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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior:
@ unique globally exponential stable equilibrium
& two natural Lyapunov functions
@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics
periodic input, periodic output
modularity and interconnection properties
accurate numerical integration and equilibrium point computation

©00

search for contraction properties
design  engineering systems to be contracting J
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o History and resources



Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux &
équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922. ¢

@ Dynamics:

G. Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology,
No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differen-
tial equations. |. /zvestiya V/ysshikh Uchebnykh Zavedenii. Matematika, 5:52-90,
1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian) =

@ Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |[EEE Transactions on Circuit Theory, 19(5):480-486, 1972. 4

@ Systems and control:
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):
683-696, 1998. ¢


http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3

o Incomplete list of contributors who influenced me
Aminzare, Arcak, Chung, Coogan, Di Bernardo, Manchester, Margaliot, Pavlov, Pham,
Proskurnikov, Russo, Sepulchre, Slotine, Sontag, ...

@ Surveys:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In /[EEE Conf. on Decision and Control, pages 38353847, Dec. 2014b. ¢

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of

complex networks via contraction theory. In Complex Systems and Networks. Springer, 2016. @

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview. Annual Reviews in Control, 52:135-169, 2021. ¢

P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of contraction

metrics. Journal of Computational Dynamics, 10(1):1-47, 2023. @


http://dx.doi.org/10.1109/CDC.2014.7039986
http://dx.doi.org/10.1007/978-3-662-47824-0_12
http://dx.doi.org/10.1016/j.arcontrol.2021.10.001
http://dx.doi.org/10.3934/jcd.2022018

The Banach Contraction Theorem is also referred to as the Picard-Banach-Caccioppoli,
because of the earlier work by Picard (1890) on the “method of successive approximations”
and the later independent work by Renato Caccioppoli (1930).

Figure: Renato Caccioppoli (Napoli, 20 gennaio 1904 — Napoli, 8
maggio 1959) was an ltalian mathematician

1921-1932 student and researcher @ Napoli
1931-1934 professor @ Padova
1934-1959 professor @ Napoli

R. Caccioppoli. Un teorema generale sull’esistenza di elementi
uniti in una trasformazione funzionale. Rendiconti
dell’Accademia Nazionale dei Lincei, 11:794-799, 1930




Contraction conditions without Jacobians

@ uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic
nonlinear networks: Stability of autonomous networks. |EEE Transactions on Circuits and Systems, 23(6):
355-379, 1976. ¢

@ no-name in: A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer, 1988.
ISBN 902772699X (Chapter 1, page 5)

© one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential
Equations I. Nonstiff Problems. Springer, 1993. 4 (Section 1.10, Exercise 6)

maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new
approach to exponential stability analysis for Hopfield-type neural networks. /[EEE Transactions on Neural
Networks, 12(2):360-370, 2001. 4

@ dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under
environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 461(2059):2257-2267, 2005. @

@ maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History and
modern theory. BIT Numerical Mathematics, 46(3):631-652, 2006. 4

@ QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled
ordinary differential systems. Physica D: Nonlinear Phenomena, 213(2):214-230, 2006. ¢

@ incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability.
Numerical Algebra, Control and Optimization, 3:175-201, 2013. ¢


http://dx.doi.org/10.1109/TCS.1976.1084228
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1007/s10543-006-0069-9
http://dx.doi.org/10.1016/j.physd.2005.11.009
http://dx.doi.org/10.3934/naco.2013.3.175

Links to recent related educational and research events

2023 ACC Workshop on " Contraction Theory for Systems, Control, and Learning”
http://motion.me.ucsb.edu/contraction-workshop-2023

Tutorial session: https://sites.google.com/view/contractiontheory " Contraction Theory for Machine
Learning” (PDFs and youtube videos) at the 2021 IEEE CDC conference, by Soon-Jo Chung,
Jean-Jacques Slotine, and Hiroyasu Tsukamoto

Tutorial paper at CDC2021 “Contraction-Based Methods for Stable Identification and Robust Machine
Learning: a Tutorial” by lan Manchester and coauthors: https://arxiv.org/abs/2110.00207,
https:/ /ieeexplore.ieee.org/abstract/document/9683128

Plenary presentation: (Slides
https://fbullo.github.io/talks /2022-12-FBullo-ContractionSystemsControl-CDC.pdf) " Contraction
Theory in Systems and Control” by Francesco Bullo at the 2022 IEEE CDC

Youtube lectures: " Lectures on Nonlinear Systems” by Jean-Jacques Slotine, Fall 2013:
https://web.mit.edu/nsl/www/videos/lectures.html, Lectures 14-20 (approximately 1h20min each)

Youtube lectures: " Minicourse on Contraction Theory” by Francesco Bullo, Fall 2022. Youtube lectures
https://youtu.be/RvR47ZbqJjc: 10h in 4 lectures, with chapters

Textbook: Contraction Theory for Dynamical Systems, Francesco Bullo, rev 1.1, Mar 2023. (Book and
slides freely available) https://fbullo.github.io/ctds


http://motion.me.ucsb.edu/contraction-workshop-2023
https://sites.google.com/view/contractiontheory
https://arxiv.org/abs/2110.00207
https://ieeexplore.ieee.org/abstract/document/9683128
https://fbullo.github.io/talks/2022-12-FBullo-ContractionSystemsControl-CDC.pdf
https://web.mit.edu/nsl/www/videos/lectures.html
https://youtu.be/RvR47ZbqJjc
https://fbullo.github.io/ctds

Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.1 edition, 2023, ISBN 979-8836646806

Contraction Theory o |
i Q Textbook with exercises and answers. Format: textbook, slides,
for Dynamical Systems and paperbook

@ Content:
Fixed point theory
Theory of contracting dynamics on vector spaces
Applications to nonlinear and interconnected systems

@ Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/B0B4K1BTF4

O PDF Freely available at

https://fbullo.github.io/ctds

@ 10h minicourse on youtube:
https://youtu.be/RvR47Zbqljc

@ Future version to include: systems on Riemannian manifolds,

Francesco Bu"o homogeneous spaces, and solid cones

" Continuous improvement is better than delayed perfection”
Mark Twain



https://www.amazon.com/dp/B0B4K1BTF4
https://fbullo.github.io/ctds
https://youtu.be/RvR47ZbqJjc

Selected references from my

Contraction theory on normed spaces and Riemannian manifolds:

@ A Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE Transactions on Automatic Control, 67(12):
6667—6681, 2022a. 4

