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Chapter #1: Contraction theory

contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J
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Chapter #2: Time-varying optimization algorithms

J, w(t)

@ = Optimizer(u, y) . Plant 4
|—> =0p Y (linear, stable, fast)

optimization via dynamical systems
online time-varying optimization, optimization-based feedback control, ... J
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Chapter #3: Recurrent and implicit neural networks

conv31  conv32 convi3

conv1

¥

artificial neural network AlexNet '12 C. elegans connectome '17

recurrent neural networks
well-posedness, stability, computation and input/output robustness

A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012
G. Yan, P. E. Vértes, E. K. Towlson, Y. L. Chew, D. S. Walker, W. R. Schafer, and A.-L. Barabdsi. Network control principles predict neuron function in the Caenorhabditis
elegans connectome. Nature, 550(7677):519-523, 2017. ¢
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http://dx.doi.org/10.1038/nature24056

Ongoing education and research on Contraction Theory

Contraction Theory

for Dynamical systems @ Textbook: Contraction Theory for Dynamical Systems, Francesco
Bullo, rev 1.1, Mar 2023. (Book and slides freely available)
https:/ /fbullo.github.io/ctds

@ 2023 Comprehensive tutorial slides: https://fbullo.github.io/ctds

@ 2023 Sep: Youtube lectures: " Minicourse on Contraction Theory”
- https://youtu.be/FQV5PrRHks8 12h in 6 lectures

Francesco Bullo

@ 2024 CDC Workshop " Contraction Theory for Systems, Control,

Optimization, and Learning” (under review)
" Continuous improvement is

better than delayed perfection”
Mark Twain
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given n X n matrix A with spectrum spec(A)

p(A) < [|A] a(A) < p(4) < [A4]

discrete-time dynamics continuous-time dynamics
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Continuous-time dynamics and one-sided Lipschitz constants

& =F(x) on R™ with norm || - || and induced log norm p(-)

One-sided Lipschitz constant  (~ maximum expansion rate)

osLip(F) = sup, p(DF(z))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az +a

osLipy p(Fa) = p2,p(A) — ATP+ AP < 2(P

</
OSLipoom(FA) = loon(A) <Y == ai; + Z laijni/n; <L
J#
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Banach contraction theorem for continuous-time dynamics:
If —c := osLip(F) < 0, then

@ F is infinitesimally contracting: ||z(t) —y(t)|| < e ||zo — yol|
@ F has a unique, glob exp stable equilibrium z*

© global Lyapunov functions Vi(z) = ||z — z*||? and Va(z) = ||F(z)]|?

ct
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Property #1: Incremental ISS Theorem. Consider

& = F(z,0(t))
e contractivity wrt x: osLip,(F) < —¢ <0, uniformly in 6
o Lipschitz wrt 6: Lipy(F) < ¢, uniformly in z

Then incrementally ISS property:

l=(®) —y@I < e llzo — ol + é(l—e_Ct)SupTHHx(T)—Gy(T)H

14
ball centered at x(t) with radius = sup ||0,(7)—0,(7)|
Zo! | C relo,t]
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Example contracting systems

o

2]

©0 000

gradient descent flows under strong convexity assumptions
(primal-dual, distributed, saddle, pseudo, proximal, etc)

neural network dynamics under assumptions on synaptic matrix
(recurrent, implicit, reservoir computing, etc)

incremental ISS systems

Lur'e-type systems under LMI conditions

feedback linearizable systems with stabilizing controllers
data-driven learned models

nonlinear systems with a locally exponentially stable equilibrium
are contracting with respect to appropriate Riemannian metric
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Example #1: Gradient dynamics for strongly convex function

Given differentiable, strongly convex f : R” — R with parameter v > 0, gradient dynamics

i = Fo(a) = —Vf(a)

Fg is infinitesimally contracting wrt || - |2 with rate v
unique globally exp stable point is global minimumJ
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Property #2: Kachurovskii’s Theorem: For differentiable f : R — R, equivalent
statements:

Q f is strongly convex with parameter v (and minimum z*)

@ —Vf is v-strongly infinitesimally contracting (with equilibrium z*)

Property #3: Euler Discretization Theorem for Contracting Dynamics
Given norm || - || and differentiable and Lipschitz F : R* — R", equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that x5 = xx + aF(xy) is contracting

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in
Neural Information Processing Systems, Dec. 2021. ¢

