug, as t — +o0,
x1(t) = x"(u1) and  xo(t) — x™(ug)
Taking the limit, we obtain

0 < —cllz™(ur) — z*(uz)llx + Lllur — ually

. 4
that is, Hx*(ul) — x*(UQ)HX < EHUl — UQHZ,[
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Contractivity of interconnected systems

B

[T
L

n subsystems

@ n local norms || - ||l; on RYi, i € {1,...,n}

Q a aggregating norm || - ||agg on R™

© = a composite normon RN, N = Ny +--- + N,

T. Strém. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. ¢

O. Pastravanu and M. Voicu. Generalized matrix diagonal stability and linear dynamical systems. Linear Algebra and its Applications, 419
(2):299-310, 2006. ¢
G. Russo, M. Di Bernardo, and E. D. Sontag. A contraction approach to the hierarchical analysis and design of networked systems. /EEE
Transactions on Automatic Control, 58(5):1328-1331, 2013. @
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Contractivity of interconnected systems

Interconnected subsystems: x; € RN and z_; € RN,

jj‘i:Fi(l‘i,SL‘_i), fori e {1,...,n}

Network contraction theorem. Given local norms, assume
@ contractivity wrt z;: osLip,, (F;) < —¢; <0, uniformly in z_;
e Lipschitz wrt z;, j # i: Lipxj(Fi) = 0 uniformly in x_;
=Cl ooo gln

@ the Lipschitz constants matrix I' = | : | is Hurwitz

Enl .. —Cp

— the interconnected system is infinitesimally contracting
wrt composite || - || generated by log optimal norm for I and ¢ = |a(T)]

v

74/221



Contractivity of interconnected systems

—C1 ... éln
is Metzler (Perron-Frobenius Theorem applies)

Enl c.. —Cp

(see LNS.Section10.4)

Hurwitzness depends upon both topology and edge weights
e M Hurwitz iff there exists a positive £ such that M¢ < 0,, (power method)

e For n = 2, Hurwitz if and only if small gain condition

lia ¥
cycle gain := 22
C1 C2

e For n > 3, Hurwitz if network small gain condition

see network small-gain theorem for Metzler matrices
v
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Proof of Network Contraction Theorem (via Jacobians and aggregate majorants)
D, Fi ... Dy Fy

For &; = Fi(z;,x_;) we compute DF(x) = : 5
Dy Fn, ... DyFy,

Assuming local norms, aggregate norm and composite norm (Section 2.4.4), recalling the
definition of aggregate Metzler majorant:

OSLipcmpst (F) = Sup Hempst (DF(%‘))

< sup plagg ([ DF(z)|m) (composite norm Theorem 2.13)
€T
entry-wise
agg(sup| DF(z)]m) (monotonicity properties Theorem 2.24)
x
= fagg(T) (definition of T")

and, when aggregate norm is e-logarithmically optimal for Metzler matrix I,
05Lipempst (F) < fragg(l) < (') + € (for arbitrarily small €)

Note: The same proof method works for discrete time systems.
Note: Sharper-but-harder-to-check sufficient condition: there exists an aggregate norm (say

row/colun sum or Demidovich) such that fiage ([ DF(2)|m)(2) < —c <0
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Proof of Network Contraction Theorem (via pairings)

—C1 ... Elr
First, design a log optimal norm for ' = | : © | e R

ng ce.e —Cp
From Lemma 3.21 on Metzler matrices in CTDS, for arbitrarily small ¢, one can compute
1 € RY such that || - || giag(y)1/2 is €-log optimal for I':

/AZdiag(n)l/z(F) <al)+e << diag(n)l+ I diag(n) < 2(«(T) + €) diag(n)

Next, define the composite norm || - ||, on RY by

T
er, el =D mllail?

i=1

with weak pairing

[[(.7}1, s 7$T)’ (yb cee yT)]]T] = Z:Zl ni[[xhyi]]i
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For each ¢, compute

[[Fi(t:f’«"z'a r_;) — Fz’(t, YisY—i)s Ti — yi]]i
< [Filt, s o) — Fi(t, yi, x—i), 2 — yilli + [Fi(t, yi, i) — Fit, yis y—i), o — yilli

'
< —cillwi — ill} + ijlj# Cijllzs — ysllillwe — willa

Next, we check the one-sided Lipschitz condition for the vector field on RV
Zi:l ni[Fi(t, @i, v—i) — Fi(t, yir y—i), @i — yils

T T
<= micillz —yillf + Zm:l#i nilijlle; — yilljlle: — illi

21—yl ]
_er _'yrHr_
21— y1ll1]
_||x7’ - yrHr_

T

T

|21 —y11
diag(n)I"
|2r — yrlls
x _
diag(n)lﬂ—l-lﬂT diag(n) i .yIHI
2 .
er - yr”r

so that the interconnected system is contracting if the gain matrix I' is diagonally stable.
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Application: Singularly perturbed matrices

Given a constant € > 0, consider block matrix

A, = |:eé4 6DB:| c R(ner)X(ner).

u(A) <0, u(D) <0, and ——= A is Hurwitz for all ¢ > 0
p(A)u(D) > |IBllC] “

D and A— BD1C are Hurwitz =—— 3¢* s.t. A, is Hurwitz for each € < ¢*

Additionally, a valid choice of €* is:

. (A~ BD'0)| - |u(D)|
= [BID~1C(A— BD-10)]| + |u(A— BD-10)[[D-1CB]

L. Cothren, F. Bullo, and E. Dall’Anese. Online feedback optimization and singular perturbation via contraction theory. SIAM Journal on
Control and Optimization, July 2024. 4. Submitted
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Entrainment in systems with periodic time-dependence

For time-varying vector field F(¢,x) and norm || - ||
Q osLip,(F) < —c <0, uniformly in ¢

@ F is T-periodic in t

Then

© there exists a unique periodic solution z* : R>g — R™ with period T’

@ for every initial condition x,

lx(t, z0) — 2™ (t)|| < e™|lzo — 2*(0)]

N\

G. Russo, M. Di Bernardo, and E. D. Sontag. Global entrainment of transcriptional systems to periodic inputs. PLoS Computational

Biology, 6(4):¢1000739, 2010. 4
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Robustness of systems with unmodeled dynamics

Given a norm || - ||, consider
& =F(z) + A(x)
Assume:
@ contractivity: osLip(F) < —c <0

@ bounded disturbance:  osLip(A) <d < ¢

Then
@ F + A is strongly contracting with rate ¢ — d

© the unique equilibria z¢ of F and zf, \ of F + A satisfy

* ¥ < WX/
HJ:F xF—i—AH = = /
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Incremental ISS of systems with delays

i(t) = F(z(t),z(t — s),u(t)),0 < s < S, Il Il e
assume there exist positive constants c, {4, £x such that, for all variables,
osL z : [F(z,d,u) — F(y,d,u),z — y|x < —cljlz — ?/”2)(
Lip z(t — s) : [|[F(z,z1,u) — F(z,z2,u)||lx < Lxl|lz1 — z2||x
Lip u : ||F(x7d7u)_F(z7d>v)HX Séullu—'l)”u

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,
() =y (@)l 2 DT la(t) — y() |l = [Fla(t), z(t — 5), ua(t)) — F(y(t), y(t — 5),uy (1)), 2(t) — y()]x
S [F(8), (= 5),ua(t)) — F(y(t), z(t — s), uz (1), z(t) — y(t)]x
+ [Fy(®), z(t — 5), ua(t)) — F(y(t), y(t — s), ua(t), 2(t) — y(t)]x
+ [F(y(8), y(t = 5),ua(t)) = F(y(®), y(t — s),uy (1), z(t) — y(O)]x
< —cllz(t) —y@OF + xlla(t — 5) — y(t = s)llullz(t) — y(@)] x,
+ lyllua(t) — uy (O)llullz®) — y@)]x-
Thus, with z(t) = ||z(t) — y(¢)|| x, delay differential inequality:
DT z(t) < —ez(t) + Lx supp< <5 2(t = ) + lyllua () — uy(t)llur,
Halanay inequality is applicable (see Chapter 3). If ¢ > £y, then
2(t) < 20”70 44y / e g (7) =y (),
to

where p > 0 is the unique positive root of p = ¢ — £xe?S and 2o = Supg<s<gs #(to — 5).

)

®3)
(4)
(5)

(6)

)
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Incremental ISS of networked systems with delays

Interconnected subsystems i € {1,...,n}

@y = Fi(wi, w2 (t — s),u;), 0<s<5, I P | e | P (8)
Assume there exist positive constants st

osL Xyt [[FZ(:I}Z, ce ) - Fz(yz; v ),.%'Z‘ - yz]]z < —cZ-Hxi - ylH?

. n
Lipz_;: [Fi(-oszmiyo) = Fileeo gy )i < ijl,j;«éi Yillwg — 5l

. —s . — — n ~ — —
lposis IR ot ) = Filonut Dl £ 300 Al — 457l
Lip U; - HFZ( .. ,ui) — Fi(. N Uz)”z < &71/{ \ul - viHi,U

With z;(t) = ||z;(t) — vi(t)|l:, delay differential inequality on R :
Dt 2(t) < —Cx(t) + T2(t) + T supgescg 2(t — 8) + Lullus(t) — uy(t) |l

and, if the Metzler matrix —C + I + I is Hurwitz, then (8) is incremental ISS

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. /EEE Transactions on Automatic Control, 67(3):1453—
1459, 2022. ¢
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Gradient dynamics and Nash equilibria in games

@ Nash equilibria: existence, uniqueness, computation, convergence for gradient-like
dynamics, robustness

@ games with partial information

@ aggregative games: demand-side management in the smart grid, charging control for
plug-in electric vehicles, spectrum sharing in wireless networks, and network congestion
control

S. Li and T. Basar. Distributed algorithms for the computation of noncooperative equilibria. Automatica, 23(4):523-533, 1987. ¢

D. Gadjov and L. Pavel. A passivity-based approach to Nash equilibrium seeking over networks. /EEE Transactions on Automatic Control,
64(3):1077-1092, 2019. 4

M. Arcak and N. C. Martins. Dissipativity tools for convergence to Nash equilibria in population games. /EEE Transactions on Control of
Network Systems, 8(1):39-50, 2021. 4

G. Belgioioso, P. Yi, S. Grammatico, and L. Pavel. Distributed generalized Nash equilibrium seeking: An operator-theoretic perspective.
IEEE Control Systems, 42(4):87-102, 2022. L

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. /[EEE Control Systems Letters,
7:3896-3901, 2023. ¢
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Example #9: Saddle dynamics

Assume f:R" x R™ — R
e x — f(x,y) is vy-strongly convex, uniformly in y
e y — f(x,y) is vy-strongly concave, uniformly in

Aim: ming, maxy f(z,y)

saddle dynamics (primal-descent / dual-ascent):

m = Fs(,y) = {_Vi,?{imyg)]
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Example #9: Saddle dynamics

saddle dynamics (primal-descent / dual-ascent):

i) =Fsen =[St |

Fs is infinitesimally contracting wrt || - || with rate min{v,,v,}
unique globally exp stable point is saddle point (min in 2, max in y)J

If fis twice-differentiable, then

P p2(DFs(x,y)) = SUp /12 ([_ Hess; f(z,y) —DyVaf(z, y)])

D:vaf(z)y) Hessy f(xvy)

o (A)=pia(AH15) — Hess, f(z,y) 0 — o mi
= slip 12 0 Hess, f(z,y)| ) —min{re vy}
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Example #10: Pseudogradient play

Each player i aims to minimize its own cost function J;(z;, x_;) (not a potential game)

pseudogradient dynamics (aka gradient play in game theory):

& = Fpseudoc(z) = = (Vidi(z1,2-1), ..., Vi dpn (2, 1)) (stacked vector)
< T; = —ViJi(xi,x_i)

e strong convexity wrt x;: J; is u; strongly convex wrt x;, uniformly in z_;
e Lipschitz wrt z_;: Lipxj (Vidi) < 4y, uniformly in z_;
@ FpseudoG gain matrix is Hurwitz
=—>  FpseudoG is infinitesimally contracting wrt appropriate diag-weighted || - |2
if FpseudoG is infinitesimally contracting (wrt any norm)

then unique globally exp stable Nash equilibrium J;(z], z*;) < J;(y;, %) for all y;
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Example #11: Best response play

Each player ¢ aims to minimize its own cost function J;(x;, x_;)
BR; : x_; — argmin, J;(x;,7_;) best response of player i wrt other decisions x_;

best response dynamics:

T = FBR(Z) = BR(ZL‘) — X
< T; = BRi(x_i) — Z;

e strong convexity wrt x;: J; is p; strongly convex wrt x;, uniformly in z_;
o Lipschitz wrt z_;: Lipmj (Vidi) < 4y, uniformly in z_;
=>  BR; is Lipschitz wrt z; with constant ¢;;//;

o Fggr gain matrix is Hurwitz <= BR is a discrete-time contraction

=  BR —Id is infinitesimally contracting wrt appropriate diag-weighted || - ||2

if FgRr is infinitesimally contracting (wrt any norm)
then unique globally exp stable Nash equilibrium (fixed point of BR)

v
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Equivalent statements:

1 ... g

© Fpeeudog gain matrix: : : is Hurwitz
RS T T
[ -1 AT

@ FgRr gain matrix: 5 : is Hurwitz
Unt /oo =1
[0 .. Eln/,ul_

© discrete-time Fpr gain matrix: : : is Schur
Unt/pin - 0 |

Aggregative games: J;(z;,7_;) = fi(z;, £ > i1 T5)
assume f; is p;-strongly convex wrt x; and  ¢; = Lip,(Vz, fi(zi,y))

w; > £; for each agent ¢ =  Hurwitz
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A game-theoretic antagonistic opinion dynamics example

Agents with variable opinions z; € R and fixed private opinion p;
Given unsigned interpersonal weights a;; and attachment parameter b; > 0, cost function:

Ji(x) = 3 Zj aij(z; —x;)°  + bi(x; — pi)” + ()
—_———— ——r
e attachment to private opinion convex penalty

tendency to consensus/dissensus

Hess; J; = 2b; i +H i
o Hess + Zj a;j + Hess ¢ (z;)
o VJi= Zj aij(x; — i) + 2bi(x; — pi) + 0 (x;) and Lip, (ViJi) = |as]

If weak antagonistic relations

bi > Z |ai]‘|

Jjst. a;;<0
then
@ gain matrix of Fpseudog has negative row sums

@ pseudogradient and best response play are strongly contracting wrt || - ||

v

P. Wankhede, N. Mandal, S. Martinez, and P. Tallapragada. Opinion dynamics for utility maximizing agents: Exploring the impact of

resource penalty. arXiv preprint arXiv:2404.04912, 2024
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Time-varying and feedback optimization

Solving optimization problems via dynamical systems

J, w(t)

o u Plant y
4 = Optimizer(,5) | (jirear, stable, fast)

studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)
optimization on manifolds (Brockett 1991)

@ online and dynamic feedback optimization (Dall'Anese, Dorfler, Simonetto, ... )

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking
approach. /EEE Transactions on Automatic Control, June 2023a. 4. Submitted

L. Cothren, F. Bullo, and E. Dall’Anese. Online feedback optimization and singular perturbation via contraction theory. SIAM Journal on
Control and Optimization, July 2024. 4. Submitted
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Motivation: Optimization-based control

© parametric optimization

© online feedback optimization

H H 4 P
© model predlctlve control ,&35‘ Transportation systems T sy;)t‘g:s
[Bianchin et al '20] <L~
@ control barrier functions [Cothren et af22] ar

Robotics
e L and vehicles \ [Jokic et al'09]
— [Bolognani-Zampieri'13]
& eedbaci g
w [Hirata-Hespanha-Uchida’14]

[Lietal'14]
L tal'21
{T::';::':e:,;] ! [Dall’Anese et al'15]

[Cothren et al '22] [Bernstein et al'15]
[Gan-Low’16]

[Dall’Anese-Simonetto’18]
[Zaaorowska et al’23] [Menta et al"18]

Compressor stations
“4 Epidemic control
[ %

[Ortmann et al’20]
[Bianchin et al'22] ,fa [Picallo et al’22]

... and many others

Online feedback optimization. Courtesy of Emiliano Dall’Anese.

parametric QP. YALMIP + Multi-Parametric Toolbox
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Parametric and time-varying convex optimization

miné(z) <<= 1 =F() O I

Parametric and time-varying convex optimization
© parametric contracting dynamics for parametric convex optimization

miné(z,0) < &=F(z,0) A ()

@ contracting dynamics for time-varying strongly-convex optimization

min € (z,0(t)) <= @ =F(z,0(t)) ey 1 (0(t))

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking
approach. /EEE Transactions on Automatic Control, June 2023a. 4. Submitted
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Parametric convex optimization and contracting dynamics

Many convex optimization problems can be solved with contracting dynamics }

& = F(z,0)

Convex Optimization | Contracting Dynamics

Unconstrained milqn f(z,0) &= —-Vyf(x,0)
rER™
min  f(x,0)
Constrained | z€R" & = —x + Projyg)(x — vV f(z,0))
st. zeX()
Composite miRn f(z,0) +g(x,0) | & = —x +prox, , (v — ¥V f(z,0))
zeR™
min  f(z,0) P =~V f(x,0)— ATX
Equality z€R™ v f(@,9) ’
st. Az =b(0) A=Az —b(0)
min  f(z,0) i = —Vf(z,0) — ATVM, ) (Az + yA
Inequality zeR” €r f(l‘, ) ’y,b(@)( T+ )7

st. Az < b(0) A =7(=A+ VM, y0)(Az + y))
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Tracking equilibrium curves

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o =+ © C R4

Assume there exist norms || - ||x and || - || s.t.
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in 6
e Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

Theorem: Incremental ISS any two soltns: x(t) with input 8, and y(t) with input 6,

Df|a(t) —y)llx < —clla(®) —y(®)llx + €0a(t) —Oy(t)]le )
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Tracking equilibrium curves

For parameter-dependent vector field F : R” x R — R™ and differentiable 6 : R>o =+ © C R

Assume there exist norms || - ||x and || - || s.t.

e contractivity wrt z: osLip,(F) < —¢ <0, uniformly in 6

e Lipschitz wrt 6: Lipy(F) < ¢, uniformly in x

Theorem: Equilibrium tracking for contracting dynamics

© for each fixed 6, there exists a unique equilibrium x*(0)

@ the equilibrium map z*(-) is Lipschitz with constant -
c

© Df|lz(t)—2"(0(t)llx < —cllz®)-2"(O®)lx + éllé(t)lle
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Proof of equilibrium tracking
Given: & = F(z,0(t)) with osLip,(F) < —c and Lip,(F) < ¢

Task: compare traj z(t) with equilibrium curve z*(0(¢)) implicitly defined by F(z,6(t)) =0

Consider auxiliary dynamics with two trajectories:

T =F(x,00t)+v(t) = Fiux(z,0,0v)
Q v(t)=0 = trajectory x(t)
Q v(t)=12*(0(t)) = equilibrium trajectory z*(0(t))

F.ux is contracting with osLip,(F.ux) < —c and Lip,(F.ux) = 1.  Hence, ilSS:

D|lz(t)—2*(0(t)lx < —c-[lz(t)—z*(0®)]x +

< —c-la(t)—x*(0(t))|x +

L0 = 2%(0()) %
!

lé@lle  (since Lip(a")

SN

)
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Consequences for tracking error

D|lz(t)—z*(0(t)llx < —clla(t)=2*(0@)]x + gHé(t)He

bounded input, bounded error
with asymptotic bound:

. 0. :
limsup [[z(t) —2*(0@))llx < - lisn gy 16(t)]le
2 —00

t—o00

bounded energy input, bounded energy error

vanishing input, vanishing error

h min{c,h}t

exponentially vanishing input ~ e~ exponentially vanishing error ~ e~

periodic input, periodic error
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Numerical simulations

1 2
min 5\\9;—7«@)“3 min - oflz +r(@)];

z€R3
subj. to  x1 + 2z + x3 = sin(wt), subj. to  —z1 + x2 < cos(wt),

r(t) = (sin(wt), cos(wt)),w = 0.2

r(t) = (sin(wt), cos(wt), 1),w = 0.2
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ll2(t) = 2*(0(2))llo,pr2

Empirical error versus theoretical upper bound

; [ e e o AR
1 1
I O N U S
0.71 1 !
i « :
0.6 i $061
I = |
i = i
0-51 i —— Error < i Error
! + 0.4 1 —
0.44 i —-=='Upper bound @ ! Upper bound
: 1 | !
1 1
i = i
03 i = 0.21 i
1
A | 0.0
0 tss 10 20 30 40 0
t t
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Application: Dynamic feedback optimization

J]U)(t)
. . U Plant Y
r i = Optimizer(u, y) “ (linear, stable, fast) T
dynamic feedback optimization
online optimization, optimization-based feedback, input/output regulation ... J
min cost; (u) + costa(y) . @ = Optimizer (¢, u,y)
subj. to  y = Plant(u, w(t)) y = Plant(u, w(t))

A. Jokic, M. Lazar, and P. van den Bosch. On constrained steady-state regulation: Dynamic KKT controllers. |[EEE Transactions on
Automatic Control, 54(9):2250-2254, 2009. &

A. Hauswirth, S. Bolognani, G. Hug, and F. Dorfler. Timescale separation in autonomous optimization. /EEE Transactions on Automatic
Control, 66(2):611-624, 2021. 4

G. Bianchin, J. Cortés, J. |. Poveda, and E. Dall'Anese. Time-varying optimization of LTI systems via projected primal-dual gradient flows.
IEEE Transactions on Control of Network Systems, 9(1):474-486, 2022. d
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w3
Transportation systems
[Bianchin et al '20]

[Cothren et al’22]

Robotics
and vehicles ‘\
N P
” & Feedback
optimization
[Lawrence et al’21]

[Terpin et al 21]
[Cothren et al '22]

Compressor stations

[Zagorowska et al'23]
_/jﬁ; Epidemic control
P

{3:% (‘)'\/ 3 [Bianchin et al’22] @ &
RO T @

E. Dall'Anese

Some works on feedback optimization

Power
systems

[Jokic et al’'09]
[Bolognani-Zampieri'13]
[Hirata-Hespanha-Uchida’14]
[Li et al'14]

[Dall’Anese et al'15]
[Bernstein et al’15]
[Gan-Low’16]
[Dall’Anese-Simonetto’18]
[Menta et al’18]

[Ortmann et al’20]

[Picallo et al’22]

... and many others

Siena, July 2023

Slide courtesy of Emiliano Dall’ Anese, University of Colorado Boulder
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Example #12: Gradient controller

Setup Fast/stable LTI plant with control input u and state/measurement disturbance w(t):

et = Ax + Bu + Ew(t) A Hurwitz

y = Cz+ Dw(t)
In singular perturbation limit as € — 0T, steady state map (Y, and Y,,)

y = —CA™'Bu + (D-CA'E) w
SN— N————
=: Yy =Y,

Feedback optimization problem
equilibrium trajectory u*(w(t)) is solution to

m&n o(u) +P(y(t)) (v-strongly convex ¢, convex 1))
subj to y(t) = Yyu + Y,w(t)

Gradient controller (as function of measured output):

a(t) = =Vé(u(t)) = Y,/ Vi(y(t),  u(0)=uo
fast/stable LTI
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Example #12: Gradient controller

Equivalent rewriting In singular perturbation limit as ¢ — 0T,
E(u,w) = ¢(u) + Yp(Yyu + Yyw), (v-strongly convex in u)
V€ (u,w) = Vo (u) + Y, Vip(Yyu + Yyw)
= Vo(u) + Y, Vi(y) (no need to measure w(t) to compute u(t))
Hence, gradient controller is equivalently defined by

i = Fgradcen (u, w) = —Vy&(u,w) = =Vé(u) — Y, Vi (Yyu + Yyw)

Equilibrium tracking for the gradient controller

. * ‘gw . .
limsup [lu(t) —u*(w(®))| < 5 limsup [o@)]

t—o00 t—o00

Q osLip, (Fgradctn) < —v (gradient of v-strongly convex function)
Q Lip, (Feradctr) = bw = HYuTH Lip(Ve)) || Ya ||
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Example #13: Projected gradient controller

Constrained feedback optimization:
min  £(u,w) = ¢(u) + Y(Yyu + Yyw) (v strongly convex, ¢, strongly smooth, £,,)
u

subj. to uel (nonempty, closed, convex. Py, = orthogonal projection)

Projected gradient controller (example of proximal gradient dynamics):

@ = Fpgc(u, w) == —u+ Py(u—yViE(u, w))
Equilibrium tracking for projected gradient controller At v = ﬁ,
) . lpce . ) .
limsup [[u(t) — u*(w(t))] < 55— limsup |lw(t)| (eq tracking)
t—o0 Cpgc t—o
2
Q osLip,(Fpee) < —cpge := — Y (contractivity prox gradient)
v+l
. 2
@ Lip,(Fpec) = lrac == .

v+,

V.
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Exact tracking with knowledge of external signal

For parameter-dependent vector field F : R x R? — R™ and differentiable 6 : R>g — © C R?

(t) = F(x(t),6(2))
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in 6
@ Lipschitz wrt 6: Lipy(F) < ¢, uniformly in z

Additionally, assume F differentiable in both arguments. Inverse function theorem implies

Dyz*(0) = —(D.F(2*(6),0)) " DgF(2*(6), 0).

(To verify this equality, differentiate wrt 6 the equilibrium equation 0 = F(2*(0),0).)

time-varying contracting dynamics with feedforward prediction
. 71 .
(t) = F(a(t),0(t)) — (DaF(x(t), 0(t)))  DeF(x(t),0(t)) 0(t)
For example, if F'= -V, f:
& = —V,f(x,0) + (Hess f(z,0)) ' DpV, f(x,0) 0
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Exact tracking with knowledge of external signal

Time-varying contracting dynamics with feedforward prediction

i(t) = F(x(t), 0(t)) — (DuF(x(£), 0(¢))) " DoF (x(2), 6(¢)) (1)

Asymptotically exact equilibrium tracking
@ |[F(z(t),0))Il < e*||F(z(0),6(0))]|
Q |[lz(t) — 2" (6(2))|| < ée‘“llw(o) —z"(6(0))||

Proof sketch
First compute

%F(m(t),@(t)) = D,F(x,0)i + DyF(z, 0)9 = D,F(x,0)F(z,0)
and so

IF (), 0| DT(|F(x(t), 00))| = [[%F(fﬂ(t)ﬁ(t)%F(w(t)ﬂ(t))ﬂ < < | F(a(®), 00t)I1?

Separately,
cllz — 2% < [[F()]| < Ll — 27
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Summary and future work on time-varying and feedback optimization

Summary:
@ from convex optimization to contracting dynamics
@ tracking-bounds for time-varying contracting systems

© applications to convex optimization and feedback optimization

Ongoing work and open problems:
@ contracting predictor-corrector methods
@ tracking bounds in time-varying norms

© convex but not strongly convex problems
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§5. Example applications
@ Gradient dynamics and Nash equilibria in games
Time-varying gradient dynamics and feedback optimization
@ Recurrent and implicit neural networks
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{~-contracting neural networks

&= —x+ ®(Az + Bu+b) (recurrent NN)
x = ®(Ax + Bu+b) (implicit NN)
Tp+1 = (1 — @)z + a®(Axg + Bu+b) (Euler discretization)

If
Hoo(A) < 1 (i.e., a; + Z la;j| < 1 for all 1)
j
o recurrent NN is contracting with rate 1 — oo (A4)+
@ implicit NN is well posed
1-— A 1
@ Euler discretization is contracting with factor 1 — A atgf = —— —————
1 — min;(ay;) - 1 — min;(ay;) -
: o : | Bllos
) t-state L hit tant L = —
input-state Lipschitz constan Py sy = 7 oo (A)

v
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Implicit neural networks in machine learning

Feedforward NN Implicit/Recurrent NN

@)
@)
u 8=y
@)
O ,:>
Tk
Tit1 = ®(Aiw; + b;), o =u, z = ®(Az + Bu +b),
y=Cx+d y=Czx+d
ML advantages of implicit/equilibrium/fixed point formulation:
© bio-inspired
@ expressivity and ability to model 1/O behavior, instead of modalities
© simplicity and memory efficiency
©Q accuracy
© input-output robustness

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean

contractions. In Advances in Neural Information Processing Systems, Dec. 2021. 4
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Motivation #1: Generalizing FF to fully-connected synaptic matrices
7t = ®(Aj2' + Biu+b;) <<= 1 = ®(Azx + Bu+b), where A has
upper diagonal structure.

Aupper—diagonal = E |:> Acomplete =

Motivation #2: Weight-tied infinite-depth NN — fixed-point of INN
u ‘

}i t
z3 o X =Y
| T i

7 = ®(Az' + Bu+b) = lim; 2" = 2* solution to the INN

A A

Z1

t
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Recent literature on implicit NNs

© 6 o o

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information
Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377

L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai. Implicit deep learning. SIAM Journal on
Mathematics of Data Science, 3(3):930-958, 2021. 4

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural
Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591

M. Revay, R. Wang, and |. R. Manchester. Lipschitz bounded equilibrium networks. arXiv preprint
arXiv:2010.01732, 2020. 4

A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A
panacea for vanishing and exploding gradients? In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylpqA4FwS

K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In
International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=p-NZluwghl4

S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit

depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803.
ArXiv e-print
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Implicit Neural Networks (INNs) for regression

@ Training INNs:
© loss function £
@ training data (u;, ;)
© training optimization problem

N
i=1

N
min g L(y;,Cx; + ¢
A,B,C,b,x — (5, Ci + )
1=

o Efficient back-propagation through implicit differentiation
@ Stochastic gradient descent: at each step solve x = ®(Ax + Bu +b).
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Robustness of INNs

Adversarial examples: small input change can cause large output change!

2K y=3

0.005

Robustness measures: input-output Lipschitz constant
@ /3-norm Lipschitz constant: not informative in many scenarios

@ /s-norm Lipschitz constant: large-scale input wrt wide-spread perturbations
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Robustness of INNs

Adversarial examples: small input change can cause large output change!

0.005 x

Robustness measures: input-output Lipschitz constants
@ NP-hard to compute exactly

@ Approximations provide only coarse certified robustness guarantees
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Training INNs

Training optimization problem:

N
A%}g,b ; L(Yi,Cri+c)+ A Lip,,
T; = <I>(Azl + Bu; + b)
lbcx>(f4) <7

@ A\ > 0 is a regularization parameter

@ v < 1 is a hyperparameter

Parametrization of ;. constraint:

po(A) <y <= ITst. A=T —diag(|T|1,) + I
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Graph-Theoretic Regularization

Synaptic matrix A encodes interactions between neurons

.

—| Q]

Acom plete

> — >
‘:> Ad ropout

@ Agropout 1S @ principal submatrix of Acomplete

° Moo(Adropout) < Hoo(Acomplete)

e Well-posedness of original INN implies well-posedness of INN with subset of neurons
e Promotes compression and sparsity of overparametrized models
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Numerical Experiments

e MNIST handwritten digit dataset (60K+10K, 28x28, grayscale)

o implicit neural network order: n = 100

LLLLLLLLLLLLLLLLLLLL

ololslH]alala] s
Oololsidlalalal ¢
OlolsiHlalalal ¢
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Numerical Experiments

Robustness of INNs

Tradeoff between accuracy and robustness

Test error vs Lipschitz constant on MNIST handwritten digits Accuracy vs perturbation on MNIST handwritten digits

§ 1.0
"l e ® r\=1w0" — =10t
164 * A:IO:ZS — A=10
® = 1071 0.1 — A=10-25
14 A=107 A=10°
A=10-* A=10"*
312 A=107° 0.6 1 A=10"°
ey ° ® =0 9 — A=0
5 101 ® Alx <095 5 — | All~ £0.95
% | J £ MON
£ 84 0.4
61
0.2
14
2 %
T - T — 0.0 T T T T
102 10% 10* 10° 0.0 0.1 0.2 0.3 0.4 0.5
Lipschitz constant f amplitude of perturbation
o Pareto-optimal curve @ Clean performance vs. robustness
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Outline

§6. Generalizations with examples
@ G1: Local contractivity: Small-residual theorem and the Kuramoto coupled oscillators
@ G2: Weak contractivity: Biologically-plausible circuits for sparse reconstruction
@ G3: Contractivity on Riemannian manifolds and the Karcher mean
@ G4: Semicontractivity: Primal-dual gradient with redundant constraints
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Outline

44

§
§

. History and resources

¥

Basic definitions: discrete and continuous-time dynamics on vector spaces

§

@

. Example systems

§4. Properties of contracting dynamics

§

o

. Example applications

§6. Generalizations with examples
@ G1: Local contractivity: Small-residual theorem and the Kuramoto coupled oscillators

§7. Conclusions and future research

§8. Advanced Topics
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Local contractivity theory

z(t) = F(:p(t)) and z(k+1) = F(z(k))
for a norm || - ||, recall Lip(F) = sup,, ||DF(z)|| and osLip(F) = sup,, u(DF(x))

Example contour plot of = — u(DF(x))

Red values are points « where p(DF(z)) < 0

Blue values are points where p(DF(z)) > 0
' contracting set S := red region

closed ball B, (z*) = {x such that ||z — z*|| < r}

Theorem: if contracting region S is invariant and convex (so that Lip(F) = sup,, ||[DF(x)||),
then one can restrict F to S and usual contractivity properties (with caveats) apply

@ invariance of contracting set S7?7

@ convexity of contracting set S7?
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Local contractivity theory

Preliminary equilibrium lemma
If 2* € S satisfies F(z*) = 0,,, then each B,(z*) C S is invariant for # = F(z).
If z* € S satisfies F(z*) = z*, then each B,.(z*) C S is invariant for x(k + 1) = F(x(k)).

Proof: x — || — z*|| is a Lyapunov function decreasing along the flow

Hence, we may look for largest equilibrium-centered ball inside S. However,
© as the ball grows inside S, the contraction rate (i.e., sup,cpa pt(DF(x))) goes to zero

@ what if an equilibrium point is not known?
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Local contractivity theory

L

The small-residual theorem (continuous time)
For & = F(x) infinitesimally contracting with rate ¢ > 0 in region S

B.(z*)C S and IF(z")|| <er — B, (z*) is invariant

The small-residual theorem (discrete time)
For x(k 4+ 1) = F(x(k)) contracting with factor £ < 1 in region S

B.(z*)C S and IIF(z*) —x*|| <r(l—14) = B,(z") is invariant

v
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Proof of small-residual theorem (discrete time):  Pick z € B,(z*) and compute

triangle ineq

IF(z) =27 < [[F(z) = F@@")[| + [[F(z") — 27

where ||F(z) — F(z*)|| < {||lz —2*|| < {r by contractivity on S and by = € B, (z*)
where ||F(z*) — z*|| < (1 —¥¢)r by small residual

|F(z) —a*|| <tr+(1—Or=r = F(z) € By(z")

Proof of small-residual theorem (continuous time):  Pick z € 9B, (x*) and compute

triangle ineq

l|p¢(z) — 2| < [pe(x) — ot ()| + [|e(z™) — 2| (equality when ¢ = 0)
where
D+’t=0”¢t(x) — ()] < —cl|dr(x) — (e H‘t 0= —cCr (contractivity)
D] _o3lléu(a”) =7 = [F(6u(a). dn(a™) = a°]| _ < [F@)&x(a") = 2" (en.d)
= Do) ol < —er + [F@).

If a continuous h satisfies D+‘t:0h(t) <0, then h(t) < h(0) for small t.

Invariance follows from Nagumo's Theorem.
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Local contractivity

Given a norm || - || and a set S, consider
= F(z)
satisfying sup u(DF(z)) < —c <0 D
xeS
trajectories slow down and

approach each other while inside S

@ integral and differential conditions do not coincide
In general osLip(F|s) > sup{u(DF(z)) s.t. x € S}, with equality when S is convex

@ 2" exists if “residual is below threshold”
if 3 a closed ball with center  and radius r > 0 inside S such that ||F(z)| < cr,
then ball is F-invariant and contains a unique exponentially stable equilibrium x*

© 2" exists if complete trajectory in set
if 3 ¢¢(xg) € S for all t >0, then x* := limy_, 1 o P¢(xg) € S is an equilibrium
Q there exists either 0 or 1 equilibrium z* in each convex subset of S
each convex subset of S' possesses 0 or 1 equilibrium

v
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Local converse theorem

Local contractivity near each Hurwitz equilibrium
Consider a continuously-differentiable F with an equilibrium z* such that DF(z*) is Hurwitz.

Pick a sufficiently small € > 0 and compute P = P > 0 such that

fig pr/2(DF(27)) < a(DF(27)) + €

Then
@ by the continuity of DF, there exists a radius 7 > 0 such that

Mo p1/2 (DF(:E)) <0

in a ball of radius 7 centered at z* with respect to the norm || - ||, p1/2

@ each trajectory starting inside this ball converges to z*
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Sync & Multi-Stability in Kuramoto Coupled Oscillators

Pendulum clocks & "an odd kind of sympathy” =~

_ -

) W e )

[Christiaan Huygens, Horologium Oscillatorium, 1673] \

& >
| ]

Canonical coupled oscillator model ‘\ 52 //’

\ /

[Arthur Winfree '67, Yoshiki Kuramoto '75] N P
<11 -

[find on youtube 2015 remarks by “Kuramoto talks about Kuramoto model”]
Kuramoto model

o n oscillators with angle §;, € S=T

e natural frequencies w; € R

o coupling strengths a;; = aj;

éi = W; — Zaij sin(Hi — 0])
J=1
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Elastic and flow networks on the torus

n .
w; = ijl a;jsin(f; — 0;) J

Spring network Power network

o w; =7 : torque at i @ w; = p; : injected power

® a;; = k;j : spring stiffness 4, j ® ajj : max power flow i, j

o sin(f; — 0;) : modulation e sin(#; — 6;) : modulation

o elastic energy @ KCL flow conservation and Ohm's law

£ =3, (1— cos(6; — ;) @) o
T3 k —p»é’z
34 T 7 .
k23 \
@)

T{‘ ka4 pover flow
f

agj

power angle 0; — 8. 133/221



Models: zero-th order (equilibrium), first order, and second order

n :
"\

12

73

Coupled swing equations
Euler-Lagrange eq for spring network on ring:

mlez + diéi =T; — Z ) k‘ij sin(Gi — 0])
J

Kuramoto coupled oscillators

éi = W; — Z . aij sin(@i — QJ)
J

Kuramoto equilibrium equation

0= W; — Z . aij sin(@i — 93)
J
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Incoherence or synchronization?

Frequency sync: 6, = 9j
Phase sync: 0; = 0;
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Preliminary observations

Q Forae[—m m[and 0 = (01,...,0,) € T", rot,(0) is counterclockwise rotation of each

entry (01,...,6,) by «
Kuramoto model invariant under rotations: rotated solutions are solutions
—>  system can be written in n — 1 angle differences (so that it is really n — 1 dim)

o n
@ Note >, 0; = > w;. Define wsync := %Z (Wi = average(w) and change reference
1=
frame to rotating frame with wsync.
— restrict to weyne =0 < 1;w =0

@ Let B denote directed incidence matrix. Jacobian of the Kuramoto model is:
J(@) =-B d1ag({a” COS( )}{Z,]}GE)
= J(0) = —Laplacian(#), but weights a;; cos(6; — ;) may be negative

O define phase cohesive subset {§ € T" such that [0; — 6;| < m/2, for all edges }
—>  J(6) 2 0 on phase cohesive 0
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Winding numbers and partitions

Given a cycle o0 = (1,...,n,) and orientation

@ winding number of § € T" along o
= number of times the shortest-arc path wraps around torus

w=0 w=+1 w=—1

@ given basis 01, ..., 0, for cycles, winding vector of ¢ is

w(f) = (we, (6), ..., w,,(9))
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Theorem: Kirchhoff angle law on T"

winding number is at most + |[n,/2] — 1

=~

Theorem: Winding partition For each possible winding vector u, define
WindingCell(u) := {6 € T" such that w(f) = u}

Then
T" = U, WindingCell(u)
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3-Cycle, Winding Number 1

Winding partition: example and properties

3-Cycle.

w=+1

Theorem: Reduced cell is convex polytope
@ each winding cell is connected and invariant under rotation

dee(02.03)

o bijection:
reduced winding cell <— open convex polytope

deo(61,0)
(00 139/221



Two other examples

i

N

@——
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Phase cohesive winding cells

dee (92 3 03)

—7/2

-7 —/2 0 /2 T

dcc(gh ‘92)

(a) (b)
cohesive subset |0; — 6;| < /2
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Multistable Sync = global partition + local contraction

. n .
Qi = W; — Zj:l aij Sln(@i — 9])
© in each winding cell the energy is well posed:

£@) = Zij(l —cos(f; — 0;)) +w'h

@ in each winding cell Kuramoto model is precisely: 6 = —VE(H)
© Hess&(0) = Hess ), (1 — cos(6; — 0;)) = —Laplacian(0) (possibly negative weights)
O HessE&(0) < 0 on the cohesive subset |0; — 0;| < 7/2
hence, modulo the symmetry, £ is strongly convex on cohesive subset

© modulo the symmetry, local strong contractivity (on each connected cohesive subset)

At most uniqueness theorem:
@ each winding cell has at most one cohesive equilibrium

@ contraction algorithm to decide/compute in each winding cell

S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Flow and elastic networks on the n-torus: Geometry, analysis and computation.
SIAM Review, 64(1):59-104, 2022b. ¢
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Extentions: the Kuramoto-Sakaguchi model with phase delays

éi = Ww; — Z Qjj sin({% — 9j + qblj)
j=1

same properties, by robustness of contracting dynamics

R. Delabays and F. Bullo. Semicontraction and synchronization of Kuramoto-Sakaguchi oscillator networks. /EEE Control Systems Letters,
7:1566-1571, 2023. @
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Two-dimensional slice of R!3, showing log seminorm of Jacobian of Kuramoto-Sakaguchi
model with delay ¢ = 0.01.

3.78

2.84

1.894

- 0.95

=:+ 0.00

Man

- —0.06

-0.11

-0.17

-0.22

plain black lines = boundaries of the winding cells.
dashed black lines = boundaries of the -cohesive winding cells

red color =  system is semicontracting in phase-cohesive winding cells
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From strongly to weakly contracting systems

Given a norm || - ||, consider

& =F(x) satisfying osLip(F) =0

Dichotomy for weakly-contracting systems

@ no equilibrium and every trajectory is unbounded, or
@ at least one equilibrium, every trajectory is bounded, and local asy stability = global

|

=
|

&

e\

E

o
%)
7

o




Weakly contracting dynamics + locally-exp-stable equilibrium

i = F(t, ) on R™ with norm || - [|gio

@ F is weakly contracting wrt || - |/glo

@ =z is locally-exponentially-stable equilibrium
= F is locally c-strongly contracting wrt || - ||joc over forward-invariant S
= exists Bgo = {2 | ||t — 2 ||go <7} C S

Equivalently:
© F is globally weakly contracting wrt || - ||gio
@ F is locally strongly contracting wrt || - ||ioc in S
© equilibrium point in &
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Proof of globally-weakly + locally-strongly
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O finite decay in finite time: For each z(0) ¢ S and each p < 1,

[2(tp) = 2"[lgo < [|2(0) — 2" [[go — pr for ¢, = In(Kioc glo (1 — p) ~1)e ™!
—>  average linear decay rate ad = pr/t,
—  x(t) € By after linear decay time tg = lz(©)=a"llgo—r |,
g pr P
@ linear exponential decay:
[z(t) — 2 lgo < (l(0) — 2*|lgio + pr) — ciat if £ <ty
g - Kloc,glo T e~c(t=ta) if t >ty

— lin-exp(t)

Ix() - x" ls
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Example #13: Gradient dynamics for convex functions

Given differentiable convex f : R — R, gradient dynamics

& =Fg(z) == -V f(z)

Dichotomy and Convergence
@ —Vf has no equilibrium, f has no minimum, and every trajectory is unbounded, or

@ —Vf has at least one equilibrium z* € R™ and the following properties hold:
@ f is constant on convex set of equilibria, each local is a global minimum,
@ every trajectory is bounded and converges to a minimum, each equilibrium is stable
@ if z* is locally asymptotically stable, then z* is globally asymptotically stable
O if ua(—Hess(f)(z*)) < 0, then linear exponential decay and x — ||z — 2*||2 is a global Lyapj

Convex quadratic-linear function (Huber loss) leads to linear-exponential decay

222 if || <1

_— T =—Vfuu xr) = —sat(x
|.”L'|—% if]w\>1 beer() ()

fHuber(x) = {

o
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Example #14: Biologically-plausible circuits for sparse reconstruction

® dictionary matrix:
o full row rank, each columm ®; has unit norm

@ ®; - &; = similarity between dictionary elements

T _ T
e =@ (MxN)
rank at most M

1] D2] - | Pn =|@Td); =& D,

=]
Q
(=4
I
LS
I

(Mx1) (MxN) [ (MxN)

(NxM) (NxN)

(Nx1) (Nx1)
Sparse reconstruction:

;2}1?% glasso(‘r) = %Hu—q’xH%‘F)\H»@Hl
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Competitive neural network
(1) = [Fammpeiivele, w)) .= —m 4 softA((IN - <I>T<I>)a: + <I>Tu)

or, in components ;(t) = —z; + soft)\(— Zn <I>Z-T<I>jasj + <I>1Tu)

J=1j7i
X/

soft (z)
@)
O >OO —A ‘ A R
ueRM o9 e r"
O o ‘
O OO
v
Equilibria, weak contractivity and convergence of Fcompetitive
@ z* is equilibrium — x* minimizes Ejass0 ()
Q Elasso IS convex = Fcompetitive 1S Weakly contracting
© O satisfies isometry property = x* is locally exp stable

=—>  each trajectory linearly-exponentially-decays to x*

v

V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse reconstruction. Neural Compu-

tation, 36(6):1163-1197, 2024. 9
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Contraction dynamics on Riemannian manifolds

Contraction theory on Riemannian manifolds originates in
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696, 1998. 4

A formal coordinate-free analysis (with connection to monotone operators) is given in

J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters, 65:74-80, 2014. 4

In the differential geometry literature, geodesically monotonic vector fields are studied by

S. Z. Németh. Geodesic monotone vector fields. Lobachevskii Journal —of Mathematics, 5:13-28, 1999. URL
http://mi.mathnet.ru/eng/ljm145

J. X. Da Cruz Neto, O. P. Ferreira, and L. R. Lucambio Pérez. Contributions to the study of monotone vector fields. Acta Mathematica
Hungarica, 94(4):307-320, 2002. 4

J. H. Wang, G. Lépez, V. Martin-Marquez, and C. Li. Monotone and accretive vector fields on Riemannian manifolds. Journal of Opti-
mization Theory and Applications, 146(3):691-708, 2010. ¢
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http://dx.doi.org/10.1023/A:1015643612729
http://dx.doi.org/10.1007/s10957-010-9688-z

Assume: existence and uniqueness of geodesic curve 7y(t) = z#y between each (z,y)
F contracting if geodesic distances from z to y diminishes along the flow of F

integral test: the inner product between F and the geodesic velocity vector 7/ at x and y
differential test: condition on covariant differential of F
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Given vector field F on a Riemannian manifold (M, G) and ¢ > 0, equivalent statements:

@ integral condition: for each x,y € M and geodesic «y : [0, 1] — M with v(0) = z, v(1) = v,

(F(), 7 e — (F(2),7' (0))g < —cde(@,y)*

or, equivalently, using the parallel transport map P,_,, : T,M — T M,

(Py—sF(y) = F(2),7'(0))g < —cda(z,y)?

@ differential condition: for all v, € T,;M
2
(Vo F(2), v2))6 < —cllvallG,
where VF is covariant derivative. In components, generalized Demidovich condition:

G(x)DF(z) + DF(z) "G(z) + LrG(z) < —2¢G(x)

© trajectory condition: for all solutions z(-), y()

Dtdg(z(t),y(t)) < —cds(z(t), y(t))

v
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Example #15: Natural gradient dynamics on Riemannian manifolds

Given Riemannian manifold (M, G),
a function f: M — R is v-strongly geodesically convex if, for each z,y,

@ f(z#wy) < (1—x)f (@) +xf(y) — svx(1 - x)de(z,y)”
@ (if f is twice differentiable) Hess f(x) = vG(x)

natural gradient dynamics

@ = Fg(z) := —G(z) 'V f(z)

Fg is infinitesimally contracting wrt G with rate v
unique globally exp stable point is global minimum
.

Let f : R™ — R smooth, strongly convex
natural gradient on (R”,Hess(f)) = Newton’s continuous-time method
infinitesimally contracting with rate 1

J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters, 65:74-80, 2014. 4
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Example #16: Rosenbrock function

Trenbrek (71, T2) = 100(z] — 22)* + (21 — 1)?

is 2-strongly geodesically convex wrt

40022 + 1 —200a,
Gle) = [ ~200z; 100 "

and natural gradient is 2-strongly contracting

i1 2 —1 contour plot for frsnbrek
= -G(x)"'v = -2 long, shallow parabolic valle
[x2:| ( ) fRsnbrck x% —2r + 29 g W p IC valley

global minimum (1, 1)

P. M. Wensing and J.-J. E. Slotine. Beyond convexity — Contraction and global convergence of gradient descent. PLoS One, 15(8):1-29,
2020. ¢
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Example #17: Karcher mean on manifold of positive-definite matrices

S, = manifold of symmetric positive-definite matrices with

G(X)(&,n) = trace(X 1eX 1) (Riemannian metric)
X#,Y = XV X2y x—1/2)tx1/2 (geodesic)
ds(X,Y) = ||log(X 2y X ~1/2) || (geodesic distance)

Given dataset {A; € SZg};cq1,.. Ny, define Karcher loss function

fKarcher(X) = ZN 1 de (Xa Ai)2

1=

[Karcher is 2N-strongly geodesically convex on S
Karcher mean = global minimizer = globally exp stable point of natural gradient

H. Zhang and S. Sra. First-order methods for geodesically convex optimization. In 29th Annual Conference on Learning Theory, volume 49
of Proceedings of Machine Learning Research, pages 1617-1638, 2016. URL https://proceedings.mlr.press/v49/zhang16b.html|
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Consider a vector field F : R — R”, and let £, € R

@ Invariance property: for all z,y € R” and a € R,
Flx + af) = F(x) or equivalently DF(z)¢ =0,
o Conservation property: for all z,y € R™,

n F(z) =n"F(y) or equivalently n' DF(z) =0,

n

systems with invariance or conservation properties are not strongly contracting J
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i

///////// /////// /

\\&
o)
[

/

Forz = —Lx
QO K =span{l,}
@ 7.z = 11)z along K
(8] xJ_zaj—a:avglnelCJ-
decomposition: perpendicular dynamics + reconstruction equation:
z, = -1, Lx € 1#
Gavg = —11) Lx,| €R
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Systems with symmetry and their reduced dynamics

Model

Symmetry Reduced space

Laplacian

Kuramoto-Sakaguchi

Primal-dual gradient
with k redundant con-
straints

T = I:Laplacian(x) = —Lx Rn/R
FLapIacian(x + aln) = FLapIacian (-’L')

0 = Frs(0) := w + BA(sin(B'0 — ¢) + sin()) /S — R"/R
Fks( + al,) = Fks(0)
Jorm(D-[00) e

Froe ( m + [O?V]) — Froc ( m) for all v € ker(AT)

If F: R® — R™ is invariant under R¥ translations, then

perpendicular dynamics F, : R*/R* — R"/RF is well defined
full solution obtained via reconstruction equation
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Seminorms and semicontraction

A seminorm is a function || - ||| : R” — R>q such that Va € R and Vz,y € R”
O (homogeneity): [|ax|| = [al[|]|
@ (subadditivity): ||z + ylll < [l=[l + [lyl

kernel is a subspace K = {z € R" such that ||z|| = 0}

seminorm is invariant |||z + k||| = ||z|| for all k € K
seminorm on R" with kernel K ~ R¥ — norm on K+ ~ R"/RF
v
e matrix seminorm is || Al = max, = [ Av||
vl
Il + RA|| -1

@ matrix log seminorm py.(A) = lim
g pyy(A) = lim, h

o Fis infinitesimally semicontracting if  sup py. (DF(x)) < —c
x

F is inf semicontracting on R" = F. is inf contracting on R"/R”

J
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(5 seminorm with kernel X <<= P =P" > 0andker(P)=K
HxHiPl/g =2 Px
consensus ¢, seminorm with K = span{1,}

S, = Zm(xi — z3)?,

I, = I, — 1,1, /n = orthogonal projection onto K = span{1,}*

2

Given /5 seminorm defined by P = PT > 0 and ker(P) = K,
semicontractivity LMIs for AX Cc K

| Allg,pr/2 < £ = ATPA < 2P
fo pr/2(A) <L — ATP+ AP < 2P
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Example #18: Laplacian flow

Laplacian flow
T = FLapIacian(:L') = —Lx
where L is the Laplacian of a weighted undirected graph

FLaplacian is semicontracting wrt || - |[2 1, with rate Ay J

L= NIl

I,L =L, =L

I, (—L) + (—L)IL,, = —2X.11,,
OSLiPQ,Hn(FLapIacian) 1= pam, (—L) = —X2
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Example #19: Kuramoto-Sakaguchi model and synchronization

graph: incidence matrix B, weight matrix A, max degree dmax and algebraic connectivity Ay
natural frequency w, frustration parameter ¢

0; = w; + Zj aijsin(f; — 0; + @ij)

Fks is locally infinitesimally semicontracting wrt || -

2,11, J

Proof sketch

0 = w + cos(p) BAsin(B'6) —sin(y) BA(1- cos(BTQ))
N————
Fodd (6) Feven(0)

For 6 € T", define v(0) = max, j) |0; — 0;]

pi2,11, (DFodd (0)) = pia,in, (—L(0)) < =Xz cos(v(#))  (Jacobian =— Laplacian, L = BABT)
2,11, (DFeven(6)) < dmax sin((0))

— w211, (DFks(0)) < 0 locally in {9 eT”

A2
0 tan ———
v(0) < arctan . tan(gp)}
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Local semicontractivity of KS system, inside cells

3.78
2.84

1.894

p2.11, (DFks(0)) for 6 in two-dimensional slice of R'3
model parameters: frustration ¢ = 0.01, graph in inset

R. Delabays and F. Bullo. Semicontraction and synchronization of Kuramoto-Sakaguchi oscillator networks. /EEE Control Systems Letters,
7:1566-1571, 2023. @
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Example #20: Primal-dual gradient dynamics with redundant constraints

strongly convex function f s.t. 0 < Umindy X Hess f =< UmaxIn

constraint matrix A sit. 0= aminlda < AAT < amaxm
where I1 4 is the orthogonal projection onto Im(A)
i.e., redundant constraints are allowed

primal-dual gradient dynamics:

[ﬂ = Fpog (2, A) := {_vf@) - AT)\]

A Ax—b
Fppg is infinitesimally semicontracting wrt || - ||, 12 with rate ¢
T 1 1 . 1 . .
P:[In aA] mda:-ﬂmn{ ,Wm}, and c:—mm{am%amﬂﬁm}
aA 1l 2 Vmax OGmax 4 Vmax Omax

T
| —Q —AT —Q —AT
For each vminly = Q = VmaxIn, [ A 0 P+ P A 0 < —2cP

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. /[EEE Control Systems Letters,

7:3896-3901, 2023. 4
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Contractivity (and its generalizations) in dynamical network systems

@ Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928):
(1~ semiglobally strongly contracting (after a rescaling change of coordinates)

@ Matrosov-Bellman interconnected stable systems (Bellman, 1962; Matrosov, 1962):
strongly contracting wrt composite norm

© Kuramoto coupled oscillators (Kuramoto, 1975):
strongly semicontracting wrt (¢2,11,,) norm, in neighb'd of each phase-cohesive equilibrium

@ Yorke multigroup SIS epidemic model (Lajmanovich and Yorke, 1976):
equilibrium contracting wrt weighted /1 /¢, norms (at disease-free and endemic eq.)

© Hopfield and cellular neural networks (Hopfield, 1982):
01 /l-strongly contracting

@ Daganzo cell transmission model for traffic networks (Daganzo, 1994):
{1-weakly contracting, when the dynamics is monotone

@ Chua’s diffusively-coupled dynamical systems (Wu and Chua, 1995):
strongly semi-contracting wrt (2,p) tensor norm on R" ® R¥

o ..
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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

’

Lyapunov Theory

Contraction Theory for Dynamical Systems

F admits global Lyapunov function F is strongly contracting

existence of equilibrium
Lyapunov function

inputs

assumed

arbitrary

ISS via KL and L functions iISS via explicit constants

implied 4+ computational methods
[l —2*|| and [|F(z)]]

search for

design  engineering systems to be contracting

contraction properties J
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Theoretical frontiers
higher order contraction
relationship with monotone operator theory

metric spaces

computational methods

Limitations: not all stable systems are contractive:

@ Lyapunov-diagonally-stable networks

@ multistable and locally contracting systems
@ biochemical networks
°

control contraction design

Application to control and learning
control: optimization-based control design

ML: implicit models and energy-based learning

©00

neuroscience: robust dynamical modeling
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§8. Advanced Topics
@ More on semicontractivity: ergodic coefficients and duality
@ Network small-gain theorem for Metzler matrices
@ Proof of semicontractivity of saddle matrices
@ Proof of Euler discretization theorem
@ Non-Euclidean Monotone Operator Theory
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Consider a vector field F : R — R", and let £, € R™.

@ Invariance property: for all z,y € R™ and a € R,
F(x + af) = F(z) or equivalently DF(z)¢ =0,
o Conservation property: for all x,y € R™,

n F(z) =n"F(y) or equivalently n' DF(z) =0,
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Example #21: Averaging and dynamical flow systems

Prototypical dynamics with invariance and conservation
Let A € R™*™ be row-stochastic: A1, =1, and A >0

Averaging Systems
Tpy1 = Axy

Invariance: dynamics unaffected by
translations in span{1,}

Examples: distributed optimization,
robotic coordination, frequency
synchronization, ...

Dynamical Flow Systems
T
Tpy1 = A xg
Conservation: quantity 1!z is constant

Examples: compartmental models, Markov
chains
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Historical starting point

Given row-stochastic A € R™*",
Markov-Dobrushin ergodic coefficient

11(A) = max ||ATz||1
lz[1=1,1,) 2=0

71(A) < 1 under mild connectivity conditions
7,(A) also defined for general p € [1, o0]

How is 71 an induced norm?

A. A. Markov. Extensions of the law of large numbers to dependent quantities. /zvestiya Fiziko-matematicheskogo obschestva pri Kazanskom
universitete, 15, 1906. (in Russian)
R. L. Dobrushin. Central limit theorem for nonstationary Markov chains. |. Theory of Probability & Its Applications, 1(1):65-80, 1956. 4
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A € R™™ row-stochastic

Classical Property of Averaging Systems  xj.1 = Axy
Given & € R™®, max-min disagreement:

dmax—min(Am) < 7 (A) dmax—min(x)a where  dmax-min ($) = mla'X{wz} - Hljln{m]}

Classical Property of Markov Chains z,.; = Az,
Given 7,0 in the simplex A,,, total variation distance:

div(ATm, ATe) < 71(A) drv(m,o), where dry(m,0) |71'Z
2

Why is the same 7| relevant in both cases?
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Seminorms

A seminorm is a function || - || : R® — R>¢ s.t., Va € R and Vz,y € R™
Q (homogeneity): [|ax| = |af ||
@ (subadditivity): ||z + ylll < [l=[l + [lyl

The kernel is the vector space:
K ={zeR": ||| =0}

We focus on consensus seminorms, where K = span{1,}.

Note: || - || is invariant under translations in K
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Projection seminorms

A

Projection and distance-based seminorms:

graphical definitions

Distance seminorms

A

lllprop = ML |lp, I =1L}

}(:_L

}(:_L

l(laist.p = minyex [lz = wllp
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Projection and distance-based consensus seminorms (K = span{1,})

H‘$|||pr0j,p |H$H|dist,p
n 15 n
b D1 = Tavg| = D wG)
i=1 i=1 j=[21+1

by \/% > i(@i — x5)?

ls maX; |L; — Tave|

where we have sorted z(1) > x(9) > -+ > Z(p)

\/% > (@i — 5)?

Therefore
dmax—min(x) = Qmedist,oo and

drv(m,0) = |7 — ol proj,1

180/221



p=1 p=2

2 El 0 1 2 2 E] 0 1 2 2

Figure: Two-dimensional sections of three-dimensional unit disks of projection (solid contours) and distance (dashed
contours) consensus seminorms. We plot the sections corresponding to (z1,z2,z3 = 0).
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Induced matrix seminorms

Consider a seminorm || - ||| on R™ with kernel K.
Induced matrix seminorm: function || - ||| : R**™ — R>g where
Al = max [[Az]l, VAR
llzll<1
zlIC

A\ in general, [|Az]] £ [|A[|<] }

Inequality is true if 2 € K+ or AK C K
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Key facts about dual and induced norms

Properties of dual and induced norms
© /, and {, norms are dual, for 1/p+1/¢=1

Ml = (I llo), -l = (- llo)

@ dual norm satisfies (sharp) Holder inequality:  x'y < ||z|lp |lllq
@ equality between dual induced norms:  ||All, = [|AT |,

Q induced norm is submultiplicative: || AB| < ||A]|||B]|
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Key facts about dual and induced seminorms

Properties of dual and induced seminorms

@ /,-distance and /,-projection seminorms are dual, for 1/p+1/¢=1

I Maisep = (Il - Hlproja) - Morosg = (Il - st ).

@ dual seminorm satisfies (sharp) Markov inequality: =Ty < ||2|laist.p l|¥lllproj.q
@ equality between dual induced seminorms: || Allldistp = 1A lproj.q

Q induced seminorm is submultiplicative:  [|AB]| < [|A|||l Bl if AK C K or BET C KT

v

Ergodic coefficients are induced seminorms

1 Alldist.p = IAT lpros.q = 7a(A) :=

= max (AT,
llzllq=1, 211,

v

G. De Pasquale, K. D. Smith, F. Bullo, and M. E. Valcher. Dual seminorms, ergodic coefficients, and semicontraction theory. /[EEE
Transactions on Automatic Control, 69(5):3040-3053, 2024. d
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How Markov and Banach's results meet

Classical Property of Averaging Systems
Given row-stochastic A € R™*" and z,y € R™

A = Y)lldist.co < 71 (A7 = llldist.c0
= [ll4]

}dist,oom"”’ . ywdist,oo

Classical Property of Markov Chains
Given row-stochastic A € R™*™ and 7,0 in the simplex A,:

-
A" (m = )llprojr < (Al = lllproj,1

- H‘ATH‘proj,lH!ﬂ- - O-mproj,l
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Summary and future work

@ ergodic coefficients are contraction factors
@ duality explains their roles in both averaging and flow systems
© nonEuclidean norms play a key role

© semicontraction theory

@ discrete/continuous-time Markov chains

@ discrete/continuous-time nonlinear consensus algorithms
® primal-dual dynamics with redundant constraints

O local contractivity of Kuramoto-Sakaguchi models

consider the set of undirected, unweighted connected graphs + selfloops

for each adjacency A;, define row-stochastic A; = diag(A4;1,) ' 4; (equal neighbor)
find a consensus seminorm || - ||| such that, for each i,
Al < 1

or prove that it does not exist

v
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Continuous-time semicontraction theory

The induced log seminorm of A € R™*"™ is

A !
442 g Mr Al =1
g (A) = lim N

Laplacian L, corresponding to weighted digraph with adj. matrix A:
[5]-1 n—1
paist1 (—L) = —=min g (dow)j — > a@j+ Y @y er  douw = Aly

’ i=1 i=[%]
fiaist.2(— L) = min {b I, L+ LTI > —2bHL} T =1, - 11,1]

Hdist,o0(—L) = —Iggl aij +azi+ Y min{ag, ajr}
kg

Let p,q € [1,00] such that p~! + ¢! = 1. For any matrix M € R™ ", and any kernel K, J

Mdist,p(M) = :u’proj,q(MT)
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Network small-gain theorem for Metzler matrices

@ graph theoretic conditions for Metzler matrix to be Hurwitz
@ combination of theory of Metzler Hurwitz matrices and graph theory

e critical role played by cycles (acyclic digraphs easy to handle)

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic stability conditions for Metzler matrices and monotone systems. SIAM Journal on
Control and Optimization, 59(5):3447-3471, 2021. 4
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Network small-gain theorem for Metzler matrices

background

Hurwitz Metzler Theorem (see LNS.Section10.4)
Q@ M is Hurwitz,

Q there exists € RY such that n"M < 0 or, equivalently, 1, diag(n) (M) <0,

n)
O there exists § € RY, such that M¢ < 0y, or, equivalently, fio giag(e)-1 (M) < 0,

Q there exists a diagonal P = P > 0 satisfying M " P 4+ PM < 0 or, equivalently,
pig,p1/2(M) <0, and

© all leading principal minors of —M are positive.

The leading principal minors of a matrix are the determinants of its top-left ¢ x ¢ submatrices, for i € {1,...,n}

190/221



Network small-gain theorem for Metzler matrices

background
Let G be a weighted directed graph such that
@ my; < 0 is weight of self-loop at node ¢
e m;; > 0 is weight of directed edge (4, j)
that is, the adjacency matrix M of G is Metzler with negative diagonal entries

Q a simple cycle in G is a directed cycle (with at least 2 nodes) in which only the first and
last vertices are equal. Self-loops are not simple cycles.

@ the gain of a cycle ¢ = (i1,142,...,0,01) is
Yo(M) = ( My ) < Miyis > <%> (rational function of entries of M)
—Myigis —Mjsig —Myiyiy

© two cycles ¢ and 1 are disjoint, denoted by ¢ L 1, if they have no node in common
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Network small-gain theorem for Metzler matrices

Input: a Metzler matrix M € R™ with associated digraph G
Output: set of rational functions {7y¢,(M),...,vec, (M)}

1. for 7 from 2 to n

2:  C; := the set of simples cycles in G passing through only nodes {1,...,i}
3 (M) = > v — D ww + ) VoV —
set gain ?€Ci cyele gain b9 €€ é,p€C;
¢ yle g 6Ly 619, dLp, blp

Network small-gain theorem for Metzler matrices
Metzler M is Hurwitz <~ Yo, <1,...,7¢, <1

These Hurwitzness conditions are: At most n — 1. Polynomial after rewriting. Not unique
(because nodes may be renumbered). Possibly redundant. Computational efficient (except
precomputation of simple cycles)
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Network small-gain theorem for Metzler matrices

example

o1 b2

M= |/ln —co {23

0 532 —C3 Figure: digraph associated to M and simple cycles ¢1 = (1,2, 1)
and ¢2 = (2737 2)

. ol _ laglsy
@ cycle gains: vy, = 1o and vy, = ercs
o cycleset Co = {1} == set gain yc, = V¢, (note: 74, < 1 is redundant)

o cycle set C3 = {¢1,¢2} = set gain v¢, = V4, + V4, (no 2nd order terms since ¢1 and
@2 are not disjoint)

a4} liolay  U23l30
621 —C2 523 Hurwitz = Yer + Vo < 1 je, ——4+-—"2<1
C1C9 CoC3
0 {3 —c3

E.g., for c=ci=co=c3 and f19="091 =lo3=1F35=1, M Hurwitz — c>2.
. . - . —c1 0

This can be easily verified since: spec([ Loel }) ={—¢,—c—V2,—c+ 2}

—C
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Network small-gain theorem for Metzler matrices

example

—C1 0 0 614
| 0 —ca fag lyy
M =
0 32 —c3 f3
by lyp liz —4
Figure: associated digraph and simple cycles

H L1474 U344 lo3h Loyl
o cycle gains: 7y, = LA, 5, = Tl Yoy = ik, and y, = 2112
0 (=10
o C3 = {¢3}: YCs = Vs

4
° C4 = {¢1a ceey ¢4}: VCy = Zi:l VYos — Vo1 Vo3

—C1 0 0 E 14
0 —ca flo3 [l
0 32 —c3 f34

ly Ao ly3 —cy

Hurwitz <= Yoz <1 and v, + Yoo + Yoz + Voy — V1 Yoz < 1
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Network small-gain theorem for Metzler matrices

example

-—01 0 0 0 615 616 i A/\®A\—/'/\@

0 —c2 0 oy L5 O b2 s
0 0 —C3 634 0 636
0 €42 643 —Cq 0 0 @\_/v
ls1 U520 0 —c5 O b3
| 661 0 £63 0 0 —Cg |

Figure: associated digraph and simple cycles

@ Co, C3 empty
o Cs = {¢3}: 73 <1 (redundant)

0 Cs ={d1,02, 03} Yes =71 +72+73— 7173 — 7273 < 1

© Co ={01,..., 05} 1cs = 2?21 Vi — Y173 — Y273 — Y3V4 — Y2Y4 + 127374 < 1
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§3. Example systems
@ Constrained, distributed and proximal gradient dynamics
@ Continuous-time recurrent neural networks
@ Nonlinear dynamics in Lur’e form
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@ Equilibria, Lyapunov functions, and Euler discretization
@ Incremental input-to-state stability
@ Contractivity of interconnected systems
@ Additional properties: entrainment, robustness wrt unmodeled dynamics and delays

§5. Example applications
@ Gradient dynamics and Nash equilibria in games
Time-varying gradient dynamics and feedback optimization
@ Recurrent and implicit neural networks

§6. Generalizations with examples
@ G1: Local contractivity: Small-residual theorem and the Kuramoto coupled oscillators
@ G2: Weak contractivity: Biologically-plausible circuits for sparse reconstruction
@ G3: Contractivity on Riemannian manifolds and the Karcher mean
@ G4: Semicontractivity: Primal-dual gradient with redundant constraints

§7. Conclusions and future research

§8. Advanced Topics
@ More on semicontractivity: ergodic coefficients and duality
@ Network small-gain theorem for Metzler matrices
@ Proof of semicontractivity of saddle matrices
@ Proof of Euler discretization theorem
@ Non-Euclidean Monotone Operator Theory
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Semicontractivity of saddle matrices

Given Q € R™™™, A € R™*" and a time-scale parameter 7 > 0, define

i _Q _AT m+n)x (m+n
saddle matrix S = |:7'_1A 0 e R(m+n)x(m+n)

dmin ‘= )\min(Q + QT)/2 >0
Gmax ‘= min{q such that QTQ = Q(Q + QT)/Q} < o'r?nax(Q)/Qmin
aminlla = AAT < amaxlm, where II4 € R™*™ is orthogonal projection onto image of A

Semi-contractivity LMI
STP + PS8 X —2cP

where

aA  Tlly Vmax  Omax

_ 1 =1 . 1. Gmin  Amin
C= 7T Qlmin = 4_1 min y dmin
2 Tdmax OGmax

T 1 1 .
P:[In QA]EO with azEmin{ ,Tme}

o

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. /[EEE Control Systems Letters,

7:3896-3901, 2023. @
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Proof of saddle matrix semicontractivity I: P > 0
Use Schur complement to show that P = 0. Clearly the (1,1) block is positive definite. Therefore,

Pr0 <= 71lli4—c?44T =0 <<= 71-?amx>0 <= < 7/amax

The inequality @? < 7/amax follows from the stronger inequality (2a)? < —— with the following argument:

mln{ 1 T len } < mln{ qmln } max{ T Gmin } _ Gdmin . T < T

Gmax  Gmax Qmax @max Gmax  Gmax Gmax  @max Gmax
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Proof of saddle matrix semicontractivity Il: factorization of LMI
Next, we aim to show that —ST P — PS — 2¢cP > 0. After some bookkeeping, we compute

~8TP—PS—2cP = {QT _TflAT] {I” O‘AT} + {I” aAT] { @ AT} 720|:]" O‘AT}

A 0 aA  Tlly aA TIla| |—T71A 0 aA  Tlly
_[@+QT —2r7taATA—2cl, aQTAT — AT + ATII] — 2caAT
- A+ aAQ —TI4 A — 2caA 20AAT — 2¢rlly ’

The (2,2) block satisfies the lower bound
20AAT —2erTl, = 2 (%aAAT . CTHA) +aAAT = 2(Laamin — er)T4 + aAAT = adAT + 0.
Given this lower bound and the equality IT4 A = A, we can factorize the resulting matrix as follows:

T In 0] [Q+QT —2(r—tadTA+cl,) aQT —2cal,] [In 0
-5 P—PS—CPE{O AH .

a@ — 2caly, aly, 0o AT

nxn
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Proof of saddle matrix semicontractivity Ill: Schur complement and final bounds
Since al, > 0, it suffices to show that the Schur complement of the (2,2) block is positive semidefinite:

Q+QT —2(rtaAT A+ cln) — a(QT —2¢l,) (Q — 2¢Iy) = 0 (9)
= (Q+QT —aQTQ)+20c(Q+QT) = 2(r taAT A+ cl) + 4ac?l, (10)
— Q+Q"—aQTQr20rtaATA+cl,) and 20c(Q+QT) = dac?I,. (11)

To prove the first inequality in (11), we upper bound the right hand side as follows:

c:%‘rilaamin

2(1~ TaAT A+ clp) = 2(7~ L ovamax + o)ly, = T_ICM(QCLmax + amin)In
1
a< T(Imm/amax
2 1 3
= rmin —— (2amax + amin)In = ~qmindn.
2 Amax 2
Next, since a < ﬁ, we know —a@max > —=. We then lower bound the left hand side as follows:

by definition

Q+QT-aQ'Q = Q4Q  —agmx(Q+QN)/2=(2-1HQ+Q") = qm.nln

Finally, we prove the second |nequa|ity in (11) that is, 2ac(Q + Q) > 4ac?I,,. This is equivalent to Q + QT = 2cl,
and follows from noting ¢ < %min ™ Gmin < Gmin-
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Euler discretization theorem

Euler discretization theorem for contracting dynamics
Given arbitrary norm || - || and Lipschitz F : R — R™, equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that 2311 = xx + aF(xy) is contracting

Optimal* contractivity of Euler discretization Id +aF

Given ¢ := —osLip(F) > 0 and ¢ := Lip(F), define condition number k = {/c > 1:
1 a?f? \-1
S Lip(Id+aF) < (1+ac— ) <1
00<a<m(1+n) — |p( —i—a)_ + ac Y, <

@ the optimal* step size and contraction factor are

o =L - Z+0(2)  UndraR) =1- L+ v o(S)

v

o
S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in
Neural Information Processing Systems, Dec. 2021. 4

A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. Journal of Machine
Learning Research, June 2023b. 4. Submitted
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Euler discretization theorem: Additional equivalences

Given F : R™ — R™ and o > 0, define
o shifted map G:=Ild+F <«+<— F=-1Id+G

o F,:= ld +aF = (1 -a)ld+aG =:G,
—— —_—
Euler discretization of F average map of G

For a differentiable F and z € R™

F0=0 | Ful0)=Cale) = Glo) =
equilibrium point fixed point
osLip(F) <0

F is infinitesimally contracting osLip(G) = osLip(F) +1 <1

! |

Ja* s.t. Lip(For) < 1 Ja* s.t. Lip(Gyr) < 1
Fo* is contracting Gu~ is contracting

v
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Optimal* contractivity of Euler discretization Id +aF: inner-product norms || - ||y p1/2
Given ¢ := —osLip(F) > 0 and ¢ := Lip(F), define condition number k = {/c > 1:

2
00<a<@ — Lip(ld—l—aF)§\/1—2ac+a2£2<1

@ the optimal* step size and contraction factor are

* 1 : . 1 1

Standard proof from monotone operator theory. For av > 0, compute

[(1d +aF)z — (Id +aF)y[|* = [l — y + a(F(z) - F(y))|?
= [lz = y|* + 2a (F(x) — F(y),z — y)) + o*||F(x) — F(y)|*
< (1—2ac+ a??)||z — y|?

Next, study convex parabola a ++ 1 — 2ac + a?(?. Eg, 1 — 2ac + o202 < 1iff 0 < a < 2¢/1?
E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016
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Optimal* contractivity of Euler discretization Id +aF: nonEuclidean || - || giag(y)-1

H : ||1,diag(7])
Let F : R™ — R”™ be differentiable and Lipschitz
define contraction rate ¢ := — osLip(F) > 0
define diagonal Lipschitz constant {gi,g = ?mx 5 sup |DF;(x)|; can show £giag > ¢
ZE 1“772 .’I'eR‘n
Q0<a< — Lip(ld+aF)§1—ac<1

diag
@ the optimal* step size and contraction factor are

ot = Taing Llp(ld +a F) =1

C

gdiag

Acceleration: (i) the condition number improves/diminishes k > ko := ﬁ, and
(i) Lip(ld +a*F) = 1 — 1 + O(-) improves/decreases to Lip(ld +a*F) =1 — L.

Koo

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in
Neural Information Processing Systems, Dec. 2021. 4
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Proof of ¢ /¢1 Euler discretization theorem
For every A = [a;;] € R"*™, n € R%, and a € R such that |a| < (max; |a;|) ~', norm=lognorm identity:

HIH + O‘A”Ldiag(n) =1+ Q1 diag(n) (A)7 HI” + Ol‘A”oo,diaLg(n)_1 =1+ Ao diag(n)—1 (A)7

whose proof is an algebraic exercise (hint: diagonal of I, + aA is nonnegative).

(12)

Next, consider || - ||o diag(n)—1: the proof for || [[1 giag(n) is omitted. Regarding part 1, for each i € {1...,n} and z € R"
Lip(F)<0 = DF;;(2)<0
lyiag = max _ sup |DF(z)] (ostip(F)<0 — (@)<0) max  sup (—DF“'(IE)),
i€{l,...,n} xR i€{l,...,n} zcR"

— - — o i
e f1 gy S (PP () = 2 IDF )

= o _1(DF(z)) = — osLip(F) = c.
({02 | SUD Koo diag(n) 1(DF(z)) osLip(F) = ¢

1

; _ ) - ) - 1
Since lgiag = sup,, max; | DF;;(x)| > max; | DF;;(x)| for all  and a < Tans S max; [DF (@)

equation (12) implies

[11n + aDF ()|l oo, diag(n)~1 = 1 + Qo diag(n)—1 (PF(2)) <1+ aoslip(F) =1 — ac.

Finally, Lip(ld +aF) < sup,, |[I, + aDF(x)|| -1 <1—oc

oo,diag(n)
Regarding part 2, o — Lip(ld +aF) is decreasing and therefore minimum at the maximum of allowable value of a.

Note that a* = E;alg is the maximum value of a and Lip(ld +a*F) = 1 — ¢/4giag > 0 since ¢/lgjag < 1.

207/221



Outline

§1
§

¥

§

@

§

§

§

§
§

=

@

L

o

o

. History and resources

Basic definitions: discrete and continuous-time dynamics on vector spaces

. Example systems

Properties of contracting dynamics

Example applications

Generalizations with examples

. Conclusions and future research

. Advanced Topics

@ Non-Euclidean Monotone Operator Theory

208/221



Monotone operator methods

CMS Books in Mathematics

Large-Scale

Success in many disparate fields Convex

. . . Heinz H. Bauschke H H H
© Optimization and control Patrick L. Combettes Optimization
ALGORITHMS & ANALYSES
viA MONOTONE OPERATORS

o Subdifferentials are monotone

@ Game theory
e Monotone games

Convex Analysis
and Monotone

Operator Theory
© Systems analysis in Hilbert Spaces

e Input-output behavior

@ Machine learning

&) Spri ERNEST K. RYU -~
£ Springer & WOTAO YIN

L. Pavel. Distributed GNE seeking under partial-decision information over networks via a doubly-augmented operator splitting approach.
IEEE Transactions on Automatic Control, 65(4):1584-1597, 2020. &

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal Processing, 2021. 4

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural Information Processing Systems, 2020. URL
https://arxiv.org/abs/2006.08591

A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory with applications to recurrent neural
networks. In /EEE Conf. on Decision and Control, Canciin, México, Dec. 2022b. @
A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. Journal of Machine

Learning Research, June 2023b. 4. Submitted
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Background on monotone operators

operator A : R — R" is monotone with parameter m > 0 if

(Al2) = Aly), 2 — y) = mllz — yl3 (osLipy(—A) < —m)

A monotone inclusion problem is of the form
findz € R" s.t. 0 € A(x)

A monotone splitting problem is of the form

findx € R" s.t. 0 € (A+ B)(x)

Existing algorithms based on Banach contractions or Krasnosel’skii-Mann iterations:
@ Forward step method, proximal-point algorithm, etc.

@ Forward-backward splitting, Peaceman-Rachford splitting, etc.

E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016
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Why non-Euclidean?

Algorithms for inclusions and splittings are limited to Hilbert settings

Many problems are better stated in Banach spaces!

pig “airliner”

@ /. robustness analysis of neural
networks

@ L norm systems analysis

© Non-Euclidean contracting
dynamics

@ Totally asynchronous distributed
optimization
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Non-Euclidean monotone operator — Resolvent and reflected resolvents

A differentiable F : R® — R™ is strongly monotone w.r.t || - | with parameter m if

—pu(—DF(z)) > m, VzeR"

(osLip(—F) < —m)
The resolvent and reflected resolvent of F with parameter o > 0 are given by:

Jof := (Id +aF)71, RoF == 2JoF — Id

Fixed points of Jor and R, correspond to zeros of F

Lipschitz constants: Suppose F is monotone w.r.t. a diagonally-weighted ¢; /¢, norm

. 1

Lip(JarF) = rpp— Vo > 0
. 1—am

L|p(RaF) =

iagL(F)~!
T am’ Va € ]0, diagL(F) ]

V.
diagL(F) = sup,cgn max;eqa, ..., n} (DF ()
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Non-Euclidean monotone inclusions

Monotone inclusion problem F(z) =0

The forward step method of F (¢; /¢~ monotone) is the iteration

i1 = (Id —aF) (k)
Q ifm >0, ||z — 2¥|| < (1 —am)||zr — x*||, Ya €0, diagL(F)~1]
@ if m = 0 and zero(F) # (}, then convergence to an element of zero(F) with rate O(1/Vk)

v

The proximal point method of F (¢1/{+ monotone) is the iteration

Zrt1 = Jor(zk)

Q ifm>0, ||[zgr1 — ¥ < llxe — =, Vo> 0

1+am
@ if m = 0 and zero(F) # (), then convergence to an element of zero(F) with rate O(1//k)
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F strongly monotone and globally Lipschitz

Algorithm Uy Diagonally weighted ¢ or {4
« range Optimal Lip « range Optimal Lip
2m 1 1 1
FOrWard Step i|0, 672 |: 1-— o 53 + O( ) :|0, m} 1-— a
Proximal point | 0, 00[ N/A 10, oo N/A
1 1 2 1
Cay|ey method }0,00[ 1—ﬂ+0(ﬁ2) :|0,m:| 1_@"‘0(,{2 )

Step size ranges and Lipschitz constants for algorithms for finding zeros of monotone

operators. k:=/{/m > 1 and ko := diagL(F)/m € [1, k]

Comparison to standard convergence rates
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Non-Euclidean operator splitting

Monotone splitting problem (F 4+ G)(z) =0

The forward-backward splitting method of F and G (¢;/£- monotone) is

Th+1 = (JaG o] (|d —OéF))(l’k)
Q ifFsm,m>0, ||vpr1 — 2| < (1 —am)||z, —2*||, Va €]0,diagL(F)~}]

@ if m =0 and zero(F + G) # (), then iteration converges to an element of zero(F + G)
with rate O(1/Vk)

The Peaceman-Rachford splitting method of F and G (¢1/¢o, monotone) is
Tit1 = Jac(2k),

Q IfFsm., m>0, al k oF 2Tk 11 k) k1

" \lwp — 2*||, Va € ]0, min{diagL(F)~", diagL(G)~!}]

21 = 27| <

1+a

v
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Application to recurrent neural networks

Equilibrium computation of RNN

it =—x+ ®(Axr+ Bu+b) =: F(z,u)

®(x) = LeakyReLU(x) = max{x, ax}

A sufficient condition for contractivity is peo(A4) = v < 1.

In this case, —F(x, u) is strongly monotone and can apply forward step method

Tp+1 = (1 — a)xg + a®(Axy + Bu + b),

converges for a € ]0, a*] with linear convergence rate 1 — a(1 — ®(7))

o— (1 — minie{l ..... n} min{a . (A)”, (A)”})71

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In American Control Conference,
pages 1527-1534, Atlanta, USA, May 2022c. ¢
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Splitting methods for equilibrium computation

Finding an equilibrium point z*(u) is equivalent to (F + G)(z*(u)) = 0 where

F(z) =, —A)z—Bu—-»>, G(z)= 1TTG min{z,0}

Apply forward-backward splitting
Tp+1 = Jac((1 — @)z + a(Azy, + Bu +b)).

Converges with rate 1 — a(1 — 7) for a € ]0, (1 — min;(A);) "]

Apply Peaceman-Rachford splitting

Thi1 = (In + (I, — A)) 7' (25 + a(Bu + b)),
Zht1 = 2k + 2JaG (22841 — 21) — 2Tk41-

a

1 _ _
Converges with rate #1_13 for a € ]O,min {(1 — min;(A)y) 77, 1 i }]a
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Numerical implementations

Residual vs iteration number for various iterations

107!

1074
E% 1024
ﬁ:\
= 1077
= === Forward step

107°] --- F-B

—— PR
1071 — PR w/ larger «
0 100 200 300 400 500
Iteration

We generate A € R200x200 B ¢ R200x50 , ¢ R200 4, ¢ R3O with entries according to a normal
distribution and then project A so that po(A) < 0.99
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Conclusions

Summary:
@ provide a transcription of monotone operator theory for non-Euclidean norms
@ provable convergence of classical iterations for monotone inclusions and splittings

© application to continuous-time recurrent neural network

Extensions and open problems:
@ tightening Lipschitz estimates for operator splittings
@ infinite-dimensional Banach spaces and set-valued F

© further applications to systems analysis and neural networks
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Thank you for reading!

For any questions, please do not hesitate to email me
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(1/?~ weakly contractive analytic system with bounded solution converge

Let F denote a ¢; weakly-contracting analytic vector field on a subset C of R™. Assume there
exists a bounded solution z(-) in C' of & = F(x) defined for all ¢ € R>q. If the function

t — ||[F(x(t))]|1 is constant, then the solution z(-) is an equilibrium of F, that is, x(t) = z* for
all t and F(z*) = 0.

Proof For simplicity take n = 2. By analyticity, and unless || f(x(t))]||1 is identically zero (in
case we are done), we can pick an interval J where both f;(x(t)) have no zeroes, and hence a
constant sign. (If one is identically zero, the proof is the same ignoring that variable.) Without
loss of generality (take — f; if necessary), assume that both have positive sign, so

1 f (@)l = fi(z(t) + fala(t) = 950 4 do2 — dALE2) Gince | £(z)||; is constant, this

means that W = c on the interval, and therefore x1(t) + x2(t) = ct + b on the interval

J. By analytic continuation, this is true for all £ € R>, contradicting boundedness of z(-)
unless ¢ = 0. So we have that (mjm) =0, that is, || f(«(t))||1 = 0, as desired. The proof for
l~ norm is even easier - just take an interval where one of the two terms is max.
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