# Contracting Dynamical Systems: A Tutorial on Theory and Applications



Francesco Bullo

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara https://fbullo.github.io

Tutorial (based on lectures in Napoli Nov '22 and San Diego Jun '23). This version: 2023/06/23





## contractivity = robust computationally-friendly stability

fixed point theory + Lyapunov stability theory + geometry of metric spaces

## highly-ordered transient and asymptotic behavior:

- unique globally exponential stable equilibrium
   & two natural Lyapunov functions
- 2 robustness properties

bounded input, bounded output (iss) finite input-state gain robustness margin wrt unmodeled dynamics robustness margin wrt delayed dynamics

- operiodic input, periodic output
- Modularity and interconnection properties
- accurate numerical integration and equilibrium point computation



search for contraction properties design engineering systems to be contracting

# Acknowledgments





Veronica Centorrino Pedro Cisneros-Velarde Scuola Sup UIUC Meridionale



Alex Davydov UC Santa Barbara



Giulia De Pasquale ETH



Robin Delabays HES-SO Sion



Xiaoming Duan Shanghai Jiao Tong



Anand Gokhale UC Santa Barbara



Saber Jafarpour GeorgiaTech



Anton Proskurnikov Politecnico Torino



Giovanni Russo Univ Salerno



John W. Simpson-Porco University of Toronto



Kevin D. Smith Utilidata



Elena Valcher Universita di Padova

# Outline

### History and resources

- Discrete- and continuous-time dynamics on vector spaces
- Dynamics on Riemannian manifolds

- Optimization-based dynamics
- Recurrent neural network dynamics

- ilss
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Eorward Euler theorem

- Systems with invariance/conservation properties
- Induced seminorms and duality

Tracking equilibrium trajectories

# Contraction theory: historical notes

### Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundamenta Mathematicae*, 3(1):133–181, 1922.

### • Dynamics:

G. Dahlquist. *Stability and error bounds in the numerical integration of ordinary differential equations*. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology, No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. I. *Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika*, 5:52–90, 1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian)

### • Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. *IEEE Transactions on Circuit Theory*, 19(5):480–486, 1972.

### • Systems and control:

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. *Automatica*, 34(6): 683–696, 1998. <sup>60</sup>



### • Incomplete list of contributors who influenced me

Aminzare, Arcak, Chung, Coogan, Di Bernardo, Manchester, Margaliot, Pavlov, Pham, Proskurnikov, Russo, Sepulchre, Slotine, Sontag, ...

### • Surveys:

Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In *IEEE Conf. on Decision and Control*, pages 3835–3847, Dec. 2014b.

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of complex networks via contraction theory. In *Complex Systems and Networks*. Springer, 2016.

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview. *Annual Reviews in Control*, 52:135–169, 2021.

P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of contraction metrics. *Journal of Computational Dynamics*, 10(1):1–47, 2023.

The Banach Contraction Theorem is also referred to as the *Picard-Banach-Caccioppoli*, because of the earlier work by Picard (1890) on the "method of successive approximations" and the later independent work by Renato Caccioppoli (1930).



Figure: Renato Caccioppoli (Napoli, 20 gennaio 1904 – Napoli, 8 maggio 1959) was an Italian mathematician

1921-1932 student and researcher @ Napoli 1931-1934 professor @ Padova 1934-1959 professor @ Napoli

R. Caccioppoli. Un teorema generale sull'esistenza di elementi uniti in una trasformazione funzionale. *Rendiconti dell'Accademia Nazionale dei Lincei*, 11:794–799, 1930

### **Contraction conditions without Jacobians**

- uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks. *IEEE Transactions on Circuits and Systems*, 23(6): 355–379, 1976.
- no-name in: A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer, 1988. ISBN 902772699X (Chapter 1, page 5)
- One-sided Lipschitz maps in: E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, 1993. <sup>1</sup>/<sub>2</sub> (Section 1.10, Exercise 6)
- maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions on Neural Networks*, 12(2):360–370, 2001.
- dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257–2267, 2005.
- maps with negative lub log Lipschitz constant in: G. Söderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics, 46(3):631–652, 2006.
- **QUAD maps** in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. *Physica D: Nonlinear Phenomena*, 213(2):214–230, 2006.
- incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and Optimization, 3:175–201, 2013.

### Links to recent related educational and research events

- 2023 ACC Workshop on "Contraction Theory for Systems, Control, and Learning" http://motion.me.ucsb.edu/contraction-workshop-2023
- Tutorial session: https://sites.google.com/view/contractiontheory "Contraction Theory for Machine Learning" (PDFs and youtube videos) at the 2021 IEEE CDC conference, by Soon-Jo Chung, Jean-Jacques Slotine, and Hiroyasu Tsukamoto
- Tutorial paper at CDC2021 "Contraction-Based Methods for Stable Identification and Robust Machine Learning: a Tutorial" by Ian Manchester and coauthors: https://arxiv.org/abs/2110.00207, https://ieeexplore.ieee.org/abstract/document/9683128
- Plenary presentation: (Slides https://fbullo.github.io/talks/2022-12-FBullo-ContractionSystemsControl-CDC.pdf) "Contraction Theory in Systems and Control" by Francesco Bullo at the 2022 IEEE CDC
- Youtube lectures: "Lectures on Nonlinear Systems" by Jean-Jacques Slotine, Fall 2013: https://web.mit.edu/nsl/www/videos/lectures.html, Lectures 14-20 (approximately 1h20min each)
- Youtube lectures: "Minicourse on Contraction Theory" by Francesco Bullo, Fall 2022. Youtube lectures https://youtu.be/RvR47ZbqJjc: 10h in 4 lectures, with chapters
- Textbook: Contraction Theory for Dynamical Systems, Francesco Bullo, rev 1.1, Mar 2023. (Book and slides freely available) https://fbullo.github.io/ctds

# **Contraction Theory for Dynamical Systems**

# Francesco Bullo

Contraction Theory for Dynamical Systems, Francesco Bullo, KDP, 1.1 edition, 2023, ISBN 979-8836646806

- Textbook with exercises and answers. Format: textbook, slides, and paperbook
- Ontent:

Fixed point theory

Theory of contracting dynamics on vector spaces Applications to nonlinear and interconnected systems

- Self-Published and Print-on-Demand at: https://www.amazon.com/dp/B0B4K1BTF4
- PDF Freely available at

https://fbullo.github.io/ctds

I0h minicourse on youtube:

https://youtu.be/RvR47ZbqJjc

 Future version to include: systems on Riemannian manifolds, homogeneous spaces, and solid cones

"Continuous improvement is better than delayed perfection" Mark Twain

# Selected references from my group

### Contraction theory on normed spaces and Riemannian manifolds:

- A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. IEEE Transactions on Automatic Control, 67(12): 6667–6681, 2022a.
- S. Jafarpour, A. Davydov, and F. Bullo. Non-Euclidean contraction theory for monotone and positive systems. *IEEE Transactions on Automatic Control*, 2023.
   To appear
- 🌒 J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters, 65:74–80, 2014. 🤨

### Contracting neural networks:

- S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information Processing Systems, Dec. 2021. <sup>6</sup>
- A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In American Control Conference, pages 1527–1534, Atlanta, USA, May 2022c. 6
- V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Euclidean contractivity of neural networks with symmetric weights. IEEE Control Systems Letters, 7:1724–1729, 2023. 60

### Weak and semicontraction theory:

- S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. IEEE Transactions on Automatic Control, 67(3):1285–1300, 2022. <sup>6</sup>
- G. De Pasquale, K. D. Smith, F. Bullo, and M. E. Valcher. Dual seminorms, ergodic coefficients, and semicontraction theory. IEEE Transactions on Automatic Control, 2022. Submitted
- R. Delabays and F. Bullo. Semicontraction and synchronization of Kuramoto-Sakaguchi oscillator networks. IEEE Control Systems Letters, 7:1566–1571, 2023.