@ S. Jafarpour, A. Davydov, and F. Bullo. Non-Euclidean contraction theory for monotone and positive systems. |EEE Transactions on Automatic Control,
2023. 4. To appear

@ J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters, 65:74-80, 2014. &

Contracting neural networks:
@ S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information
Processing Systems, Dec. 2021. 4
@ A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In American Control Conference, pages
15271534, Atlanta, USA, May 2022c. ¢
@ V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with symmetric weights. IEEE Control Systems
Letters, 7:1724-1729, 2023. 4

Weak and semicontraction theory:
@ S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. IEEE Transactions on
Automatic Control, 67(3):1285-1300, 2022. @
@ G. De Pasquale, K. D. Smith, F. Bullo, and M. E. Valcher. Dual seminorms, ergodic coefficients, and semicontraction theory. |IEEE Transactions on
Automatic Control, 2022. 9. Submitted
@ R. Delabays and F. Bullo. Semicontraction and synchronization of Kuramoto-Sakaguchi oscillator networks. |EEE Control Systems Letters, 7:1566-1571,
2023. 4

Optimization:
@ F. Bullo, P. Cisneros-Velarde, A. Davydov, and S. Jafarpour. From contraction theory to fixed point algorithms on Riemannian and non-Euclidean spaces.
In IEEE Conf. on Decision and Control, Dec. 2021. &
@ A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory with applications to recurrent neural networks. In
IEEE Conf. on Decision and Control, Canctin, México, Dec. 2022b. &
@ A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex optimization. /EEE Transactions on
Automatic Control, June 2023. 4. Submitted


http://dx.doi.org/10.1109/TAC.2022.3183966
http://dx.doi.org/10.1109/TAC.2022.3224094
http://dx.doi.org/10.1016/j.sysconle.2013.12.016
http://dx.doi.org/10.48550/arXiv.2106.03194
http://dx.doi.org/10.23919/ACC53348.2022.9867357
http://dx.doi.org/10.1109/LCSYS.2023.3278250
http://dx.doi.org/10.1109/TAC.2021.3073096
http://dx.doi.org/10.48550/arXiv.2201.03103
http://dx.doi.org/10.1109/LCSYS.2023.3275169
http://dx.doi.org/10.1109/CDC45484.2021.9682883
http://dx.doi.org/10.1109/CDC51059.2022.9993197
http://dx.doi.org/10.48550/arXiv.2305.15595

e Basic definitions
@ Discrete- and continuous-time dynamics on vector spaces
@ Dynamics on Riemannian manifolds



Banach Contraction Theorem Let (X, d) be a complete metric space
If T:X — X is Lipschitz with constant ¢ < 1 (called the contraction factor), then
© T has a unique fixed point £* in X

@ the sequence {z}ren generated by the Picard iteration xy1 = T(xy) converges to z*
for all initial conditions g € X

© the following error estimates hold for all £ € N:

(geometric convergence): d(zy, z*) < 0Fd(zg, )
k
(a-priori upper bound): d(zg,z") < md(mo,ml)
14
(a-posteriori upper bound): d(zg,z") < ——d(xg_1, k)

1-7




For zj11 = T'(xy)

@ sequence {zy}ren is Cauchy

d(@kths Tk) < A(@hshs Toh—1) + -+ d(Tpq1, )
< (Zh—l + .4 1)d(l’k+la Ilfk;)
1
gk

IN

IN

@ since X is complete, sequence converges to a point z*
@ uniqueness from £ < 1

@ geometric convergence

d(l‘k,(f*) = d(T(l‘k_l),fL'*) < gd(.’lik_l,:ﬁ*) < gkd(w()a l'*)



Linear algebra: induced norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
el = 3" o

n
_ 2
lall = /S a3

[#lloo = max |z
1€

{1,...,n}

n
Al = max > lail

[All2 = 1/ Amax(AT A)

n
A = -
14lloo =, max > lai

n
p1(A) = max ((Ijj + Z;:l o |u,,"/-\)

Je{1,..., n}
= max column “absolute sum” of A

1) e (A

n
(A) = a0 ( 5 )
Hoo(4) el ”lﬁz,i:lﬁjﬁ‘a”'

= max row “absolute sum" of A




Discrete-time dynamics and Lipschitz constants

Tp+1 = F(zg) on R™ with norm || - || and induced norm || - ||

Lipschitz constant

Lip(F) = inf{¢ > 0 such that ||F(z) — F(y)|| < {||lz —y| for all z,y}
sup,, || DF (z)

For scalar map f, Lip(f) = sup, |f'()|
For affine map F4(z) = Az +a

|z]o.p = (x" Px)*/? Lipy p(Fa) = [|A]l2,p < ¢ — ATPA=<2P
12/l ooy = max |z:] /1 Lips y(Fa) = | Allccy < € = n'|Al < n'



Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then
@ F is contracting = distance between trajectories decreases exp fast (o)

@ F has a unique, glob exp stable equilibrium z*

,,,,,,,,,,,,,,,

ball centered at x(k) with radius p*



From induced norms to induced log norms

The induced log norm of A € R™*™ wrt to || - ||:

. |Hn+RhA| -1
A):=lim ———
#A) ho0 h
subadditivity: w(A+ B) < p(A) + u(B)
scaling: pu(bA) = bu(A), Vb >0
///,)/\Espoc(A) A \\\\\ A € spec(A) j
X o) * X a(4)
‘ % o X *x—i
L xS . x




Example induced log norms

Vector norm Induced matrix norm Induced matrix log norm
et =307 Joid Al = max 3T Jayl A= max (o 4307 lag)
= max column “absolute sum” of A
n A+ AT
lall = /> 72 Al = Amax(AT4) p2(4) = Amar (Z5)
n n
l#lloo = max fail  flAlloo = max ST fas poo(A) = max (it 327 las])

= max row “absolute sum" of A




Continuous-time dynamics and one-sided Lipschitz constants

& =F(x) on R™ with norm || - || and induced log norm pu(-)

One-sided Lipschitz constant

osLip(F) = inf{b € R such that [F(z) — F(y),z —y] < bz —y||*> for all z,y}
= sup, p(DF(z))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az + a
= ATP+ AP < 2P

— ai; + Z |aijni/n; < €
J#i

osLipy p(Fa) = p2,p(4) <

14
OSLipoo,n(FA) = /J’OOJ)(A) ¢

IN



Banach contraction theorem for continuous-time dynamics:
If —c:= osLip(F) < 0, then