15/56


http://dx.doi.org/10.48550/arXiv.2106.03194

Example #2: Systems in Lur'e form

> = Az + Bu; y=Cx
U Y
u="Y(y)

For A € R™*"™, B € R™*™ and C € R™*™, nonlinear system in Lur’e form

= Az + BY(Cz) =:FLyre()
where ¥ : R™ — R™ is p-cocoercive, that is, for all y1,y2 € R™

(W) — T(y2) " (v — v2) = pll T (1) — U(w2)|3

For P = PT > 0, following statements are equivalent:
© Fpure infinitesimally contracting wrt || - ||5 p1/2 with rate n > 0 for each p-cocoercive ¥

ATP+PA+42nP PB+)C' e

i >
@ there exists A > 0 such that BTP+\C —2pl,, | —
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§3. Chapter #2: Optimization-based control
@ Equilibrium tracking
@ Gradient controller
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Motivation: Optimization-based control

© parametric optimization

© online feedback optimization

H H 4 P
© model predlctlve control ,&35‘ Transportation systems T sy;)t‘g:s
[Bianchin et al '20] <L~
@ control barrier functions [Cothren et af22] ar

Robotics
e L and vehicles \ [Jokic et al'09]
— [Bolognani-Zampieri'13]
& eedbaci g
w [Hirata-Hespanha-Uchida’14]

[Lietal'14]
L tal'21
{T::';::':e:,;] ! [Dall’Anese et al'15]

[Cothren et al '22] [Bernstein et al'15]
[Gan-Low’16]

[Dall’Anese-Simonetto’18]
[Zaaorowska et al’23] [Menta et al"18]

Compressor stations
“4 Epidemic control
[ %

[Ortmann et al’20]
[Bianchin et al'22] ,fa [Picallo et al’22]

... and many others

Online feedback optimization. Courtesy of Emiliano Dall’Anese.

parametric QP. YALMIP + Multi-Parametric Toolbox
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Parametric and time-varying convex optimization

Parametric and time-varying convex optimization
© parametric contracting dynamics for parametric convex optimization

miné(z,0) <<= & =F(z,0) e A ()]

© contracting dynamics for time-varying strongly-convex optimization

min&(z,0(t)) <= &=F(z,06(t)) A C163))

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium
tracking approach. IEEE Transactions on Automatic Control, June 2023. 4. Conditionally accepted
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http://dx.doi.org/10.48550/arXiv.2305.15595

Property #4: Equilibrium Tracking Theorem. Consider

& = F(z,0(t))
e contractivity wrt x: osLip,(F) < —¢ <0, uniformly in 6
o Lipschitz wrt 6: Lipy(F) < ¢, uniformly in z

Then equilibrium tracking property:

lz@)—2* (O] < e “lzo—z*(0)l + c%(l—e_“) sup {|6(7)]|

. .
- ball centered at z*(A(t)) with radius -z Sup 16 ()l
$*(90) "/ re[0,t]

R 204




Application: Online feedback optimization

l w(t)

U Plant Y

’_‘> @ = Optimizer(u, y) (linear, stable, fast)

min costy (u) + costa(y) . @ = Optimizer(u, y)
subj. to y = Plant(u, w(t)) y = Plant(u, w(t))
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Example #3: Gradient controller

Online feedback optimization
u*(w(t)) = argmin ¢(u)+ ¥(y(t)) (v-strongly convex ¢, convex 1))
u
subj to  y(t) = Yyu + Y,w(t)

gradient controller

U = Fgradcer (v, w) := =V, (¢(u) + w(y(t))) = —Vo¢(u) - YuTVMYuu + Y, w)

Equilibrium tracking for the gradient controller

by
limsup [Ju(t) — v*(w®t))| < =5 limsup [[w(t)]
4 t—o0

t—o00 o
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Artificial and biological neural networks

artificial neural network AlexNet '12 C. elegans connectome '17

Aim: dynamics of neural networks:
@ reproducible and robust behavior in face of uncertain stimuli and dynamics
o functionality: regression, clustering, prediction, dimensionality reduction
@ learning models, efficient computational tools, periodic behaviors ...