### **Optimization:**

- F. Bullo, P. Cisneros-Velarde, A. Davydov, and S. Jafarpour. From contraction theory to fixed point algorithms on Riemannian and non-Euclidean spaces. In IEEE Conf. on Decision and Control, Dec. 2021.
- A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory with applications to recurrent neural networks. In IEEE Conf. on Decision and Control, Cancún, México, Dec. 2022b.
- A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex optimization. IEEE Transactions on Automatic Control, June 2023. Submitted

# Outline

### Basic definitions

- Discrete- and continuous-time dynamics on vector spaces
- Oynamics on Riemannian manifolds

- Optimization-based dynamics
- Recurrent neural network dynamics

- ilss
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Eorward Euler theorem

- Systems with invariance/conservation properties
- Induced seminorms and duality

Tracking equilibrium trajectories

## **Banach Contraction Theorem** Let $(\mathcal{X}, d)$ be a *complete metric space*

If  $T : \mathcal{X} \to \mathcal{X}$  is Lipschitz with constant  $\ell < 1$  (called the *contraction factor*), then

- **①** T has a unique fixed point  $x^*$  in  $\mathcal{X}$
- ② the sequence {x<sub>k</sub>}<sub>k∈ℕ</sub> generated by the *Picard iteration* x<sub>k+1</sub> = T(x<sub>k</sub>) converges to x<sup>\*</sup> for all initial conditions x<sub>0</sub> ∈ X
- **(3)** the following error estimates hold for all  $k \in \mathbb{N}$ :

```
(geometric convergence):
```

```
(a-priori upper bound):
```

(a-posteriori upper bound):

$$d(x_k, x^*) \le \ell^k d(x_0, x^*)$$
  
$$d(x_k, x^*) \le \frac{\ell^k}{1 - \ell} d(x_0, x_1)$$
  
$$d(x_k, x^*) \le \frac{\ell}{1 - \ell} d(x_{k-1}, x_k)$$

# Proof

For  $x_{k+1} = T(x_k)$ 

• sequence  $\{x_k\}_{k\in\mathbb{N}}$  is Cauchy

$$d(x_{k+h}, x_k) \le d(x_{k+h}, x_{k+h-1}) + \dots + d(x_{k+1}, x_k)$$
  
$$\le (\ell^{h-1} + \dots + 1)d(x_{k+1}, x_k)$$
  
$$\le \frac{1}{1 - \ell}d(x_{k+1}, x_k)$$
  
$$\le \frac{\ell^k}{1 - \ell}d(x_1, x_0)$$

- $\bullet$  since  ${\mathcal X}$  is complete, sequence converges to a point  $x^*$
- $\bullet$  uniqueness from  $\ell < 1$
- geometric convergence

$$d(x_k, x^*) = d(T(x_{k-1}), x^*) \le \ell d(x_{k-1}, x^*) \le \ell^k d(x_0, x^*)$$

# Vector normInduced matrix normInduced matrix log norm $\|x\|_1 = \sum_{i=1}^n |x_i|$ $\|A\|_1 = \max_{j \in \{1,...,n\}} \sum_{i=1}^n |a_{ij}|$ $\mu_1(A) = \max_{j \in \{1,...,n\}} \left(a_{jj} + \sum_{i=1,i\neq j}^n |a_{ij}|\right)$ <br/> $= \max$ column "absolute sum" of A $\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$ $\|A\|_2 = \sqrt{\lambda_{\max}(A^{\top}A)}$ $\mu_2(A) = \lambda_{\max}\left(\frac{A + A^{\top}}{2}\right)$ $\|x\|_{\infty} = \max_{i \in \{1,...,n\}} |x_i|$ $\|A\|_{\infty} = \max_{i \in \{1,...,n\}} \sum_{j=1}^n |a_{ij}|$ $\mu_{\infty}(A) = \max_{i \in \{1,...,n\}} \left(a_{ii} + \sum_{j=1, j\neq i}^n |a_{ij}|\right)$ <br/> $= \max$ row "absolute sum" of A

# Discrete-time dynamics and Lipschitz constants

$$x_{k+1} = \mathsf{F}(x_k)$$
 on  $\mathbb{R}^n$  with norm  $\|\cdot\|$  and induced norm  $\|\cdot\|$ 

## Lipschitz constant

$$\begin{split} \mathsf{Lip}(\mathsf{F}) &= \inf\{\ell > 0 \text{ such that } \|\mathsf{F}(x) - \mathsf{F}(y)\| \le \ell \|x - y\| \quad \text{ for all } x, y\} \\ &= \sup_{x} \|D\mathsf{F}(x)\| \end{split}$$

For scalar map f,  $Lip(f) = sup_x |f'(x)|$ For affine map  $F_A(x) = Ax + a$ 

$$\|x\|_{2,P} = (x^{\top} P x)^{1/2} \qquad \operatorname{Lip}_{2,P}(\mathsf{F}_{A}) = \|A\|_{2,P} \le \ell \qquad \Longleftrightarrow \qquad A^{\top} P A \preceq \ell^{2} P$$
$$\|x\|_{\infty,\eta} = \max_{i} |x_{i}|/\eta_{i} \qquad \operatorname{Lip}_{\infty,\eta}(\mathsf{F}_{A}) = \|A\|_{\infty,\eta} \le \ell \qquad \Longleftrightarrow \qquad \eta^{\top} |A| \le \ell \eta^{\top}$$

Banach contraction theorem for discrete-time dynamics: If  $\rho := \operatorname{Lip}(\mathsf{F}) < 1$ , then

• F is contracting = distance between trajectories decreases exp fast  $(\rho^k)$ 

**2** F has a unique, glob exp stable equilibrium  $x^*$ 



# From induced norms to induced log norms

The induced log norm of  $A \in \mathbb{R}^{n \times n}$  wrt to  $\|\cdot\|$ :

$$\mu(A) := \lim_{h \to 0^+} \frac{\|I_n + hA\| - 1}{h}$$

| subadditivity: | $\mu(A+B) \le \mu(A) + \mu(B)$ |                    |
|----------------|--------------------------------|--------------------|
| scaling:       | $\mu(bA) = b\mu(A),$           | $\forall b \geq 0$ |





| Vector norm                                         | Induced matrix norm                                              | Induced matrix log norm                                                                                                                                                     |
|-----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $  x  _1 = \sum_{i=1}^n  x_i $                      | $  A  _1 = \max_{j \in \{1,,n\}} \sum_{i=1}^n  a_{ij} $          | $\begin{split} \mu_1(A) &= \max_{j \in \{1, \dots, n\}} \left( a_{jj} + \sum_{i=1, i \neq j}^n  a_{ij}  \right) \\ &= \max \text{ column "absolute sum" of } A \end{split}$ |
| $\ x\ _2 = \sqrt{\sum_{i=1}^n x_i^2}$               | $\ A\ _2 = \sqrt{\lambda_{\max}(A^\top A)}$                      | $\mu_2(A) = \lambda_{\max} \Big( \frac{A + A^\top}{2} \Big)$                                                                                                                |
| $\ x\ _{\infty} = \max_{i \in \{1,\dots,n\}}  x_i $ | $  A  _{\infty} = \max_{i \in \{1,,n\}} \sum_{j=1}^{n}  a_{ij} $ | $\mu_{\infty}(A) = \max_{i \in \{1,,n\}} \left( a_{ii} + \sum_{j=1, j \neq i}^{n}  a_{ij}  \right)$<br>= max row "absolute sum" of A                                        |

# Continuous-time dynamics and one-sided Lipschitz constants

 $\dot{x} = \mathsf{F}(x)$  on  $\mathbb{R}^n$  with norm  $\|\cdot\|$  and induced log norm  $\mu(\cdot)$ 

### **One-sided Lipschitz constant**

$$\begin{aligned} \mathsf{psLip}(\mathsf{F}) &= \inf\{b \in \mathbb{R} \text{ such that } [\![\mathsf{F}(x) - \mathsf{F}(y), x - y]\!] \leq b ||x - y||^2 \quad \text{ for all } x, y\} \\ &= \sup_x \mu(D\mathsf{F}(x)) \end{aligned}$$