@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

ct




From inner products to weak pairings

A weak pairing is [-,-] : R” x R" — R satisfying
Q [z1 + z2,y] < [z1,y] + [x2,y] and z — [z, y] is continuous,
Q [bx,y] = [z,by] = b[z,y] for b > 0 and [—z, —y] = [z, y],
Q [z,z] >0, for all x # Oy,

O [[x.y]| < [w.2]'" [y.v]",
Given norm || - ||, compatibility: [z, z] = ||x||? for all x

Key properties

Curve norm derivative formula: DM z(t)|? = [E(8), ()]
Sup of non-Euclidean numerical range: w(A) = sup [Az,z]
[zl =1

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, 67(12):6667-6681, 2022a. 4


http://dx.doi.org/10.1109/TAC.2022.3183966

Example weak pairings

Norms From inner products to From LMls to
sign and max pairings log norms
||95||§7p1/2 =a' Pz [z, 4]y pr/2 = z' Py fig p1/2(A) = min{b | ATP 4+ PA < 2bP}
]l = Z | 2,51 = Iyllisign(y) e pn(4) = max (a“ + Z laig )
(2
lalloe = max|ai| [yl = max wizi () = max (aq + Y layl)

where I (z) = {i € {1,...,n} such that |z;| = ||z||c }



Table of continuous-time contractivity conditions

Log Norm Demidovich One-sided Lipschitz

bound condition condition

p2,p(DF(x)) b PDF(z) + DF(x)" P < 2bP (@ —y)"P(F(z) = F(y) <bllz —ylF
(DF(x)) < b sign(v) " DF(z)v < b]jvlx sign(z —y) " (F(z) — F(y)) < bllz —yls
p(DF@) b max v (DF@)), Bl max (@~ u)(File) = Fuw) < blle =yl

Equivalent contractivity conditions

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43—79, 1993.

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. /[EEE Transactions
on Neural Networks, 12(2):360-370, 2001. 4

G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. /EEE
Transactions on Control of Network Systems, 2(1):57—67, 2015. 4


http://dx.doi.org/10.1137/1035003
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1109/TCNS.2014.2367361

Advantages of non-Euclidean approaches

© well suited for certain class of systems
£1 for monotone flow systems

© computational advantages
{1/l constraints lead to LPs, whereas /5 constraints leads to LMls

© robustness to structural perturbations
{1/l contractions are connectively robust (i.e., edge removal)

© adversarial input-output analysis
lo better suited for the analysis of adversarial examples than /5

© reachability analysis via mixed-monotone embeddings
{oo suited for mixed-monotone embeddings

O asynchronous distributed computation
f~ contractions converge under fully asynchronous distributed execution
NonEuclidean contractions: biological transcriptional systems (Russo et al., 2010), Hopfield neural networks (Fang and Kincaid, 1996; Qiao et al., 2001), chemical

reaction networks (Al-Radhawi and Angeli, 2016), traffic networks (Coogan and Arcak, 2015; Como et al., 2015; Coogan, 2019), multi-vehicle systems (Monteil

et al., 2019), and coupled oscillators (Russo et al., 2013; Aminzare and Sontag, 2014a)



Contraction dynamics on Riemannian manifolds

Contraction theory on Riemannian manifolds originates in
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696, 1998. 4

A formal coordinate-free analysis (with connection to monotone operators) is given in

J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters, 65:74-80, 2014. 4

In the differential geometry literature, geodesically monotonic vector fields are studied by

S. Z. Németh. Geodesic monotone vector fields. Lobachevskii Journal —of Mathematics, 5:13-28, 1999. URL
http://mi.mathnet.ru/eng/ljm145

J. X. Da Cruz Neto, O. P. Ferreira, and L. R. Lucambio Pérez. Contributions to the study of monotone vector fields. Acta Mathematica
Hungarica, 94(4):307-320, 2002. 4

J. H. Wang, G. Lépez, V. Martin-Marquez, and C. Li. Monotone and accretive vector fields on Riemannian manifolds. Journal of Opti-
mization Theory and Applications, 146(3):691-708, 2010. ¢


http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1016/j.sysconle.2013.12.016
http://mi.mathnet.ru/eng/ljm145
http://dx.doi.org/10.1023/A:1015643612729
http://dx.doi.org/10.1007/s10957-010-9688-z

Assume existence and uniqueness of geodesic curve between each (z,y)
F contracting if geodesic distances from z to y diminishes along the flow of F

integral test: the inner product between F and the geodesic velocity vector 7/ at x and y
differential test: condition on covariant differential of F



Given vector field F on a Riemannian manifold (M, G) and ¢ > 0, equivalent statements:

@ integral condition: for each z,y € M and geodesic 7 : [0, 1] — M with v(0) = z, v(1) = v,

(F(®),7 (1)) — (F(x),7'(0))g < —cda(z,y)”

or, equivalently, using the parallel transport map P,_,, : T,M — T M,

(Py—aF(y) = F(2),7'(0))g < —cde(z,y)?

@ differential condition: for all v, € T,M
(Vo F(z), 026 < —cllvz g,
where V is the Levi-Civita connection. In components:

G(x)DF(z) + DF(z) "G(z) + L¢G(z) < —2¢G(x)

© trajectory condition: for all solutions z(-), y(+)

Dt dg(z(t), y(t)) < —cda(z(t),y(t))




e Examples

@ Optimization-based dynamics
@ Recurrent neural network dynamics



Optimization-based dynamics

| Ey {>
V(y) 2 V(e)+gradV(z) ' (y — 2) + Fllz — i3




Example #1: Gradient flow for strongly convex function

Given strongly convex f : R® — R with parameter y, gradient dynamics

= Fg(z) == -V f(zx)

Fg is infinitesimally contracting wrt | - |2 with rate p
unique globally exp stable point is global minimumJ

If f is twice-differentiable, then Hess f(x) = ul, for all x

D(=V[)(x) = —Hess f(x) X —pln
= I, D(=Vf)(z) + D(=Vf)(z) "I, = —2ul,



Convexity and contractivity

Kachurovskii’s Theorem: For differentiable f : R™ — R, equivalent statements:
© f is strongly convex with parameter m

@ —gradf is m-strongly infinitesimally contracting, that is
T
(—gradf(z) + gradf(y)) (z —y) < —mllz —yl3