A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012
G. Yan, P. E. Vértes, E. K. Towlson, Y. L. Chew, D. S. Walker, W. R. Schafer, and A.-L. Barabdsi. Network control principles predict neuron function in the Caenorhabditis
elegans connectome. Nature, 550(7677):519-523, 2017. ¢
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From feedforward to implicit and recurrent models

Feedforward NN Implicit/Recurrent NN
omy v -y
Ti41 = (I)(AZ.’L‘Z -+ bi), o = u, xr = <I>(A3: + Bu + b),
y=Czx+d y=Czx+d
& = Fer(x) := —x + ®(Azx + Bu)
tanh(y) ReLU(y)
hyperbolic tangent l y l ,

ReLU — ($)+ -2 -1 1 2 : -2 1 1 2
0<®i(y) <1 ) )
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Example #4: Firing-rate networks for implicit ML

t=—x+ ®(Ax + Bu+0) (recurrent NN)
- Y x = ®(Ax + Bu+1b) (implicit NN)
Tr1 = (1 — o)z + a®(Azy + Bu+b) (Euler discrt.)

V.

Hoo(A) < 1 (i.e., ai; + Z.j# laij| <1 for all z’)

recurrent NN is infinitesimally contracting with rate 1 — o (A4)+

implicit NN is well posed

Euler discretization is contracting at o* = (1 — min;(a;;)-)~!

input-state Lipschitz constant || B||oo/(1 — pioo(A4)+)

e ics 1A loo  _[IAA]
sensitivity to unmodeled dynamics oo = T—pus(A)r

robustness to signal delays and more
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Property #5: Network Contraction Theorem. Consider interconnected subsystems

dby = Fi(xi,x_i), fori € {1,...,n}
@ contractivity wrt z;: osLip,, (F;) < —¢; <0, uniformly in z_;
o Lipschitz wrt z;, j #i:  Lip,, (F) <¢ uniformly in z_;
—C1 ... fln
@ gain matrix | . | is Hurwitz
Enl )
— interconnected system is contracting with rate |a(gain matrix)]

v
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Example #b5: Firing-rate networks for ML reservoir computing

deep reservoir network

linear
tunable
Ul ./.H.\. ./.".\. c 55 Yo readout Y
TERLIESE - &8 - o ALEL
Rl -6 o=

37;(:421 =(1- a)xl(cl) + a@(A(l)acl(cl) + BWayy, + b(l))

) : o o ] (leaky integrator reservoirs)
xgll =(1- a)m,(;) + ad (A(Z)x,(;) + B(’)ngl) + b(’))

Deep reservoir network is contracting (and “echo state property”) if

,uoo(A(i)) <1 foreach? and for a < o™

H. Jaeger. The “echo state” approach to analysing and training recurrent neural networks. Technical report, German National Research
Center for Information Technology, 2001
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Functionality and analysis of biological networks

T = FFR(.r) = -+ (ID(A.’E + Bu)

@ What is Fgr optimizing?
@ What is its functionality?

@ Is a normative framework for neural circuits?

@ Case study: dimensionality reduction

Energy landscape for associative memory in Hopfield models
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Sparse signal reconstruction in biological neuronal circuits

Learned receptive fields

==a======== Outputs of sparse coding network
ENRENOERSEEE el O e e L
PEANIRVEEZNN
SEERNENUNEEN f
UZNENEYENNNE ool val

S P :
ENRUSNENSZAUE MRS RRAY
EFNEEEUANEES Image
SEEENEENEDNE
NEEN=ZMSEENE /]

@ primary visual area (V1) sparsifies signals

o receptive fields (= dictionary) are learned empirically

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
Nature, 381(6583):607-609, 1996. 4
B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4):481-487, 2004. ¢

31/56


http://dx.doi.org/10.1038/381607a0
http://dx.doi.org/10.1016/j.conb.2004.07.007

Sparse reconstruction by minimizing the lasso energy

mi% Elasso () 1= %Hu — @a:H% + Allz |l

z€R
where @ dictionary matrix, with ||®;|| =1 and ®; - ®; = similarity between elements
Uu ~ [ = q)1|q)2|~--|(1)]\/
(Mx1)
(MxN) v (MxN) v
(Nx1) (Nx1)

where z is k-sparse and k < M < N
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Proximal gradient descent

Minimization of composite cost:

min  f(z,u)  +  g(2)
N—— N~~~
convex in x regularizer
proximal gradient descent:
r = —x + prox,yg(a:—’yvxf(:c,u)) =: Fproxc(z,u)

where proximal operator (generalized projection) of convex, closed, proper g is

. 1 2
prox.,(z) = argmin g(r) + —|*x — %
79(2) rgmin g(z) + ol =2l

33/56



Example #6: Proximal gradient descent

Properties of proximal gradient descent
Q well-posed Lipschitz

@ equivalence: z* minimizes f+g9g <=  Fpxg(z*) =0
© decreasing energy:

(when bounded) composite cost f + g non-increasing along flow J

Q a recurrent neural network:

[ quadratic and g(z) = Y7 gi(2;) = Fproxc = FER |

© contractivity:

W <1, == FeRr infinitesimally contracting
W <1, = Fer infinitesimally non-expansive J
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Example #6: Biologically-plausible circuits for sparse reconstruction

&(t) = Feompetitive (2, u) := —z + softy ((In — o' P)x + <I>Tu)

softy ()
z e RN
N | e N> M
sparse
‘ ueRM
v
@ 2* is equilibrium “— x* minimizes Ejasso ()
Q Elasso IS convex — Fcompetitive is Weakly contracting
© O satisfies isometry property = x* is locally exp stable

=  z* is globally linearly-exponentially stable

v

V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse reconstruction. Neural

Computation, 36(6):1163-1197, 2024. 4
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Conclusions

contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

o theory (basic defs + 5 properties)
@ examples (6 examples)
@ applications to control, ML and neuroscience

Ongoing work
@ optimization-based control designs:
model predictive control, control barrier functions, low-gain integral control
@ ML and biologically-inspired neural networks

search for contraction properties
design  engineering systems to be contracting
verify  correct/safe behavior via known Lipschitz constants
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Example #7: Primal-dual gradient dynamics

strongly convex function f s.t. 0 < Umindy X Hess f =< UmaxIn
constraint matrix A st. 0 < amindy < AAT < amaxm (independent rows)
linearly constrained optimization:
min T
min  f(z)
subj. to Ax =1b

primal-dual gradient dynamics:

[ﬂ = Fppg(x, \) := {_v{g)_—bATA]

Fppg is infinitesimally contracting wrt || - ||, p1/> with rate ¢
I, aA'] . 1 . 1 Ui 1 . (Gmin Gmi
P = [aA I, ] with o = 3 min { — a:a'l} and c= 1 min { V:ai, a:ai Vm;n}

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. /EEE Control Systems

Letters, 7:3896-3901, 2023. 4
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Example #8: Distributed gradient dynamics

%0
¥
;"’1:7’—&:&; s
2 TN el
hes s Mo B
. :‘ . g0~ o ‘%{’;‘*'«‘
P " S =i \‘{n
L © ;/ Loyt

decomposable cost: min,cr >, fi(x) where each f; is v;-strongly convex

minz[i]ER Z?:l fl (:L‘[Z])
subj. to > g1 @ij(zi — ) =0

Laplacian-based distributed gradient (primal-dual gradient, 2n vars):

%[i] = _Zfi(x[i]) - ijl aij(Ni — Aj) for each node ¢
Ai = ijl aij(z; — x;5) for each node i
e e e S 1 /7X\2 .
FLaplacian-DistributedG IS infinitesimally contracting’ with ¢ = 1 ()\7) min ; J




Example #9: Saddle dynamics

Assume f:R” x R™ — R
e x — f(x,y) is vy-strongly convex, uniformly in y
e y— f(x,y) is vy-strongly concave, uniformly in
saddle dynamics (primal-descent / dual-ascent):

R v

Fs is infinitesimally contracting wrt || - || with rate min{v,,v,}
unique globally exp stable point is saddle point (min in z, max in y)J
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Example #10: Pseudogradient and best response play

Each player ¢ aims to minimize its own cost function J;(z;, x_;) (not a potential game)

pseudogradient dynamics (aka gradient play in game theory) FpseudoG:

&y = —=V;Ji(zi, x—;)

e strong convexity wrt z;: J; is p; strongly convex wrt x;, uniformly in z_;
o Lipschitz wrt z_;: Lipxj (Vidi) < 4y, uniformly in z_;

@ Fpseudoc gain matrix is Hurwitz

=—>  FpseudoG is infinitesimally contracting wrt appropriate diag-weighted || - |2
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Example #11: Best response play

Each player ¢ aims to minimize its own cost function J;(x;, x_;)
BR; : z_; — argmin, J;(z;,7_;) best response of player i wrt other decisions z_;

best response dynamics:

T = FBR(I‘) = BR(l‘) — X
< T; = BRl(iL‘fz) — Z;

@ strong convexity wrt x;: J; is u; strongly convex wrt x;, uniformly in z_;
e Lipschitz wrt z_;: Lip,, (Vidi) < 4y, uniformly in z_;
=  BR; is Lipschitz wrt z; with constant ¢;;//.;

o Fggr gain matrix is Hurwitz <= BR is a discrete-time contraction

=  BR —Id is infinitesimally contracting wrt appropriate diag-weighted || - ||2
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Equivalent statements:

1 ... g
© Fpeeudog gain matrix: : : is Hurwitz
RS T T
—1 e Eln/,ul
@ FpgRr gain matrix: : : is Hurwitz
_gnl//an e -1 ]
0 e Eln/,ul
© discrete-time Fgr gain matrix: : : is Schur
_énl/,un e 0 ]

Aggregative games: J;(z;,7_;) = fi(z;, £ > i1 )
assume f; is p;-strongly convex wrt x; and  ¢; = Lip,(Vz, fi(zi,y))

w; > £; for each agent ¢ =  gain matrix is Hurwitz

A. Gokhale, A. Davydov, and F. Bullo. Contractivity of distributed optimization and Nash seeking dynamics. /EEE Control Systems

Letters, 7:3896-3901, 2023. 4
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Example #12: Projected gradient controller

Constrained feedback optimization:
min E(u,w) = ¢(u) + P(Yyu + Yy,w) (v strongly convex, ¢, strongly smooth, £,,)
u

subj. to uwel (nonempty, closed, convex. Py, = orthogonal projection)

Projected gradient controller

i = Fpec(u,w) == —u+ Py(u—yVi€(u, w))
Equilibrium tracking for projected gradient controller At v = ﬁ
: . lpge . : .
limsup [[u(t) —u*(t)|| < 55— limsup |lw(t)| (eq tracking)
t—o0 Cpgc t—o©
. 2u .. .
Q osLip,(Fpee) < —cpge := — (contractivity prox gradient)
v+4,
. 2
@ Lip,(Fpec) = froc := w

v+,
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Advantages of non-Euclidean approaches

© well suited for certain class of systems
¢1 for monotone flow systems

© computational advantages
01/l constraints lead to LPs, whereas /5 constraints leads to LMls

© robustness to structural perturbations
{1/l contractions are connectively robust (i.e., edge removal)

© adversarial input-output analysis
lo better suited for the analysis of adversarial examples than ¢

© asynchronous distributed computation
{+ contractions converge under fully asynchronous distributed execution

NonEuclidean contractions: biological transcriptional systems (Russo, Di Bernardo, and Sontag, 2010), Hopfield
neural networks (Fang and Kincaid, 1996; Qiao, Peng, and Xu, 2001), chemical reaction networks (Al-Radhawi,
Angeli, and Sontag, 2020), traffic networks (Coogan and Arcak, 2015; Como, Lovisari, and Savla, 2015;
Coogan, 2019), multi-vehicle systems (Monteil, Russo, and Shorten, 2019), and coupled oscillators (Russo,

Di Bernardo, and Sontag, 2013; Aminzare and Sontag, 2014)
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Practical stability problem and the counter-intuitive nature of R"

Boris Polyak (1935-2023) used to say “R™ countradicts our intuition”

@ Aim: compute settling time inside a desired set

@ since norms on R™ are equivalent, no formal difference in the choice of norm
@ assume: can tolerate +1 error in each coordinate
— desired set is hypercube = /-ball
e assume: Lyapunov function is V(z) = ||z|3
— need to wait until solution enters unit fy-ball C unit {,.-ball
@ but n-sphere inscribed in n-hypercube is very small fraction!

as n — oo, the ratio of volumes decreases faster than any exponential function

for large n, quadratic Lyap fnctns may provide exponentially conservative estimates

Courtesy of Anton Proskurnikov, Politecnico di Torino
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F(x) dom(f) prox (x) ssur Reference
1xTAx + - (A+1) ' (x—b) e Section 6.2.3
b x +ec ’
Az® Ry LA >
i 0,0l NE min{masx{z — 4,0}, a} poE R
[0.5¢]
I - 6.19
Al E (1= mrdery) x Example 6.19
1+ 7)) % x#0,
—Allxl E ( ”*‘) * |- |—Euclide: Example 6.21
{u:fu=2}). x=0. | norm A>0
Allxlls B" Ta(x) = [[x| - Ael+ ©sgn(x) | A>0 Example 6.8
lwex|y | Box[-eaal S alx) a € [0,2) Example 6.23
w ERY
Al e 3 x = APg) | 0.y (/) x>0 Example 6.48
Alxla E X = AP 0. (c/A) ]| Example 6.47
o arbitrary
norm, X > 0
Allxllo Hogx(@) X x Hogz(an) | A>0 Example 6.10
Al E — 2 ___x |-||—Euclidean | Example 6.20
[ERVaEaey norm, A > 0,
o o ferran)
A loga; R, ( v ) A>0 Example 6.9
= _
50 (x) E Po(x) 6.24
Aoc(x) E X = APc(x/A) Theorem 6.46
Amax{z:} R x = APa, (x/\) A>0 Example 6.19
AXE a R X — APc(x/A), A>0
C = He,x N Box[0, ¢]
AT 2 R" x — APc (x/A), A>0
C = By, [0.K] N Box|—e, e]
AMY (x) E x+
¥
x (s 20 - )
Ade(x) E
2dZ(x) E
AH ;. (x) E
plix|? Lemma 6.70
Al Ax]2 Lemma 6.68

erwise, [V~
(AAT +al) ' Ax

proximal operator
well-defined for all ccp functions,
generalized form of projection,
non-expansive

helps generalize gradient algorithms/dynamics
to proximal algorithms/dynamics, useful for
nonsmooth, constrained, large-scale, and dis-
tributed optimization

evaluation of proximal operator requires small
convex optimization,
see Summary of prox computations, Beck 2017

A. Beck. First-Order Methods in Optimization. SIAM, 2017. ISBN
978-1-61197-498-0

N. Parikh and S. Boyd. Proximal algorithms. Foundations and
Trends in Optimization, 1(3):127-239, 2014. @
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Theoretical frontiers

higher order contraction and pseudocontration
(dominance)

relationship with monotone operator theory

metric spaces

computational methods

Limitations: not all stable systems are contractive:
@ Lyapunov-diagonally-stable networks
@ multistable and locally contracting systems

@ control contraction design

Application to networks, control and learning
reaction networks
control: optimization-based control design

ML: implicit models and energy-based learning

©0 00

neuroscience: robust dynamical modeling,
normative frameworks, biologically plausible learning
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fixed

contractivity = robust computationally-friendly stability
point theory + Lyapunov stability theory + geometry of metric spaces J

T —

Lyapunov Theory

Contraction Theory for Dynamical Systems

F admits global Lyapunov function

F is strongly contracting

existence of equilibrium
Lyapunov function
inputs

assumed
arbitrary
ISS via KL and L functions

implied 4+ computational methods
iz — 2*|| and [|F()]
exponential iISS with explicit constants

Krasovskii-LaSalle Inv Principle

Weakly Contracting Systems

generic V s.it. LEV <0

F is weakly contracting, that is, osLip(F) <0

(no other assumptions)
assuming bounded traj.

assuming Krasovski-
LaSalle set = {z*} is LAS

convergence to Krasovski-LaSalle set
{z*} is GAS

Dichotomy Theorem
each equilibrium is stable

{z*} is GAS, linear-exponential convergence, local
ISS + explicit constants
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Gradient dynamics for convex functions

Given differentiable convex f : R — R, gradient dynamics

& =Fg(z) == =V f(z)

Dichotomy and Convergence
@ —Vf has no equilibrium, f has no minimum, and every trajectory is unbounded, or

@ —Vf has at least one equilibrium x* € R™ and the following properties hold:
@ f is constant on convex set of equilibria, each local is a global minimum,
@ every trajectory is bounded and converges to a minimum, each equilibrium is stable
@ if z* is locally asymptotically stable, then z* is globally asymptotically stable
0 if po(—Hess(f)(z*)) < 0, then linear exponential decay and = — ||z — z*||2 is a global Lyap)
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From strongly to weakly contracting systems

Given a nor m || - ||, consider
& =F(x) satisfying osLip(F) =0
Dichotomy for weakly-contracting systems
@ no equilibrium and every trajectory is unbounded, or
@ at least one equilibrium, every trajectory is bounded, and local asy stability = global

.
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Weakly contracting dynamics + locally-exp-stable equilibrium

& =F(t,x) on R™ with norm || - |[gi0
© F is weakly contracting wrt || - |[glo
@ =z is locally-exponentially-stable equilibrium
= F is locally c-strongly contracting wrt || - ||joc over forward-invariant S

— lin-exp(t)

Ix(t) = x" lle
~

18 20
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