For scalar map f,  $\operatorname{osLip}(f) = \sup_x f'(x)$ For affine map  $\mathsf{F}_A(x) = Ax + a$ 

$$\operatorname{osLip}_{2,P}(\mathsf{F}_A) = \mu_{2,P}(A) \leq \ell \qquad \Longleftrightarrow \qquad A^\top P + AP \preceq 2\ell P$$
  
$$\operatorname{osLip}_{\infty,\eta}(\mathsf{F}_A) = \mu_{\infty,\eta}(A) \leq \ell \qquad \Longleftrightarrow \qquad a_{ii} + \sum_{j \neq i} |a_{ij}| \eta_i / \eta_j \leq \ell$$

**Banach contraction theorem for continuous-time dynamics:** If -c := osLip(F) < 0, then

• F is infinitesimally contracting = distance between trajectories decreases exp fast  $(e^{-ct})$ 

**2** F has a unique, glob exp stable equilibrium  $x^*$ 



# From inner products to weak pairings

A weak pairing is  $[\![\cdot,\cdot]\!] : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  satisfying

 $\bullet \ [\![x_1+x_2,y]\!] \leq [\![x_1,y]\!] + [\![x_2,y]\!] \text{ and } x \mapsto [\![x,y]\!] \text{ is continuous,}$ 

**2** 
$$[\![bx, y]\!] = [\![x, by]\!] = b [\![x, y]\!]$$
 for  $b \ge 0$  and  $[\![-x, -y]\!] = [\![x, y]\!]$ ,

$$\ \, [\![x,x]\!] > 0, \text{ for all } x \neq \mathbb{O}_n,$$

**3** 
$$| [x, y] | \le [x, x]^{1/2} [y, y]^{1/2}$$
,  
Given norm  $\| \cdot \|$ , compatibility:  $[x, x] = \|x\|^2$  for all  $x$ 

## **Key properties**

Curve norm derivative formula: Sup of non-Euclidean numerical range:

$$\frac{1}{2}D^{+} \|x(t)\|^{2} = \llbracket \dot{x}(t), x(t) \rrbracket$$
$$\mu(A) = \sup_{\|x\|=1} \llbracket Ax, x \rrbracket$$

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. *IEEE Transactions on Automatic Control*, 67(12):6667–6681, 2022a.

| Norms                                                    | From inner products to sign and max pairings                                                                                                            | From LMIs to<br>log norms                                                                                                                      |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| $\ x\ _{2,P^{1/2}}^2 = x^\top P x$                       | $[\![x,y]\!]_{2,P^{1/2}} = x^\top P y$                                                                                                                  | $\mu_{2,P^{1/2}}(A) = \min\{b \mid A^{\top}P + PA \leq 2bP\}$                                                                                  |
| $\ x\ _1 = \sum_i  x_i $ $\ x\ _{\infty} = \max_i  x_i $ | $\llbracket x, y \rrbracket_1 = \lVert y \rVert_1 \operatorname{sign}(y)^\top x$ $\llbracket x, y \rrbracket_\infty = \max_{i \in I_\infty(y)} y_i x_i$ | $\mu_1(A) = \max_j \left( a_{jj} + \sum_{i \neq j}  a_{ij}  \right)$ $\mu_\infty(A) = \max_i \left( a_{ii} + \sum_{j \neq i}  a_{ij}  \right)$ |
|                                                          |                                                                                                                                                         |                                                                                                                                                |

where  $I_\infty(x)=\{i\in\{1,\ldots,n\} \text{ such that } |x_i|=\|x\|_\infty\}$ 

# Table of continuous-time contractivity conditions

| Log Norm<br>bound            | Demidovich<br>condition                                                         | One-sided Lipschitz condition                                                           |
|------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $\mu_{2,P}(DF(x)) \leq b$    | $PDF(x) + DF(x)^{\top}P \preceq 2bP$                                            | $(x-y)^{\top} P(F(x) - F(y)) \le b   x-y  _{P^{1/2}}^2$                                 |
| $\mu_1(DF(x)) \le b$         | $\operatorname{sign}(v)^{\top} D F(x) v \leq b \ v\ _1$                         | $\operatorname{sign}(x-y)^{\top}(F(x)-F(y)) \le b \ x-y\ _1$                            |
| $\mu_{\infty}(DF(x)) \leq b$ | $\max_{i\in I_{\infty}(v)}v_{i}\left(DF(x)v\right)_{i}\leq b\ v\ _{\infty}^{2}$ | $\max_{i \in I_{\infty}(x-y)} (x_i - y_i) (F_i(x) - F_i(y)) \le b   x - y  _{\infty}^2$ |
| $\mu_{\infty}(DF(x)) \le b$  | $\max_{i \in I_{\infty}(v)} v_i \left( DF(x)v \right)_i \le b \ v\ _{\infty}^2$ | $\max_{i \in I_{\infty}(x-y)} (x_i - y_i) (F_i(x) - F_i(y)) \le b \ x - y\ _{\infty}^2$ |

Equivalent contractivity conditions

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43–79, 1993. 😳

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions* on *Neural Networks*, 12(2):360–370, 2001.

G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. *IEEE Transactions on Control of Network Systems*, 2(1):57–67, 2015.

## Advantages of non-Euclidean approaches

- well suited for certain class of systems
   \$\ell\_1\$ for monotone flow systems
- 2 computational advantages

 $\ell_1/\ell_\infty$  constraints lead to LPs, whereas  $\ell_2$  constraints leads to LMIs

• robustness to structural perturbations

 $\ell_1/\ell_\infty$  contractions are connectively robust (i.e., edge removal)

adversarial input-output analysis

 $\ell_\infty$  better suited for the analysis of adversarial examples than  $\ell_2$ 

- reachability analysis via mixed-monotone embeddings  $\ell_{\infty}$  suited for mixed-monotone embeddings
- **o** asynchronous distributed computation

 $\ell_\infty$  contractions converge under fully asynchronous distributed execution

NonEuclidean contractions: biological transcriptional systems (Russo et al., 2010), Hopfield neural networks (Fang and Kincaid, 1996; Qiao et al., 2001), chemical reaction networks (Al-Radhawi and Angeli, 2016), traffic networks (Coogan and Arcak, 2015; Como et al., 2015; Coogan, 2019), multi-vehicle systems (Monteil et al., 2019), and coupled oscillators (Russo et al., 2013; Aminzare and Sontag, 2014a)

# Contraction dynamics on Riemannian manifolds

## Contraction theory on Riemannian manifolds originates in

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683–696, 1998. 🔨

## A formal coordinate-free analysis (with connection to monotone operators) is given in

J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters, 65:74–80, 2014. 🤨

## In the differential geometry literature, geodesically monotonic vector fields are studied by

S. Z. Németh. Geodesic monotone vector fields. *Lobachevskii Journal of Mathematics*, 5:13–28, 1999. URL http://mi.mathnet.ru/eng/ljm145

J. X. Da Cruz Neto, O. P. Ferreira, and L. R. Lucambio Pérez. Contributions to the study of monotone vector fields. Acta Mathematica Hungarica, 94(4):307–320, 2002.

J. H. Wang, G. López, V. Martín-Márquez, and C. Li. Monotone and accretive vector fields on Riemannian manifolds. *Journal of Optimization Theory and Applications*, 146(3):691–708, 2010.

Assume existence and uniqueness of geodesic curve between each (x, y)F contracting if geodesic distances from x to y diminishes along the flow of F



integral test: the inner product between F and the geodesic velocity vector  $\gamma'$  at x and y differential test: condition on covariant differential of F

Given vector field F on a Riemannian manifold  $(M, \mathbb{G})$  and c > 0, equivalent statements:

**()** integral condition: for each  $x, y \in M$  and geodesic  $\gamma : [0, 1] \to M$  with  $\gamma(0) = x$ ,  $\gamma(1) = y$ ,

$$\langle\!\langle \mathsf{F}(y), \gamma'(1) \rangle\!\rangle_{\mathbb{G}} - \langle\!\langle \mathsf{F}(x), \gamma'(0) \rangle\!\rangle_{\mathbb{G}} \le -c \,\mathrm{d}_{\mathbb{G}}(x, y)^2$$

or, equivalently, using the parallel transport map  $P_{y \to x}: T_y \mathsf{M} \to T_x \mathsf{M}$ ,

$$\langle\!\langle P_{y \to x} \mathsf{F}(y) - \mathsf{F}(x), \gamma'(0) \rangle\!\rangle_{\mathbb{G}} \le -c \, \mathrm{d}_{\mathbb{G}}(x, y)^2$$

**2** differential condition: for all  $v_x \in T_x M$ 

 $\langle\!\langle \nabla_{v_x} \mathsf{F}(x), v_x \rangle\!\rangle_{\mathbb{G}} \le -c \|v_x\|_{\mathbb{G}}^2,$ 

where  $\nabla$  is the Levi-Civita connection. In components:

 $\mathbb{G}(x)D\mathsf{F}(x) + D\mathsf{F}(x)^{\top}\mathbb{G}(x) + \mathcal{L}_{\mathsf{F}}\mathbb{G}(x) \preceq -2c\mathbb{G}(x)$ 

**(3)** *trajectory condition:* for all solutions  $x(\cdot), y(\cdot)$ 

 $D^+ \mathbf{d}_{\mathbb{G}}(x(t), y(t)) \leq -c \, \mathbf{d}_{\mathbb{G}}(x(t), y(t))$ 

# Outline

### History and resources

### Basic definitions

- Discrete- and continuous-time dynamics on vector spaces
- Dynamics on Riemannian manifolds

### 3 Examples

- Optimization-based dynamics
- Recurrent neural network dynamics

### Properties of contracting dynamics

- ilss
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Forward Euler theorem

### Generalizations

Conclusions and future research

Advanced Topics: Semicontractivity, ergodic coefficients, and duality

- Systems with invariance/conservation properties
- Induced seminorms and duality

Advanced Topics: Time-varying convex optimization via contracting dynamics
 Tracking equilibrium trajectories

# Optimization-based dynamics



# Example #1: Gradient flow for strongly convex function

Given strongly convex  $f : \mathbb{R}^n \to \mathbb{R}$  with parameter  $\mu$ , gradient dynamics

$$\dot{x} = \mathsf{F}_{\mathsf{G}}(x) := -\nabla f(x)$$

## $F_{G}$ is infinitesimally contracting wrt $\|\cdot\|_{2}$ with rate $\mu$ unique globally exp stable point is global minimum

If f is twice-differentiable, then  $\operatorname{Hess} f(x) \succeq \mu I_n$  for all x

$$D(-\nabla f)(x) = -\operatorname{Hess} f(x) \preceq -\mu I_n$$
  
$$\iff I_n D(-\nabla f)(x) + D(-\nabla f)(x)^\top I_n \preceq -2\mu I_n$$

# Convexity and contractivity

**Kachurovskii's Theorem**: For differentiable  $f : \mathbb{R}^n \to \mathbb{R}$ , equivalent statements:

- **①** f is strongly convex with parameter m
- **2**  $-\operatorname{grad} f$  is *m*-strongly infinitesimally contracting, that is

$$\left(-\operatorname{grad} f(x) + \operatorname{grad} f(y)\right)^{\top} (x-y) \leq -m \|x-y\|_2^2$$

Also: global minimum of f = globally-exponentially stable equilibrium of  $-\nabla f$ 

For map  $\mathsf{F}:\mathbb{R}^n\to\mathbb{R}^n,$  equivalent statements:

- F is a monotone operator<sup>a</sup> (or a coercive operator) with parameter m,
- F is *m*-strongly contracting

 ${}^{a}\mathsf{F}:\mathbb{R}^{n}\to\mathbb{R}^{n}$  is a *m*-strongly monotone operator if  $\langle\!\langle\mathsf{F}(x)-\mathsf{F}(y),x-y\rangle\!\rangle\geq m\|x-y\|_{2}^{2}$ 

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960

# Example #2: Saddle dynamics

Assume  $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ 

- $x \mapsto f(x,y)$  is  $\mu_x$ -strongly convex, uniformly in y
- $y\mapsto f(x,y)$  is  $\mu_y$ -strongly concave, uniformly in x

saddle dynamics (primal-descent / dual-ascent):

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \mathsf{F}_{\mathsf{S}}(x, y) := \begin{bmatrix} -\nabla_x f(x, y) \\ \nabla_y f(x, y) \end{bmatrix}$$

# F<sub>S</sub> is infinitesimally contracting wrt $\|\cdot\|_2$ with rate $\min\{\mu_x, \mu_y\}$ unique globally exp stable point is saddle point (min in x, max in y)

If f is twice-differentiable, then

$$\mu_2(D\mathsf{F}_{\mathsf{S}}(x,y)) = \mu_2 \left( \begin{bmatrix} -\operatorname{Hess}_x f(x,y) & -D_y \nabla_x f(x,y) \\ D_x \nabla_y f(x,y) & \operatorname{Hess}_y f(x,y) \end{bmatrix} \right)$$
$$\overset{\mu_2(A) = \mu_2(\frac{A+A^\top}{2})}{=} \mu_2 \left( \begin{bmatrix} -\operatorname{Hess}_x f(x,y) & 0 \\ 0 & \operatorname{Hess}_y f(x,y) \end{bmatrix} \right) = -\min\{\mu_x,\mu_y\}.$$

# Example #2 generalized: Pseudogradient dynamics

Each player *i* aims to minimize its own cost function  $J_i(x_i, x_{-i})$  (not a potential game) pseudogradient dynamics (aka gradient play in game theory):

$$\dot{x}_i = -\nabla_i J_i(x_i, x_{-i})$$

that is,  $\dot{x} = \mathsf{F}_{\mathsf{PseudoG}}(x) = -(\nabla_1 J_1(x_1, x_{-1}), \dots, \nabla_n J_n(x_n, x_{-n}))$  (stacked vector)

if  $F_{PseudoG}$  is infinitesimally contracting (wrt any norm and any rate) unique globally exp stable Nash equilibrium  $J_i(x_i^*, x_{-i}^*) \leq J_i(y_i, x_{-i}^*)$  for all  $y_i$ 

Sufficient conditions:

**Q** strong convexity of each  $x_i \mapsto J_i(x_i, x_{-i})$ , uniformly in  $x_{-i}$ , and

**3** small-gain condition in "network contraction theorem" (see later slide)

# Example #3: Primal-dual gradient dynamics

strongly convex function f s.t.  $0 \prec \mu_{\min} I_n \preceq \text{Hess } f \preceq \mu_{\max} I_n$ constraint matrix A s.t.  $0 \prec a_{\min} I_m \preceq A A^\top \preceq a_{\max} I_m$ 

linearly constrained optimization:

$$\min_{x \in \mathbb{R}^n} \quad f(x)$$
s.t.  $Ax = b$ 

primal-dual gradient dynamics:

$$\begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} = \mathsf{F}_{\mathsf{PDG}}(x, \lambda) := \begin{bmatrix} -\nabla f(x) - A^\top \lambda \\ Ax - b \end{bmatrix}$$

 $F_{PDG}$  is infinitesimally contracting wrt weighted  $\|\cdot\|_{2,P^{1/2}}$  with rate c

$$P = \begin{bmatrix} I_n & \alpha A^{\top} \\ \alpha A & I_m \end{bmatrix}, \ \alpha = \frac{1}{3} \min\left\{\frac{1}{\mu_{\max}}, \frac{\mu_{\min}}{a_{\max}}\right\}, \quad \text{and} \quad c = \frac{5}{18} \min\left\{\frac{a_{\min}}{\mu_{\max}}, \frac{a_{\min}}{a_{\max}}\mu_{\min}\right\}$$
  
For each  $\mu_{\min}I_n \preceq Q \preceq \mu_{\max}I_n, \quad \begin{bmatrix} -Q & -A^{\top} \\ A & 0 \end{bmatrix}^{\top}P + P\begin{bmatrix} -Q & -A^{\top} \\ A & 0 \end{bmatrix} \preceq -2cP$ 

# Example: Distributed optimization from primal-dual gradient descent

Consider a tree (undirected acyclic connected graph) with n nodes and m = n - 1 edges: Let  $A^{\top}$  = oriented incidence matrix, and  $\lambda_2, \ldots, \lambda_n$  = Laplacian eigenvalues. Then:

$$0 \prec \lambda_2 I_{n-1} \preceq A A^\top \preceq \lambda_n I_{n-1}$$

decomposable optimization: Rewrite  $\min_{x \in \mathbb{R}^n} f(x)$  when  $f(x) = \sum_i f_i(x)$  as

$$\begin{array}{ll} \min_{x_i \in \mathbb{R}^n} & \sum_{i=1}^n f_i(x_i) \\ \text{s.t.} & x_i = x_j \end{array} \quad \quad \text{for each edge } e = (i,j) \end{array}$$

distributed optimization via primal-dual gradient dynamics:

$$\begin{cases} \dot{x}_i &= -\nabla_i f_i(x_i) - \sum_{e=(i,j)} \lambda_e + \sum_{e=(j,i)} \lambda_e \\ \dot{\lambda}_e &= x_i - x_j & \text{for each edge } e = (i,j) \end{cases}$$

assume dual dynamics is fast and each  $f_i$  is  $\mu_i$ -strongly convex

 $F_{PDG}$  is infinitesimally contracting with  $c = \frac{5}{18} \frac{\lambda_2}{\lambda_n} \min_i \mu_i$
## Composite minimization and proximal gradient

For strongly convex + strongly smooth f, convex, closed, proper  $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ ,

$$\begin{split} x^{\star} &= \mathop{\mathrm{argmin}}_{x \in \mathbb{R}^n} f(x) + g(x) \qquad \Longleftrightarrow \qquad x^{\star} = \mathop{\mathrm{prox}}_{\gamma g} (x^{\star} - \gamma \nabla f(x)) \\ & \text{where } \mathop{\mathrm{prox}}_{\gamma g}(z) = \mathop{\mathrm{argmin}}_{x \in \mathbb{R}^n} g(x) + \frac{1}{2\gamma} \|x - z\|_2^2. \end{split}$$

minimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + g(x)$ 

**2** is transcribed into strongly infinitesimally contracting *proximal gradient* dynamics

$$\dot{x} = \mathsf{F}_{\mathsf{ProxG}}(x) := -x + \mathrm{prox}_{\gamma g}(x - \gamma \nabla f(x))$$

### proximal gradient dynamics:

$$\dot{x} = \mathsf{F}_{\mathsf{ProxG}}(x) := -x + \mathrm{prox}_{\gamma g}(x - \gamma \nabla f(x))$$

f is m-strongly convex and  $\ell\text{-strongly smooth}$ 

if 0 < γ < <sup>2</sup>/<sub>ℓ</sub>, then F<sub>PDG</sub> is infinitesimally contracting w.r.t. || · ||<sub>2</sub> with rate c c = 1 - max{|1 - γm|, |1 - γℓ|} and maximal rate at γ<sup>\*</sup> = <sup>2</sup>/<sub>m+ℓ</sub>
if f(x) = <sup>1</sup>/<sub>2</sub>x<sup>T</sup>Ax + b<sup>T</sup>x with A ≻ 0 and γ > 1/λ<sub>min</sub>(A), then F<sub>PDG</sub> is infinitesimally contracting w.r.t. || · ||<sub>2,(γA-I<sub>n</sub>)<sup>1/2</sup></sub> with rate c = 1

## Neural network models



## Example #5: Firing-rate recurrent neural network



sigmoid, hyperbolic tangent  $\begin{aligned} \mathsf{ReLU} &= \max\{x,0\} = (x)_+ \\ &0 \leq \Phi_i'(y) \leq 1 \end{aligned}$ 



 $\mathsf{F}_{\mathsf{FR}} \text{ is infinitesimally contracting wrt } \| \cdot \|_{\infty} \text{ with rate } 1 - \mu_{\infty}(W)_{+} \quad \text{if} \\ \mu_{\infty}(W) < 1 \qquad \qquad (\text{i.e., } w_{ii} + \sum_{j} |w_{ij}| < 1 \text{ for all } i)$ 

$$\begin{aligned} \operatorname{osLip}_{\infty}(\mathsf{F}_{\mathsf{FR}}) &= \sup_{x,u} \mu_{\infty} \left( -I_n + (D\Phi(Wx + Bu))W \right) = -1 + \sup_{x,u} \mu_{\infty} \left( D\Phi(Wx + Bu)W \right) \\ &= -1 + \max_{d \in [0,1]^n} \mu_{\infty}(\operatorname{diag}(d)W) \qquad (\text{max convex polytope, } 2^n \text{ vertices}) \\ &= -1 + \max\left\{ \mu_{\infty}(0), \mu_{\infty}(W) \right\} = -1 + \mu_{\infty}(W)_+ \end{aligned}$$

## Example #6: Firing-rate network with symmetric synapses

$$\begin{split} \dot{x} &= \mathsf{F}_{\mathsf{FR}}(x) := -x + \Phi(Wx + Bu) \\ 0 &\leq \Phi_i'(y) \leq 1 \quad \text{and} \quad W = W^\top \text{ with } \lambda_W = \lambda_{\max}(W) \end{split}$$

### F<sub>FR</sub> is infinitesimally contracting:

| (for $\lambda_W < 0$ )            | with rate $1$ wrt $\ \cdot\ _{2,(-W)^{1/2}}$                      |
|-----------------------------------|-------------------------------------------------------------------|
| $(\text{for }\lambda_W=0)$        | with rate $\ \cdot\ _{2,Q_{FR,\epsilon}}$ , for each $\epsilon>0$ |
| $(\text{for } 0 < \lambda_W < 1)$ | with rate $1-\lambda_W$ wrt $\ \cdot\ _{2,Q_{FR,\lambda_W}}$      |

For  $\lambda_W = 1$ ,  $F_{FR}$  is weakly infinitesimally contracting wrt  $\| \cdot \|_{2,Q_{FR,\lambda_W}}$ 

- $Q_{\mathsf{FR},a} := Uh_a(\Lambda)U^\top \succ 0$ , where  $W = U\Lambda U^\top$  and  $h_a(z) := 2a(1 + \sqrt{1 z/a})$
- optimal rates
- proof based upon LMI calculations and Sylvester's law of inertia

## Outline

#### History and resources

#### Basic definitions

- Discrete- and continuous-time dynamics on vector spaces
- Dynamics on Riemannian manifolds

#### 3 Examples

- Optimization-based dynamics
- Recurrent neural network dynamics

### Properties of contracting dynamics

- ilSS
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Forward Euler theorem

#### Generalizations

Conclusions and future research

Advanced Topics: Semicontractivity, ergodic coefficients, and duality

- Systems with invariance/conservation properties
- Induced seminorms and duality

Advanced Topics: Time-varying convex optimization via contracting dynamics
 Tracking equilibrium trajectories

## Equilibrium and Lyapunov functions

## Equilibria of contracting vector fields:

For a time-invariant F,  $c\text{-strongly contracting wrt}\parallel\cdot\parallel$ 

- for each t > 0, t-flow of F is a contraction,
   i.e., distance between solutions exponentially decreases with rate c
- 2 there exists an equilibrium  $x^*$ , that is unique, globally exponentially stable with global Lyapunov functions

$$x \mapsto V_1(x) = \|x - x^*\|^2$$
 and  $x \mapsto V_2(x) = \|\mathsf{F}(x)\|^2$ 

For a time-invariant F,

- osLip(F) = -c wrt  $\ell_2$  and  $DF(x) = DF(x)^{\top}$  for all x,
- 2 for each scalar w,

$$V_3(x) = -\int_0^1 x^\top \mathsf{F}(tx)dt + w$$

is c-strongly convex, is global Lyapunov, and  $\operatorname{grad} V_3(x) = -\mathsf{F}(x)$  for all x.

Fot time and input-dependent vector F,

$$\dot{x} = \mathsf{F}(t, x, u(t)), \qquad x(0) = x_0 \in \mathcal{X}, \qquad u(t) \in \mathcal{U}$$
(1)

Given norms  $\|\cdot\|_{\mathcal{X}}$  and  $\|\cdot\|_{\mathcal{U}}$ , assume constants  $c, \ell > 0$  s.t.

- osLip wrt x: osLip $_x(F) \leq -c < 0$ , uniformly in t, u
- Lip wrt u: Lip<sub>u</sub>(F)  $\leq \ell$ , uniformly in t, x

## Incremental ISS and gain of contracting systems

Then

**(**) any soltns: x(t) with input  $u_x$  and y(t) with input  $u_y$ 

 $D^{+} \|x(t) - y(t)\|_{\mathcal{X}} \leq -c \|x(t) - y(t)\|_{\mathcal{X}} + \ell \|u_{x}(t) - u_{y}(t)\|_{\mathcal{U}}$ 

**2** F is incrementally ISS, that is, for all  $x_0, y_0$ 

$$\|x(t) - y(t)\|_{\mathcal{X}} \leq e^{-ct} \|x_0 - y_0\|_{\mathcal{X}} + \frac{\ell(1 - e^{-ct})}{c} \sup_{\tau \in [0,t]} \|u_x(\tau) - u_y(\tau)\|_{\mathcal{U}}$$

**6** F has incremental  $\mathcal{L}^q_{\mathcal{X}\mathcal{U}}$  gain equal to  $\ell/c$ , for  $q \in [1, \infty]$ ,

$$\|x(\cdot) - y(\cdot)\|_{\mathcal{X},q} \leq \frac{\ell}{c} \|u_x(\cdot) - u_y(\cdot)\|_{\mathcal{U},q} \quad \text{(for } x_0 = y_0\text{)}$$

Given norm  $\|\cdot\|_{\mathcal{X}}$  on  $\mathbb{R}^n$  (or  $\|\cdot\|_{\mathcal{U}}$  on  $\mathbb{R}^k$ ),

•  $\mathcal{L}^q_{\mathcal{X}}$ ,  $q \in [1, \infty]$ , is vector space of continuous signals,  $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ , with well-defined bounded norm

$$\|x(\cdot)\|_{\mathcal{X},q} = \begin{cases} \left(\int_0^\infty \|x(t)\|_{\mathcal{X}}^q dt\right)^{1/q} & \text{if } q \in [1,\infty[\\ \sup_{t\geq 0} \|x(t)\|_{\mathcal{X}} & \text{if } q = \infty \end{cases}$$
(2)

• Input-state system has  $\mathcal{L}^{q}_{\mathcal{X},\mathcal{U}}$ -induced gain upper bounded by  $\gamma > 0$  if, for all  $u \in \mathcal{L}^{q}_{\mathcal{U}}$ , the state x from zero initial state satisfies

$$\|x(\cdot)\|_{\mathcal{X},q} \le \gamma \|u(\cdot)\|_{\mathcal{U},q} \tag{3}$$

## From time-invariant to periodic systems

For time-varying vector field F and norm  $\|\cdot\|$ 

- $\textbf{0} \ \operatorname{osLip}_x(\mathsf{F}) \leq -c < 0$
- **2** F is *T*-periodic



### Then

- **(**) there exists a unique periodic solution  $x^* : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$  with period T
- **2** for every initial condition  $x_0$ ,

$$\|x(t,x_0) - x^*(t)\| \le e^{-ct} \|x_0 - x^*(0)\|$$
(4)

G. Russo, M. Di Bernardo, and E. D. Sontag. Global entrainment of transcriptional systems to periodic inputs. *PLoS Computational Biology*, 6(4):e1000739, 2010.



- $n \text{ local norms } \|\cdot\|_i \text{ on } \mathbb{R}^{N_i}$
- 2) an aggregating norm  $\|\cdot\|_{\text{agg}}$  on  $\mathbb{R}^n$

### composite norm

G. Russo, M. Di Bernardo, and E. D. Sontag. A contraction approach to the hierarchical analysis and design of networked systems. *IEEE Transactions on Automatic Control*, 58(5):1328–1331, 2013.

## Networks of contracting systems

Interconnected subsystems:  $x_i \in \mathbb{R}^{N_i}$  and  $x_{-i} \in \mathbb{R}^{N-N_i}$ :

$$\dot{x}_i = \mathsf{F}_i(x_i, x_{-i}), \qquad ext{for } i \in \{1, \dots, n\}$$

### Network contraction theorem

۵

- osLip wrt  $x_i$ : osLip $_{x_i}(\mathsf{F}_i) \leq -c_i$ , uniformly in  $x_{-i}$
- Lip wrt to  $x_j$ : Lip $_{x_i}(\mathsf{F}_i) \leq \ell_{ij}$ , uniformly in  $x_{-j}$

the Lipschitz constants matrix 
$$\begin{bmatrix} -c_1 & \dots & \ell_{1n} \\ \vdots & & \vdots \\ \ell_{n1} & \dots & -c_n \end{bmatrix}$$
 is Hurwitz

⇒ the **interconnected system** is infinitesimally contracting

## The network science of Metzler Hurwitz matrices

$$\begin{bmatrix} -c_1 & \dots & \ell_{1n} \\ \vdots & & \vdots \\ \ell_{n1} & \dots & -c_n \end{bmatrix}$$
 is **Metzler** (so that Perron-Frobenius Theorem applies)

### Hurwitzness depends upon both topology and edge weights

- directed acyclic interconnections of contracting systems are strongly contracting
- For n = 2, Hurwitz if and only if small gain condition

$$\text{cycle gain}:=\frac{\ell_{12}}{c_1}\frac{\ell_{21}}{c_2}<1$$

• For  $n \ge 3$ , Hurwitz if and only if **network small-gain theorem for Metzler matrices** 

### Hurwitz Metzler Theorem

- M is Hurwitz,
- 2 there exists  $\eta \in \mathbb{R}^n_{>0}$  such that  $\eta^\top M < \mathbb{O}_n^\top$  or, equivalently,  $\mu_{1,[\eta]}(M) < 0$ ,
- **③** there exists  $\xi \in \mathbb{R}^n_{>0}$  such that  $M\xi < \mathbb{O}_n$  or, equivalently,  $\mu_{\infty,[\xi]^{-1}}(M) < 0$ , and
- there exists a diagonal  $P = P^{\top} \succ 0$  satisfying  $M^{\top}P + PM \prec 0$  or, equivalently,  $\mu_{2,P^{1/2}}(M) < 0.$

**Input:** a Metzler matrix 
$$M \in \mathbb{R}^{n \times n}$$
  
**Output:** polynomials  $\{\gamma_{C_2}, \ldots, \gamma_{C_n}\}$  in entries of  $M$   
1:  $C :=$  set of simple cycles of digraph associated to  $M$   
2:  $\gamma_{\phi} :=$  gain of cycle  $\phi \in C$   
3: **for** *i* from 2 to  $n$   
4:  $C_i :=$  cycles in  $C$  passing through only nodes  $1, \ldots, i$   
5:  $\gamma_{C_i} := \sum_{\phi \in C_i} \gamma_{\phi} - \sum_{\substack{\phi, \psi \in C_i \\ \phi \perp \psi}} \gamma_{\phi} \gamma_{\psi} \gamma_{\phi} + \sum_{\substack{\phi, \psi, \rho \in C_i \\ \phi \perp \psi, \phi \perp \rho, \psi \perp \rho}} \gamma_{\phi} \gamma_{\psi} \gamma_{\rho} - \cdots$ 

Network small-gain theorem for Metzler matricesMetzler M is Hurwitz $\iff$  $\gamma_{C_2} < 1, \cdots, \gamma_{C_n} < 1$ 

- not unique: distinct/equivalent conditions after renumbering, redundancy
- computational efficiency: after precomputation of simple cycles

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic stability conditions for Metzler matrices and monotone systems. *SIAM Journal on Control and Optimization*, 59(5):3447–3471, 2021. 💿



Figure: associated digraph and simple cycles

• 
$$\gamma_{\phi_1} = \frac{\ell_1 4 \ell_{41}}{c_1 c_4}$$
,  $\gamma_{\phi_2} = \frac{\ell_3 4 \ell_{43}}{c_3 c_4}$ ,  $\gamma_{\phi_3} = \frac{\ell_{23} \ell_{32}}{c_2 c_3}$ , and  $\gamma_{\phi_4} = \frac{\ell_{24} \ell_{42}}{c_2 c_4}$   
•  $\mathcal{C}_2 = \emptyset$ 

• 
$$C_3 = \{\phi_3\}: \gamma_{C_3} = \gamma_{\phi_3} < 1 \text{ (redundant)}$$
  
•  $C_4 = \{\phi_1, \dots, \phi_4\}: \gamma_{C_4} = \sum_{i=1}^4 \gamma_{\phi_i} - \gamma_{\phi_1} \gamma_{\phi_3} < 1$ 

| $-c_1$      | 0           | 0           | 0           | $\ell_{15}$ | $\ell_{16}$ |
|-------------|-------------|-------------|-------------|-------------|-------------|
| 0           | $-c_{2}$    | 0           | $\ell_{24}$ | $\ell_{25}$ | 0           |
| 0           | 0           | $-c_3$      | $\ell_{34}$ | 0           | $\ell_{36}$ |
| 0           | $\ell_{42}$ | $\ell_{43}$ | $-c_4$      | 0           | 0           |
| $\ell_{51}$ | $\ell_{52}$ | 0           | 0           | $-c_{5}$    | 0           |
| $\ell_{61}$ | 0           | $\ell_{63}$ | 0           | 0           | $-c_6$      |



Figure: associated digraph and simple cycles

- $\mathcal{C}_2$ ,  $\mathcal{C}_3$  empty
- $C_4 = \{\phi_3\}$ :  $\gamma_3 < 1$  (redundant)
- $C_5 = \{\phi_1, \phi_2, \phi_3\}$ :  $\gamma_{C_5} = \gamma_1 + \gamma_2 + \gamma_3 \gamma_1\gamma_3 \gamma_2\gamma_3 < 1$
- $C_6 = \{\phi_1, \dots, \phi_5\}$ :  $\gamma_{C_6} = \sum_{i=1}^5 \gamma_i \gamma_1 \gamma_3 \gamma_2 \gamma_3 \gamma_3 \gamma_4 \gamma_2 \gamma_4 + \gamma_2 \gamma_3 \gamma_4 < 1$

## Incremental ISS for strongly contracting delay ODEs

$$\dot{x}(t) = F(x(t), x(t-s), u(t)), 0 \le s \le S, \qquad \|\cdot\|_{\mathcal{X}}, \|\cdot\|_{\mathcal{U}}$$
(5)

assume there exist positive constants  $c,\ell_\mathcal{U},\ell_\mathcal{X}$  such that, for all variables,

osL

$$x: \qquad [[F(x, d, u) - F(y, d, u), x - y]]_{\mathcal{X}} \le -c ||x - y||_{\mathcal{X}}^{2}$$
(6)

$$\lim_{t \to \infty} F(x, x_1, u) - F(x, x_2, u) \|_{\mathcal{X}} \le \ell_{\mathcal{X}} \|x_1 - x_2\|_{\mathcal{X}}$$
(7)

$$\lim u: \qquad \qquad \|\mathsf{F}(x,d,u) - \mathsf{F}(x,d,v)\|_{\mathcal{X}} \le \ell_{\mathcal{U}} \|u - v\|_{\mathcal{U}}$$
(8)

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

$$\begin{split} \|x(t) - y(t)\|_{\mathcal{X}} D^{+} \|x(t) - y(t)\|_{\mathcal{X}} &= \left[\!\left[\mathsf{F}(x(t), x(t-s), u_{x}(t)) - \mathsf{F}(y(t), y(t-s), u_{y}(t)), x(t) - y(t)\right]\!\right]_{\mathcal{X}} \\ &\leq \left[\!\left[\mathsf{F}(x(t), x(t-s), u_{x}(t)) - \mathsf{F}(y(t), x(t-s), u_{x}(t)), x(t) - y(t)\right]\!\right]_{\mathcal{X}} \\ &+ \left[\!\left[\mathsf{F}(y(t), x(t-s), u_{x}(t)) - \mathsf{F}(y(t), y(t-s), u_{x}(t)), x(t) - y(t)\right]\!\right]_{\mathcal{X}} \\ &+ \left[\!\left[\mathsf{F}(y(t), y(t-s), u_{x}(t)) - \mathsf{F}(y(t), y(t-s), u_{y}(t)), x(t) - y(t)\right]\!\right]_{\mathcal{X}} \\ &\leq -c\|x(t) - y(t)\|_{\mathcal{X}}^{2} + \ell_{\mathcal{X}}\|x(t-s) - y(t-s)\|_{\mathcal{U}}\|x(t) - y(t)\|_{\mathcal{X}}, \\ &+ \ell_{\mathcal{U}}\|u_{x}(t) - u_{y}(t)\|_{\mathcal{U}}\|x(t) - y(t)\|_{\mathcal{X}}. \end{split}$$

Thus, with  $m(t) = \|x(t) - y(t)\|_{\mathcal{X}}$ , delay differential inequality:

$$D^{+}m(t) \leq -cm(t) + \ell_{\mathcal{X}} \sup_{0 \leq s \leq S} m(t-s) + \ell_{\mathcal{U}} \| u_{x}(t) - u_{y}(t) \|_{\mathcal{U}},$$
(9)

Halanay inequality is applicable. If  $c > \ell_{\mathcal{X}}$ , then

$$m(t) \le m_0 \mathrm{e}^{-\rho(t-t_0)} + \ell_{\mathcal{U}} \int_{t_0}^t \mathrm{e}^{-\rho(t-\tau)} \|u_x(\tau) - u_y(\tau)\|_{\mathcal{U}} d\tau,$$
(10)

where  $\rho > 0$  is the unique positive root of  $\rho = c - \ell_{\mathcal{X}} e^{\rho S}$  and  $m_0 = \sup_{0 \le s \le S} m(t_0 - s)$ .

## Networks of contracting systems with time delays

Interconnected subsystems  $i \in \{1, \ldots, n\}$ 

$$\dot{x}_{i} = \mathsf{F}_{i}(x_{i}, x_{-i}, x_{-i}(t-s), u_{i}), \qquad 0 \le s \le S, \qquad \|\cdot\|_{i}, \|\cdot\|_{i,\mathcal{U}}$$
(11)

Assume there exist positive constants st

$$\begin{array}{ll} \text{osL } x_i: \qquad [\![\mathsf{F}_i(x_i,\ldots) - \mathsf{F}_i(y_i,\ldots), x_i - y_i]\!]_i \leq -c_i \|x_i - y_i\|_i^2 \\ \text{Lip } x_{-i}: \qquad \|\mathsf{F}_i(\ldots, x_{-i},\ldots) - \mathsf{F}_i(\ldots, y_{-i},\ldots)\|_i \leq \sum_{j=1, j \neq i}^n \gamma_{ij} \|x_j - y_j\|_j \\ \text{Lip } x_{-1}^{-s}: \qquad \|\mathsf{F}_i(\ldots, x_{-i}^{-s},\ldots) - \mathsf{F}_i(\ldots, y_{-i}^{-s},\ldots)\|_i \leq \sum_{j=1, j \neq i}^n \widehat{\gamma}_{ij} \|x_j^{-s} - y_j^{-s}\|_j \\ \text{Lip } u_i: \qquad \|\mathsf{F}_i(\ldots, u_i) - \mathsf{F}_i(\ldots, v_i)\|_i \leq \ell_{i,\mathcal{U}} \|u_i - v_i\|_{i,\mathcal{U}} \end{array}$$

With  $m_i(t) = ||x_i(t) - y_i(t)||_i$ , delay differential inequality:

 $D^+m(t) \le -Cm(t) + \Gamma m(t) + \widehat{\Gamma} \sup_{0 \le s \le S} m(t-s) + \ell_{\mathcal{U}} ||u_x(t) - u_y(t)||_{\mathcal{U}}$ 

and, if the Metzler matrix  $-C + \Gamma + \widehat{\Gamma}$  is Hurwitz, then (11) is incremental ISS

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. *IEEE Transactions on Automatic Control*, 67(3):1453–1459, 2022.

## Forward Euler theorem

# Forward Euler theorem for contracting dynamics

Given arbitrary norm  $\|\cdot\|$ , equivalent statements

- $\dot{x} = F(x)$  is infinitesimally contracting
- 2 there exists  $\alpha > 0$  such that  $x_{k+1} = x_k + \alpha F(x_k)$  is contracting

Given contraction rate c and Lipschitz constant  $\ell$ , define condition number  $\kappa = \frac{\ell}{c} \ge 1$ 

 $\textbf{0} \ \mathsf{Id} + \alpha \mathsf{F} \text{ is contracting for }$ 

$$0 < \alpha < \frac{1}{c\kappa(1+\kappa)}$$

the optimal step size minimizing and minimum contraction factor:

$$\alpha^* = \frac{1}{c} \left( \frac{1}{2\kappa^2} - \frac{3}{8\kappa^3} + \mathcal{O}\left(\frac{1}{\kappa^4}\right) \right)$$
$$\ell^* = 1 - \frac{1}{4\kappa^2} + \frac{1}{8\kappa^3} + \mathcal{O}\left(\frac{1}{\kappa^4}\right)$$

### Improved bounds for inner-product norms

 $\textbf{0} \text{ the map Id} + \alpha \mathsf{F} \text{ is a contraction map wrt } \| \cdot \|_{2,P^{1/2}} \text{ for }$ 

$$0 < \alpha < \frac{2}{c\kappa^2}$$

**2** the optimal step size minimizing and minimum contraction factor:

$$\alpha_{\mathsf{E}}^* = \frac{1}{c\kappa^2} \qquad \ell_{\mathsf{E}}^* = 1 - \frac{1}{2\kappa^2} + \mathcal{O}\Big(\frac{1}{\kappa^4}\Big)$$

## Application: $\ell_{\infty}$ -contracting neural networks





$$\mu_{\infty}(A) < 1 \qquad \qquad \left(\text{i.e., } a_{ii} + \sum_{j} |a_{ij}| < 1 \text{ for all } i\right)$$

- recurrent NN is contracting with rate  $1 \mu_{\infty}(A)_+$
- implicit NN is well posed
- forward Euler is contracting with factor  $1 \frac{1 \mu_{\infty}(A)_{+}}{1 \min_{i}(a_{ii})_{-}}$  at  $\alpha^{*} = \frac{1}{1 \min_{i}(a_{ii})_{-}}$
- input-state Lipschitz constant  $\operatorname{Lip}_{u \to x} = \frac{\|B\|_{\infty}}{1 \mu_{\infty}(A)_{+}}$

## Outline

#### History and resources

#### Basic definitions

- Discrete- and continuous-time dynamics on vector spaces
- Dynamics on Riemannian manifolds

#### 3 Examples

- Optimization-based dynamics
- Recurrent neural network dynamics

#### Properties of contracting dynamics

- ilss
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Forward Euler theorem

### Generalizations

Conclusions and future research

Advanced Topics: Semicontractivity, ergodic coefficients, and duality

- Systems with invariance/conservation properties
- Induced seminorms and duality

Advanced Topics: Time-varying convex optimization via contracting dynamics
 Tracking equilibrium trajectories

Given a norm  $\|\cdot\|$ , consider

$$\dot{x} = \mathsf{F}(x) + \Delta(x)$$

Assume:

- contractivity:  $osLip(F) \leq -c < 0$
- bounded disturbance:

$$\operatorname{osLip}(\Delta) \le d \le c$$

### Then

- ${\rm 0} \ {\rm F}+\Delta \ {\rm is \ strongly \ contracting \ with \ rate \ } c-d$
- 2 the unique equilibria  $x_{\rm F}^*$  of F and  $x_{{\rm F}+\Delta}^*$  of F  $+\Delta$  satisfy

$$||x_{\mathsf{F}}^* - x_{\mathsf{F}+\Delta}^*|| \le \frac{||\Delta(x_{\mathsf{F}}^*)||}{c-d}$$



Given a norm  $\|\cdot\|$ , consider

 $\dot{x} = \mathsf{F}(x)$ 

### Assume:

- contractivity over closed set D:  $osLip(F|_D) \le -c < 0$
- existence of almost equilibrium: D contains the closed B at  $\bar{x}$  of radius  $r \ge \|\mathsf{F}(\bar{x})\|/c$

#### Then

- $\textbf{0} \ B \text{ is forward invariant}$
- **2**  $F|_B$  is strongly infinitesimally contracting

## From strongly to weakly contracting systems

Given a norm  $\|\cdot\|$ , consider

 $\dot{x} = F(x)$  satisfying osLip(F) = 0

## Dichotomy for weakly-contracting systems

O no equilibrium and every trajectory is unbounded, or

2 at least one equilibrium, every trajectory is bounded, and local asy stability  $\implies$  global





- Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928):  $\ell_1$ -weakly contracting (after a rescaling change of coordinates)
- Matrosov-Bellman interconnected stable systems (Bellman, 1962; Matrosov, 1962): strongly contracting wrt composite norm
- Strongly semicontracting wrt (ℓ<sub>2</sub>, Π<sub>n</sub>) norm, in neighb'd of each phase-cohesive equilibrium
- **Yorke multigroup SIS epidemic model** (Lajmanovich and Yorke, 1976): equilibrium contracting wrt weighted  $\ell_1/\ell_{\infty}$  norms (at disease-free and endemic eq.)
- **9** Hopfield and cellular neural networks (Hopfield, 1982):  $\ell_1/\ell_{\infty}$ -strongly contracting

**(8)** ...

- **O** Chua's diffusively-coupled dynamical systems (Wu and Chua, 1995): strongly semi-contracting wrt (2, p) tensor norm on  $\mathbb{R}^n \otimes \mathbb{R}^k$

## Outline

#### History and resources

### Basic definitions

- Discrete- and continuous-time dynamics on vector spaces
- Dynamics on Riemannian manifolds

### 3 Examples

- Optimization-based dynamics
- Recurrent neural network dynamics

### Properties of contracting dynamics

- iISS
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Forward Euler theorem

### Generalizations

Conclusions and future research

Advanced Topics: Semicontractivity, ergodic coefficients, and duality

- Systems with invariance/conservation properties
- Induced seminorms and duality

8 Advanced Topics: Time-varying convex optimization via contracting dynamics

Tracking equilibrium trajectories

### contractivity = robust computationally-friendly stability

fixed point theory + Lyapunov stability theory + geometry of metric spaces



|                          | Lyapunov Theory                                   | Contraction Theory for Dynamical Systems |  |  |  |  |
|--------------------------|---------------------------------------------------|------------------------------------------|--|--|--|--|
|                          |                                                   |                                          |  |  |  |  |
|                          | F admits global Lyapunov function                 | F is strongly contracting                |  |  |  |  |
| existence of equilibrium | assumed                                           | implied + computational methods          |  |  |  |  |
| Lyapunov function        | arbitrary                                         | $\ x - x^*\ $ and $\ F(x)\ $             |  |  |  |  |
| inputs                   | ISS via $\mathcal{KL}$ and $\mathcal L$ functions | iISS via explicit constants              |  |  |  |  |

search for contraction properties design engineering systems to be contracting

### **Theoretical frontiers**

- higher order contraction
- relationship with monotone operator theory
- metric spaces
- computational methods

Limitations: not all stable systems are contractive:

- Lyapunov-diagonally-stable networks
- multistable and locally contracting systems
- biochemical networks
- control contraction design

## Application to control and learning

- