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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior:

@ unique globally exponential stable equilibrium
& two natural Lyapunov functions

@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics

search for contraction properties
design  engineering systems to be contracting J
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Ongoing education and research on Contraction Theory

Contraction Theory
for Dynamical Systems

@ Textbook: Contraction Theory for Dynamical Systems, Francesco
Bullo, rev 1.2, Aug 2024. (PDF freely available)
https:/ /fbullo.github.io/ctds

@ Tutorial slides: https://fbullo.github.io/ctds

-

Francesco Bullo

@ Youtube lectures: " Minicourse on Contraction Theory”
https://youtu.be/FQV5PrRHks8 6 lectures, total 12h

" Continuous improvement is
better than delayed perfection”
Mark Twain
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https://fbullo.github.io/talks/2023-09-FBullo-ContractionTheory-Tutorial.pdf
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@ A brief review of contractivity concepts
@ From discrete-time to continuous-time dynamics
@ Examples and selected properties

F Bullo (UCSB) Semicontracting Dynamics on Networks 5/34



Discrete-time dynamics and Lipschitz constants

Tp+1 = F(zg) on R™ with norm || - || and induced norm || - ||

Lipschitz constant  (max expansion factor)

Lip(F) = inf{¢ > 0 such that ||[F(z) — F(y)| </{||lx —y| for all z,y}
= sup, [[Je(2)]|

For scalar map f, Lip(f) = sup, |f'(z)|
For affine map F4(z) = Az + a

lzll2,p = (2 P2)'/? Lipy p(Fa) = [[All2p < ¢ = ATPA= 2P
|]loc,y = max |zi] /m; LiPoo,n(Fa) = [[Allcoy < £ = 'A< et
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Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then
@ F is contracting = distance between trajectories decreases exp fast (o)

@ F has a unique, glob exp stable equilibrium z*

,,,,,,,,,,,,,,,
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Example induced log norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
|Wh:§;ﬂﬂﬂ
n
— 2
lzllz = />, 3

[0 =

i€{l,...,n}

max |z

n
Al = S g
Al = max > las]

||A||2 = /\maX(ATA)

n
Alloo = ma Z ai;
[ Allo ie{l,.fn} =1 |as;]

n
= (o4 3, )

je{l,...n}
= max column “absolute sum” of A
A+ AT
/J/Q(A) = Amax(T)

n
HoolA) = max (a” DL |)
= max row “absolute sum" of A
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Continuous-time dynamics and one-sided Lipschitz constants

& = F(z) on R™ with norm || - || and induced log norm p(+)

One-sided Lipschitz constant  (max expansion rate)

osLip(F) = inf{b € R such that ((F(z) — F(y), 2 —y)) < bllz —y|> for all z,y}
— sup, 1(Jp ()

For scalar map f, osLip(f) = sup, f'(x)
For affine map F4(z) = Az +a
osLipy p(Fa) = po p(A) < ¢ — ATP+ AP < 2(P
14

= aii + Y |aijlni/n; < ¢
J#i

OSLipoo,n(FA) = :U’OOJI(A)
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Banach contraction theorem for continuous-time dynamics:
If —c := osLip(F) < 0, then
@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

ct
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Example contracting systems

@ neural network dynamics under assumptions on synaptic matrix
(recurrent, implicit, reservoir computing, etc)

@ interconnected systems under contractivity and small-gain assumptions
(Hurwitz Metzler matrices, network small-gain theorem, etc)

© Lur'e-type systems under assumptions on nonlinearity and LMI conditions
(Lipschitz, incrementally passive, monotone, conic, etc)

©

gradient descent flows under strong convexity assumptions
(proximal, primal-dual, distributed, Hamiltonian, saddle, pseudo, best response, etc)

data-driven learned models (imitation learning)
feedback linearizable systems with stabilizing controllers

incremental ISS systems

© 000

nonlinear systems with a locally exponentially stable equilibrium
are contracting with respect to appropriate Riemannian metric
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Firing-rate neural networks

t=—x+ ®(Ax + Bu+0b) (recurrent NN)
- Y x = ®(Ax + Bu+1b) (implicit NN)
Trt1 = (1 — o)z + a®(Az, + Bu+b) (Euler discrt.)

Hoo(A) < 1 (i.e., ai; + Z#i laij| <1 for all 7’)

e recurrent NN is infinitesimally contracting with rate 1 — u(A)+

o implicit NN is well posed
1

@ Euler discretization is contracting at o* = (1 — min;(a;;)—)~
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@ A brief review of contractivity concepts
@ From discrete-time to continuous-time dynamics
@ Examples and selected properties

© Network contraction theorem

© Semicontractivity, ergodic coefficients, and duality
@ Systems with invariance/conservation properties
@ Induced seminorms and duality

@ Conclusions and future research
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Network Contraction Theorem. Consider interconnected subsystems

j}i = Fi(xz-,x_i), for 7 € {1, e ,n}

@ contractivity wrt z;: osLipzi(Fi) <—¢ <0
o Lipschitz wrt z;, j #i:  Lipg (Fi) < £

—C1 ... fln

@ gain matrix is Hurwitz

Enl ... —Cp

—

interconnected system is contracting with rate |a(gain matrix)]
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Networks of firing-rate networks

deep reservoir network

linear
PP O .\ e | tunable
U, RSN, Wi 3 readout Yk
sss @ z@z ?@z o sem - ®
R N 656
x,(clil =(1- oz)xgcl) +ad® (A(l):z:,(cl) + BWayy, + b(l)) ) _
@) @) N ) 5 (i-1) ) (leaky integrator reservoirs)
z30, = (1 —a)z’ + ad (A(l)xk 4 B(’)xk e b(’))

Deep reservoir network is contracting (and “echo state property”) if

proo(AD) < 1 foreach ¢ and a<a*™

H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks. Technical report, German National Research
Center for Information Technology, 2001
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Metzler Hurwitz matrices and the small gain theorem

—C1 ... ‘gln
is Metzler (Perron-Frobenius Theorem applies)

gnl ... —Cp

Hurwitzness depends upon both topology and edge weights
@ M Hurwitz iff there exists a positive £ such that M¢ < 0,, (power method)

@ For n =2, Hurwitz if and only if small gain condition

. lia ¥
cycle gain := 22
Cc1 C

@ For n > 3, Hurwitz if network small gain condition
see network small-gain theorem for Metzler matrices

v
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© Semicontractivity, ergodic coefficients, and duality
@ Systems with invariance/conservation properties
@ Induced seminorms and duality
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Consider a vector field F : R — R", and let £, € R™.

@ Invariance property: for all z,y € R™ and a € R,
F(x + af) = F(z) or equivalently DF(z)¢ =0,
o Conservation property: for all x,y € R™,

n F(z) =n"F(y) or equivalently n' DF(z) =0,

n
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Prototypical dynamics

Let A € R"*" be row-stochastic: A1,, =1,, and A >0

Averaging Systems Dynamical Flow Systems
Th+1 Tk Tk+1 Tk
Invariance: dynamics unaffected by Conservation: quantity 1!z is constant

translations in span{1,}
Examples: compartmental models, Markov

Examples: distributed optimization, chains
robotic coordination, frequency
synchronization, ...
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Historical starting point

Given row-stochastic A € R™*™,
Markov-Dobrushin ergodic coefficient

71(A) max ||ATZ||1

l2lli=1,1,] =0

71(A) < 1 under mild connectivity conditions
7,(A) also defined for general p € [1, o0]

How is 7; an induced norm?

A. A. Markov. Extensions of the law of large numbers to dependent quantities. /zvestiya Fiziko-matematicheskogo obschestva pri Kazanskom

universitete, 15, 1906. (in Russian)
R. L. Dobrushin. Central limit theorem for nonstationary Markov chains. |. Theory of Probability & Its Applications, 1(1):65-80, 1956. 4
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http://dx.doi.org/10.1137/1101006

A € R™*"™ row-stochastic

Classical Property of Averaging Systems  x;; = Axy
Given € R"®, max-min disagreement:

s(Az) < 71(A) s(x), where s(z) = mzax{mi} — mjin{:cj}

Classical Property of Markov Chains  zj.; = A"z,
Given 7,0 in the simplex A,,, total variation distance:

drv(ATm, ATo) < ni(4) dry(m o),  where dry(m,0) =3 |mi—o;

Why is the same 77 relevant in both cases?
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Seminorms

A seminorm is a function || - || : R® — R>p s.t., Va € R and Vz,y € R™
O (homogeneity): [|ax| = |a ||
@ (subadditivity): ||z + ylll < [l=[l + [lyl

The kernel is the vector space:
K={zeR":|z]| =0}

We focus on consensus seminorms, where K = span{1,}.

Note: || - || is invariant under translations in K
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Projection and distance-based seminorms: graphical definitions

Projection seminorms

A

Distance seminorms

4

llllprojp = ML ||, I =1}
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Consensus seminorms

When K = span{1,}, consensus seminorms

lll proj.p 2 lldist.»
5] n
51 Z ‘:L’l — xavg\ Z :U(l) — Z x(])
i=1 i=1 J=[2]+1
£ \/% Z”(xz - x;)? \/% Z”(xz — x;)?
leo max; |CL‘1 - l'avg| %(x(l) - x(n))

where we have sorted x (1) > x(9)
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p=1 p=2

2 E] 0 1 2

2 El 0 1 2

Figure: Two-dimensional sections of three-dimensional unit disks of projection (solid contours) and distance (dashed
contours) consensus seminorms. We plot the sections corresponding to (z1,z2,z3 = 0).
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Induced matrix seminorms

Consider a seminorm || - || on R™ with kernel .
Induced matrix seminorm: function || - ||| : R**™ — R>( defined by
Al = max [|Az]
lzfl<1
1K

Inequality is true if z € K+ or AK C K

AN In general, [|Az]] £ |4l J
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Key facts about dual and induced norms

Properties of dual and induced norms
© /, and /;, norms are dual, for 1/p+1/g=1

-l = (- o). -llg = (- llp).

@ dual norm satisfies (sharp) Holder inequality:  x'y < |lz|l, |lyllq
@ equality between dual induced norms:  ||All, = [|AT |,

Q induced norm is submultiplicative: || AB| < ||A]|||B]|
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Key facts about dual and induced seminorms

Properties of dual and induced seminorms

@ /,-distance and /,-projection seminorms are dual, for 1/p+1/g=1

- Maisep = (- lprosa) - Moros.g = (Il - st )

@ dual seminorm satisfies (sharp) Markov inequality: x' Tl y < ||2|laist.p l|¥lllproj.q
@ equality between dual induced seminorms: || Alllaistp = 1A lproj.q

Q induced seminorm is submultiplicative:  [|AB]| < [|A||||B]| if AK C K or BET C KT

Ergodic coefficients are induced seminorms

1A aist. = 1A Hprojq = 7(A) :=

— max ATz,
lzllg=1, zL1n
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How Markov and Banach's results meet

Classical Property of Averaging Systems
Given row-stochastic A € R™*" and z,y € R™

Az = Y)lldist.co < 71 (A2 = Ylldist, 00

= 1Al dist o0 1% = ¥l

Classical Property of Markov Chains
Given row-stochastic A € R™*™ and , o in the simplex A,:

-
A" (m = )llprojr < (AT = lllproj,1

= |HAT|Hproj,1m7T - O-mproj,l
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@ A brief review of contractivity concepts
@ From discrete-time to continuous-time dynamics
@ Examples and selected properties

© Network contraction theorem

© Semicontractivity, ergodic coefficients, and duality
@ Systems with invariance/conservation properties
@ Induced seminorms and duality

@ Conclusions and future research
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Summary and future work

@ ergodic coefficients are contraction factors
@ duality explains their roles in both averaging and flow systems
© nonEuclidean norms play a key role

@ semicontraction theory

@ discrete/continuous-time Markov chains
@ discrete/continuous-time nonlinear consensus algorithms
@ local contractivity of Kuramoto and Kuramoto-Sakaguchi models
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Continuous-time semicontraction theory

The induced log seminorm of A € R™*"™ is

M+ RAJ -1
pg(A) = lim

Laplacian L, corresponding to weighted digraph with adj. matrix A:

[31-1 n—1
fidist,1 (—L) = —min (out)j = > @i+ O @y s dous = Aly
P =21

fiist2(—L) = min {b T, L+ LTI, = —2bHL} Ty =1, 11,1]

[idist,c0(—L) = —1};51 aij + agi + Z min{ag, ajk
k#i,5

Let p,q € [1,00] such that p~! + ¢! = 1. For any matrix M € R™ ", and any kernel K,

,udist,p(M) = Hproj,q (MT)
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Open problem

consider the set of undirected, unweighted connected graphs + selfloops
for each adjacency A;, define row-stochastic A; = diag(A4;1,) 1 4;

find a consensus seminorm || - ||| such that, for each i,

Al <1

or prove that it does not exist

(equal neighbor)
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