Also: global minimum of f = globally-exponentially stable equilibrium of —V f

For map F : R — R"™, equivalent statements:

© F is a monotone operator? (or a coercive operator) with parameter m,

© —F is m-strongly contracting

F : R™ — R™ is a m-strongly monotone operator if {F(x) — F(y),z — y)) > m|jz — y|3

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960



Example #2: Saddle dynamics

Assume f:R®" x R™ — R
o x — f(x,y) is pz-strongly convex, uniformly in y
e y+— f(x,y) is py-strongly concave, uniformly in x
saddle dynamics (primal-descent / dual-ascent):

i) =Fsen =[St |

Fs is infinitesimally contracting wrt || - |2 with rate min{,, 11, }
unique globally exp stable point is saddle point (min in z, max in y)J

If f is twice-differentiable, then

. o — Hess, ]l(l y) _D;yv.rf(fl:: y)
H2(DFs(z,y)) = 2 <{ D,V,f(x,y)  Hessy, f(z,y)
i (A)=po (AEAT) ( {— Hess; f(z,v) 0 } >
K2

= 0 Hess, f(z, 9) = —min{jy, fiy}-



Example #2 generalized: Pseudogradient dynamics

Each player ¢ aims to minimize its own cost function J;(z;, x_;) (not a potential game)

pseudogradient dynamics (aka gradient play in game theory):
iy = —VJi(zi, 1)

that is, & = FpseudoG(z) = —(ViJi(z1,2-1), ..., Vi dn(Tn, 2-p)) (stacked vector)

if Fpseudog is infinitesimally contracting (wrt any norm and any rate)
unique globally exp stable Nash equilibrium J;(z},z* ;) < J;(y;, z*;) for all y;

Sufficient conditions:
© strong convexity of each z; — J;(z;,z_;), uniformly in z_;, and

@ small-gain condition in “network contraction theorem” (see later slide)




Example #3: Primal-dual gradient dynamics

strongly convex function f s.it. 0 < pmindn = Hess f < pimaxIn
constraint matrix A sit. 0 =< amindm < AAT < amaxIm
linearly constrained optimization:

min T

xeR™ f( )

st. Ax=b

primal-dual gradient dynamics:

[ﬂ = Fppg(x, \) := {_vﬁ»’;)_—bATA]

Fppg is infinitesimally contracting wrt weighted || - ||, p1/2 with rate ¢

U 1 1 min min min
P:[In @l ],a:—min{ 'u—}, and c:imin{a @ ,umin}

oA Ip 3 /Jmax’ Gmax 18 :umax’ Gmax
—Q -AT" —Q -AT
For each piminly = Q= tmax]n, |: A 0 :| P+P |: A 0 :| = —2cP



Example: Distributed optimization from primal-dual gradient descent

Consider a tree (undirected acyclic connected graph) with n nodes and m = n — 1 edges:
Let AT = oriented incidence matrix, and Xo, ..., A, = Laplacian eigenvalues. Then:

0= )\ZIn—l = AAT = AnIn—l
decomposable optimization: Rewrite min,cgn f(z) when f(z) = )", fi(x) as
. n
Jnin, Zi:l fi(i)
st x;=uxj for each edge e = (i, j)
distributed optimization via primal-dual gradient dynamics:

{i‘i = =Vifil@i) = Deijy Ae T Dem(ji) Ae

Ne = — xj for each edge e = ( 7)

assume dual dynamics is fast and each f; is u;-strongly convex

5 Ao
Fppg is infinitesimally contracting with ¢ = I8 min g4 J
n ¢




Composite minimization and proximal gradient

For strongly convex + strongly smooth f, convex, closed, proper g : R* — R,

x* = argmin f(z) + g(z) — x* = prox, ,(z* — 7V f(z))
rER™

1
where prox.(z) = argmin g(z) + — ||z — z||3.
(%) g (z) 27\| [

© minimization problem

min f(z) +g(x)

@ s transcribed into strongly infinitesimally contracting proximal gradient dynamics

& = FproxG() 1= —z + prox,¢(z — 7V f(x))




Example #4: Proximal gradient dynamics

proximal gradient dynamics:

i = Fproa(z) = —2 + prox, (z — 1V ()

f is m-strongly convex and /-strongly smooth

Qifo<y< 7 then Fppg is infinitesimally contracting w.r.t. || - ||2 with rate ¢

¢ =1 — max{|L — yml, |1 ([}

and maximal rate at v* = =
Q if f(z) = 12T Az + bz with A= 0 and ¥ > 1/Amin(A),
then Fppg is infinitesimally contracting w.r.t. |- |5 ,4_z,)1/> with rate c =1

o




Neural network models

Feedforward NN Recurrent NN
@)
O
— 8 > y

@)
O

1 T2 X3 Tk )

Tip1 = ®(Aiz; + b;), w0 =u, &= -z + ®(Az + Bu + ),
y=Cx+d y=Czx+d




Example #b5: Firing-rate recurrent neural network

& =Fer(z) := —z + ®(Wx + Bu)

tanh(y) ReLU(y)
sigmoid, hyperbolic tangent ] ’ 1[ y
ReLU = max{z,0} = (z)4 7 — S —
0<®i(y) <1 ‘ )
Fer is infinitesimally contracting wrt || - || with rate 1 — (W), if
oo (W) < 1 (i.e., wi; + Z/ |wij| < 1 for all 7)

osLip, (FERr) = sup ,uoc< — I, + (DP(Wax + Bu))W’) = —1 4+ sup o (D(I)(I’V;r + Bu)W’)

x,u x,u

=—1+ II[IED? oo (diag(d)W) (max convex polytope, 2" vertices)
defo,1]n

= —1 + max { f10c (0), oo (W) } = =1 + p1oo (W)«



Example #6: Firing-rate network with symmetric synapses

0<®)(y)<1 and W =W" with A\ = Anax(W)

Fer is infinitesimally contracting:
(for A\ < 0) with rate 1 wrt || - [[5 _yy1/2
(for Ay = 0) with rate [ - |2, ., for each ¢ >0
(for 0 < Ay < 1) with rate 1 — Ay wrt || - H27QFR,/\W
For Aw =1, Frr is weakly infinitesimally contracting wrt || - [[2,g¢r |

® Qrrq = Uha(A)UT =0, where W = UAU " and ho(z) :=2a(1+ /1 — z/a)
@ optimal rates

@ proof based upon LMI calculations and Sylvester's law of inertia



o Properties of contracting dynamics
@ iISS
@ Periodic systems
@ Composite norms and interconnected systems
@ Contractivity of delay dynamics
@ Forward Euler theorem



Equilibrium and Lyapunov functions

Equilibria of contracting vector fields:
For a time-invariant F, c-strongly contracting wrt || - ||

@ for each t > 0, t—flow of F is a contraction,
i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, that is unique, globally exponentially stable with global
Lyapunov functions

g Vi(z) =z —2’|° and x4 Va(z) = ||F()]

For a time-invariant F,
@ osLip(F) = —c wrt £, and DF(z) = DF(x) " for all z,

@ for each scalar w, .
Vs(z) = —/ x " F(tz)dt + w
0

is c-strongly convex, is global Lyapunov, and gradVs(z) = —F(z) for all .




From closed to open systems 1/3

Fot time and input-dependent vector F,

& = F(t,z,u(t)), z(0) =x9 € X, u(t) el (1)

Given norms || - || x and || - ||z, assume constants ¢, ¢ > 0 s.t.
@ osLip wrt z: osLip,(F) < —c < 0, uniformly in t,u

o Lip wrt u: Lip,(F) < ¢, uniformly in ¢,z



Incremental ISS and gain of contracting systems 2/3

Then
Q any soltns: x(t) with input u, and y(t) with input u,

Df||lz(t) —y(®)llx < —clla() —y@®llx + Clua(t) — uy(t)|lu

@ F is incrementally ISS, that is, for all xg, yo

e (1—e
le@®) —y®lx < elao—golx + " sup Jup(r) - uy(rll

T€[0,¢]

© F has incremental LY, ,, gain equal to //c, for g € [1, ],

() —y()llxg < é [ (-) = uy(lleeg  (for o = yo)




Signal norms and system gains 3/3

Given norm || - ||x on R™ (or || - |lx on R¥),

° Eg\,, q € [1, 0], is vector space of continuous signals, z : R>o — R™, with well-defined

bounded norm
R q 1/q
(] le@lgde) ™ ifae ool

supy>o [ ()]l x if ¢ = o0

[2()llx.q = ()

@ Input-state system has EqX_u—induced gain upper bounded by v > 0 if, for all u € £},
the state x from zero initial state satisfies

() llxg < v llul)leq (3)



From time-invariant to periodic systems

\W“

For time-varying vector field F and norm || - ||
Q osLip,(F) < —c<0

@ F is T-periodic

N\

Then
© there exists a unique periodic solution z* : R>g — R™ with period T’

@ for every initial condition x,

|l2(t, ) — 2" (t)|| < e™|lzo — 2" (0)] (4)

G. Russo, M. Di Bernardo, and E. D. Sontag. Global entrainment of transcriptional systems to periodic inputs. PLoS Computational
Biology, 6(4):¢1000739, 2010. @


http://dx.doi.org/10.1371/journal.pcbi.1000739

B |

n subsystems

@ n local norms || - ||; on RYi
@ an aggregating norm || - ||agg on R™
© composite norm

G. Russo, M. Di Bernardo, and E. D. Sontag. A contraction approach to the hierarchical analysis and design of networked systems. /EEE
Transactions on Automatic Control, 58(5):1328-1331, 2013. @


http://dx.doi.org/10.1109/TAC.2012.2223355

Networks of contracting systems

Interconnected subsystems: x; € RN and z_; € RN—Ni;

j?i:Fi(l‘i,CL‘_i), for i € {1,...,1’L}

Network contraction theorem

e oslLip wrt z;: osLip,, (F;) < —c;, uniformly in z_;
o Lip wrt to z;: Lip, (F;) < 4, uniformly in z_;
=€l ooo gln

@ the Lipschitz constants matrix | : . | is Hurwitz

gnl oo —Cp

— the interconnected system is infinitesimally contracting




The network science of Metzler Hurwitz matrices

—C1 ... gln
is Metzler (so that Perron-Frobenius Theorem applies)

Enl ... —Cp

Hurwitzness depends upon both topology and edge weights
@ directed acyclic interconnections of contracting systems are strongly contracting

@ For n = 2, Hurwitz if and only if small gain condition

b1z £
C1 C2

cycle gain := <1

@ For n > 3, Hurwitz if and only if network small-gain theorem for Metzler matrices




Hurwitz Metzler Theorem
Q@ M is Hurwitz,
@ there exists 7 € R%, such that " M < 0, or, equivalently, i, (M) <0,

© there exists £ € RY such that M¢ < 0, or, equivalently, ,U/oo’[é']—l(M) <0, and

O there exists a diagonal P = P" > 0 satisfying M ' P + PM < 0 or, equivalently,
fig p1/2(M) < 0.




Input: a Metzler matrix M € R™*™

Output: polynomials {vc,,...,7c,} in entries of M
1: C := set of simple cycles of digraph associated to M
2: 74 := gain of cycle p € C
3: for ¢ from 2 to n

4. C; := cycles in C passing through only nodes 1,...,%
5 e = Z’V¢> —Z VoV T Z YoV Vp — "
$€C; $peC; é,9,p€C;

L oLy, ¢Lp, P Llp

Network small-gain theorem for Metzler matrices
Metzler M is Hurwitz <= Yo, < 1,--- e, <1

@ not unique: distinct/equivalent conditions after renumbering, redundancy

@ computational efficiency: after precomputation of simple cycles

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic stability conditions for Metzler matrices and monotone systems. SIAM Journal on
Control and Optimization, 59(5):3447-3471, 2021. ¢


http://dx.doi.org/10.1137/20M131802X

—C1 0 0 f14

0 —co floz loy ?®
M = )
0 l32 —c3 Ln Qg/d)g
by lyo  lyz —ca

Figure: associated digraph and simple cycles

14047 _ l34l43 _ lo3lay _ laylin
° ’}/¢1 cicqg ! ’y 2 - czcq ! /7 3 — cac3 and ’7 4 = “yca

0 Co=10
° C3={#3}: Y3 = Vg3 < 1 (redundant)
© Co=1{1,. ., da} ey = Z?:l Voi = Vo Vs < 1



—C1 0 0 0 515 £16
0 —C2 0 524 625 0
0 0 —C3 634 0 €36
0 542 643 —C4q 0 0

€51 452 0 0 —Cs 0

Ll 0 fe3 O 0 —cg]

@ Co, C3 empty
o Cy = {¢3}: v3 <1 (redundant)

¢2 o5

Figure: associated digraph and simple cycles

0 Cs ={d1,02,P3}: ves =71 +72 +73 — 1173 — Y23 < 1

° Cs=A{¢1,...

5
JO5Y VCs = Doy Vi — Y13 — Y2Y3 — V34 — Y2 Y4 + Y2374 < 1



Incremental ISS for strongly contracting delay ODEs

@(t) = F(a(t), z(t — 5),u(t)),0 < s < S, s I - e (5)

assume there exist positive constants ¢, €4, £ x such that, for all variables,

osL z : [F(z,d,u) —F(y,d,u),z —y]» < —C“Z—y”gc (6)
Lip z(t — s) : [[F(z,z1,u) — F(z,z2, u)[|lx < Lxllzr —x2|lx (7)
Lip u : IF(z, d,u) = F(z, d, v)llx < Lullu — vlly (8)

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

e -yl x DT l2(t) — y®)llx = [F(®), ot — ), ua () — @), y(t — 8),uy (1), o(8) — v(D]
< [F(e(®), 2(t — ), ua(8) — Fu(t), ot — ), uz (D), 2(t) — v()] x
+ IF(u (D), ot — 8), ua (D) — F(u(), y(t — ), uz(£), o(t) — y(D)]
+ [F(®), y(t = 9),ua (D) = Fu(®), u(t — ), uy (1), 2(8) — y(H)] »
< —clle®) —y®O1% + Lxllet — 8) =yt — )lullz®) — y(®l x.
+ gl (8) — uy (Ollullz(t) — v(®)x-

Thus, with m(t) = ||z (t) — y(t)|| x, delay differential inequality:

DFm(t) < —em(t) + La supg<acs Mt — 8) + by 1w () — uy (8|l 9

Halanay inequality is applicable. If ¢ > £, then
—p(t—tg) to—p(t—7)
m(t) < moe 07 + 0y e [l (7) = uy () lleedT, (10)
to

where p > 0 is the unique positive root of p = ¢ — éxe"s and mg = supg<s<s m(tg — s).



Networks of contracting systems with time delays

Interconnected subsystems i € {1,...,n}

& =Fi(zi, o, 2t —s),ui),  0<s<S, ||l lliw (11)
Assume there exist positive constants st

osL xT; . [[Fi(l’i, e ) — Fi(yi, e ),l'i — yl]]l S —Ci”l‘i — yl||12

. n
Lip z_; : IFileeyzminee ) = Filesyise - )i < ijl,jséi Yijllzs = yslls

- —8 p— p— n o~ — —
Lip 277 : LT GRS I o GO VA || P Zj:”#%juxj Syl
Lip U; - ||Fz( .. ,ui) — Fi(. cey Uz)”z S éi,l/{ |uz — 'Uin',Z/{

With m;(t) = ||zi(t) — yi(t)||;, delay differential inequality:
D¥m(t) < —=Cm(t) + I'm(t) + T supoccs m(t — 5) + ullua () — uy (1) |

and, if the Metzler matrix —C + T + I is Hurwitz, then (11) is incremental ISS

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. /EEE Transactions on Automatic Control, 67(3):1453—
1459, 2022. 4


http://dx.doi.org/10.1109/TAC.2021.3062565

Forward Euler theorem

Forward Euler theorem for contracting dynamics
Given arbitrary norm || - ||, equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that x;+1 = x; + aF(xy) is contracting

Ol

Given contraction rate ¢ and Lipschitz constant ¢, define condition number xk =

O |d+aF is contracting for

0 -
<a<cﬁ(1+,€)

@ the optimal step size minimizing and minimum contraction factor:

=Lk o(2)

z*:1—41 +823+O< )




Improved bounds for inner-product norms

O the map Id +aF is a contraction map wrt || - ||y p1/2 for

2
I<a<—
CK
@ the optimal step size minimizing and minimum contraction factor:

at=rg  &=1-55+9()




Application: /.-contracting neural networks

&t =—x+ P(Ax + Bu+b) (recurrent NN)
x = ®(Azx + Bu+b) (implicit NN)
Tp+1 = (1 — @)z + a®(Azxy + Bu + b) (forward Euler)

A) <1 (i.e., i+ ;7| < 1 for all 1)
ool ) o+ Yl

o recurrent NN is contracting with rate 1 — poo(A)+

o implicit NN is well posed

1-— A 1

o forward Euler is contracting with factor 1 — M ata = ———
— min;(a;;)— 1 — min;(ay;) -
| Blloo

@ input-state Lipschitz constant Lip,_,, =

1- :uoo(A)-i-




9 Generalizations



From nominal to uncertain systems

Given a norm || - ||, consider
& =F(x) + A(x)
Assume:
e contractivity: osLip(F) < —¢ <0

@ bounded disturbance:  osLip(A) <d < ¢

Then
@ F + A is strongly contracting with rate ¢ — d

O the unique equilibria z¢ of F and zf,  of F + A satisfy

* X < -~ 70
lok = 2Fpall < ——




From global to local contractivity

Given a norm || - ||, consider

& =F(x)

Assume:
e contractivity over closed set D: osLip(F|p) < —c< 0

e existence of almost equilibrium: D contains the closed B at = of radius r > ||F(Z)]| /¢

Then
@ B is forward invariant

@ F|p is strongly infinitesimally contracting




From strongly to weakly contracting systems

Given a nor m || - ||, consider
z = F(x) satisfying osLip(F) =0
Dichotomy for weakly-contracting systems
@ no equilibrium and every trajectory is unbounded, or
@ at least one equilibrium, every trajectory is bounded, and local asy stability = global

.

1

)




Q@ Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928):
¢1-weakly contracting (after a rescaling change of coordinates)

@ Matrosov-Bellman interconnected stable systems (Bellman, 1962; Matrosov, 1962):
strongly contracting wrt composite norm

© Kuramoto coupled oscillators (Kuramoto, 1975):

strongly semicontracting wrt ({5, 1I,,) norm, in neighb'd of each phase-cohesive
equilibrium

Q Yorke multigroup SIS epidemic model (Lajmanovich and Yorke, 1976):
equilibrium contracting wrt weighted ¢ //, norms (at disease-free and endemic eq.)

© Hopfield and cellular neural networks (Hopfield, 1982):
{1 /{~-strongly contracting

O Daganzo cell transmission model for traffic networks (Daganzo, 1994):
{1-weakly contracting, when the dynamics is monotone

@ Chua’s diffusively-coupled dynamical systems (Wu and Chua, 1995):
strongly semi-contracting wrt (2,p) tensor norm on R" ® R¥

o ..



o History and resources

e Basic definitions
@ Discrete- and continuous-time dynamics on vector spaces
@ Dynamics on Riemannian manifolds

e Examples

@ Optimization-based dynamics
@ Recurrent neural network dynamics

o Properties of contracting dynamics
@ iISS
@ Periodic systems
@ Composite norms and interconnected systems
@ Contractivity of delay dynamics
@ Forward Euler theorem

Generalizations
Conclusions and future research

Advanced Topics: Semicontractivity, ergodic coefficients, and duality
@ Systems with invariance/conservation properties
@ Induced seminorms and duality

© 000

Advanced Topics: Time-varying convex optimization via contracting dynamics
@ Tracking equilibrium trajectories



contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

’

Lyapunov Theory Contraction Theory for Dynamical Systems
F admits global Lyapunov function F is strongly contracting

existence of equilibrium | assumed implied + computational methods

Lyapunov function arbitrary |l — 2z*|| and ||F(z)]|

inputs ISS via KL and L functions iISS via explicit constants

search for contraction properties
design  engineering systems to be contracting J




Theoretical frontiers
higher order contraction
relationship with monotone operator theory

metric spaces

computational methods

Limitations: not all stable systems are contractive:

@ Lyapunov-diagonally-stable networks

multistable and locally contracting systems

°
@ biochemical networks
°

control contraction design

Application to control and learning
control: optimization-based control design

ML: implicit models and energy-based learning

©0@0

neuroscience: robust dynamical modeling




o Advanced Topics: Semicontractivity, ergodic coefficients, and duality
@ Systems with invariance/conservation properties
@ Induced seminorms and duality



Consider a vector field F : R® — R™, and let £, € R™.

@ Invariance property: for all z,y € R” and o € R,
F(x + af) = F(z) or equivalently
o Conservation property: for all x,y € R™,

n F(z) =n"F(y) or equivalently



Prototypical dynamics

Let A € R™*"™ be row-stochastic: A1,, =1, and A >0

Averaging Systems
Tpy1 = Axy

Invariance: dynamics unaffected by
translations in span{1,}

Examples: distributed optimization,
robotic coordination, frequency
synchronization, ...

Dynamical Flow Systems
T
Tpy1 = A T
Conservation: quantity 1]z is constant

Examples: compartmental models, Markov
chains



Historical starting point

Given row-stochastic A € R™*",
Markov-Dobrushin ergodic coefficient

T1(A) = max ||ATz||1
l|2]l1=1,1,} 2=0

71(A) < 1 under mild connectivity conditions
7,(A) also defined for general p € [1, 0]

How is 7; an induced norm?

A. A. Markov. Extensions of the law of large numbers to dependent quantities. /zvestiya Fiziko-matematicheskogo obschestva pri Kazanskom
universitete, 15, 1906. (in Russian)
R. L. Dobrushin. Central limit theorem for nonstationary Markov chains. |. Theory of Probability & Its Applications, 1(1):65-80, 1956. 4


http://dx.doi.org/10.1137/1101006

A € R™ ™ row-stochastic

Classical Property of Averaging Systems  xj.1 = Axy
Given £ € R, max-min disagreement:

s(Az) < 7i(A) s(x), where s(z) = mla,x{mi} - mjin{wj}

Classical Property of Markov Chains z;,.; = Az,
Given 7,0 in the simplex A,,, total variation distance:

drv(ATm, ATo) < 71(A) dry(m, o), where dry(m, o) |7TZ =
2

Why is the same 7; relevant in both cases?



Seminorms

A seminorm is a function || - ||| : R® — R>¢ s.t.,, Va € R and Vz,y € R™
Q (homogeneity): [|az|| = |al |||
Q (subadditivity): ||z + | <[] + [yl

The kernel is the vector space:
K ={z eR": |lz|| =0}

We focus on consensus seminorms, where K = span{1,}.

Note: || - || is invariant under translations in K



Projection and distance-based seminorms: graphical definitions

Projection seminorms

'y

0dk

RN
S .,

Y, s,

Distance seminorms

%/l proj,p = T ]|, Ty =TI7

’CL

ICJ_

llldise = minuex [l — ullp



Consensus seminorms

When K = span{1,,}, consensus seminorms

|”x”|pr0j,p |||37”|dist,P
n [Z] n
4 Z s — ang| Zx(i) - Z Z(5)
i=1 i=1 J=[21+1
2 VA — ) VA — )
0o max; |&; — Tavg)| 3 () — 2(w))

where we have sorted z(1) > x9) > -+ > Z(p)



p=1 p=2

7 2 El 0 1 2

Figure: Two-dimensional sections of three-dimensional unit disks of projection (solid contours) and distance (dashed
contours) consensus seminorms. We plot the sections corresponding to (z1,z2,z3 = 0).



Induced matrix seminorms

Consider a seminorm || - ||| on R™ with kernel K.
Induced matrix seminorm: function || - ||| : R**™ — R>o where
Al = max [|Az[|, VA eR™™"
llzll<1
1K

A\ In general, [|Az]] £ [l J

Inequality is true if z € K+ or AK C K




Key facts about dual and induced norms

Properties of dual and induced norms
© /, and /, norms are dual, for 1/p+1/g=1

-l = (I llo), Ml = (- ll)

@ dual norm satisfies (sharp) Holder inequality:  x'y < ||z|lp |lllq
O equality between dual induced norms:  ||All, = [|[AT |,

© induced norm is submultiplicative: || AB| < ||A]|||B]|




Key facts about dual and induced seminorms

Properties of dual and induced seminorms

@ /,-distance and /,-projection seminorms are dual, for 1/p+1/¢=1

I~ Hlaist.o = (- Hlproj.a) I Mprojq = (Il - Mast.p).

@ dual seminorm satisfies (sharp) Markov inequality: x' Ty < ||2|laist.p l|¥lllproj.q
@ equality between dual induced seminorms: || Alllaistpy = 1A lproj.q

Q induced seminorm is submultiplicative:  [|AB|| < ||A||||B]| if AKX € K or BCT C KT

o

Ergodic coefficients are induced seminorms

1A dist,p = 14 Mpros.q = 7a(A) :=

= max ATz,
lzllq=1, 2L1n




How Markov and Banach's results meet

Classical Property of Averaging Systems
Given row-stochastic A € R™*™ and z,y € R™:

4@ = 9l < 1Az = ylldistoo
= [ll4]

}dist,oomx - deist,oo

Classical Property of Markov Chains
Given row-stochastic A € R™*™ and 7,0 in the simplex A,:

-
A" (T = )llprojr < (Al = lllproj,1

= 14 o 1 [l = <l
_H‘A proj, 1 T proj, 1




Summary and future work

@ ergodic coefficients are contraction factors
@ duality explains their roles in both averaging and flow systems
© nonEuclidean norms play a key role

© semicontraction theory

© discrete/continuous-time Markov chains
@ discrete/continuous-time nonlinear consensus algorithms
@ local contractivity of Kuramoto and Kuramoto-Sakaguchi models

consider the set of undirected, unweighted connected graphs + selfloops

for each adjacency A;, define row-stochastic A; = diag(A4;1,) 1 4; (equal neighbor)
find a consensus seminorm || - ||| such that, for each 1,
Al <1

or prove that it does not exist




Continuous-time semicontraction theory

The induced log seminorm of A € R™*"™ is

M+ hAJ -1
442 g Mr Al =1
g (A) = lim N

Laplacian L, corresponding to weighted digraph with adj. matrix A:
[5]-1 n—1
paist1 (—L) = —=min (dow)j — > @i+ Y @y ¢r  dous = Aly

! i=1 =21
piist2(—L) = min {b T, L+ LTI, = —QbHL} Ty =1, 11,1]

Mdist,oo(—L) = —Iggl aij + aj; + Z min{az‘k,ajk}
k#i,j

Let p,q € [1,00] such that p~! + ¢~! = 1. For any matrix M € R™ ", and any kernel K,

Mdist,p(M> = MprOJ,q(MT)




e Advanced Topics: Time-varying convex optimization via contracting dynamics
@ Tracking equilibrium trajectories



Solving optimization problems via dynamical systems

J]w(t)

U Plant Yy

’—> @ = Optimizer(t,u,y) =] b e

studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)
optimization on manifolds (Brockett 1991)

power grids (Bolognani, Carli, Cavraro, Zampieri 2013)

online and dynamic feedback optimization (Dall'Anese, Dorfler, Simonetto, ... )



Example: Time-varying optimization algorithms
w(t)

|—> @ = Optimizer(t, u,y) |+ (Sz!grf'aft) >

optimization via dynamical systems
online time-varying optimization, optimization-based feedback control, ... J

min cost;(u) + costa(y) N @ = Optimizer (¢, u,y)
st.  y = Plant(u, w(t)) y = Plant(u, w(t))



From convex optimization to contracting dynamics — time-varying

Many convex optimization problems can be solved with contracting dynamics

& = F(z,0)

Convex Optimization

Contracting Dynamics

Unconstrained milqn f(z,0) &= —-Vyf(x,0)

rER™
min  f(x,0)

Constrained | z€R" & = —x + Projy(g)(x — vV f(z,0))
st. zeX()

Composite miRn f(z,0) +g(x,0) | & = —x+prox, , (v — ¥V f(z,0))
zeR™
min  f(z,0) P = Vo f(x,0)— ATX

Equality z€R™ v f(@,9) ’
st. Az =b(0) A=Az —b(0)
. min  f(z,0) &= =V [f(2,0) = ATVM, pp)(Az +7N),

Inequality z€R . ’

sit. Az < b(0) A=7(=A+ VM, o) (Az + )




Tracking equilibrium trajectories

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o — R4

Assume there exist norms || - ||x and || - ||o s.t.
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in w
@ Lipschitz wrt u: Lip,(F) <, uniformly in z

Theorem: Incremental ISS any two soltns: x(t) with input u, and y(t) with input w,

Dfl|lz(t) —y(@®)llx < —clla(t) —y@®llx + Clus(t) —uy(®)lle )




Tracking equilibrium trajectories

For parameter-dependent vector field F : R” x R — R™ and differentiable 6 : R>o — R4

Assume there exist norms || - ||x and || - || s.t.
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in w
e Lipschitz wrt u: Lip,(F) <, uniformly in x

.

Theorem: Equilibrium tracking for contracting dynamics
@ for each fixed 0, there exists a unique equilbrium z*(6)

@ the equilibrium map z*(-) is Lipschitz with constant -
c

© Df|lz(t)—2*(0(t)llx < —cllz®)—2*(O®)lx + éllé(t)ll@




Consequences for tracking error

D |la(t)—z*(0®)|lx < —cla(t)—2*(0®)]x + éHé(t)He

bounded input, bounded error
with asymptotic bound:

. . :
limsup 2(t) 2" @(®)lx < = limsup (8o
— 00

t—o00

bounded energy input, bounded energy error
vanishing input, vanishing error

exponentially vanishing input, exponentially vanishing error

periodic input, periodic error




Numerical simulations

. 1 2 . 1 2
o —r(t - t
min oz —r(t)ll2 min Sl +r(t)]l2
sit.  x1 + 2z + x3 = sin(wt), st.  —x1 + x9 < cos(wt),
r(t) = (sin(wt), cos(wt), 1),w = 0.2 r(t) = (sin(wt), cos(wt)),w = 0.2




Error

Upper bound
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Proof sketch for equilibrium tracking

Given & = F(x,0(t)) with osLip,(F) < —c and Lip,(F) < ¢
Task: compare trajectory x(t) with equilibrium trajectory z*(6(t))

Consider auxiliary dynamics with two trajectories:

T =F(z,0(t) +v(t) = F.ux(z,0,v)
Q v(t)=0 = trajectory x(t)
Q v(t)=1*(0(t)) = equilibrium trajectory z*(0(t))

Faux is contracting with osLip,(F..x) < —c and Lip,(Faux) = 1. Hence, ilSS:
DH|la(t)—z*(0(t))x < —c-llz(t)—2"(0(1)|lx +

—c- () —2"(0(1)[x +

10 =2 (0(8)l.x
: ||9(t)H@ (Since Lip(z*) =

IN
Oles =

Q>
—



Summary and future work

Summary:
@ from convex optimization to contracting dynamics
@ tracking-bounds for time-varying contracting systems

© applications to standard convex optimization problems

Ongoing work and open problems:
© contracting predictor-corrector methods
@ tracking bounds in time-varying norms

© convex but not strongly convex problems



Thank you for reading so far!

For any questions, please do not hesitate to email me
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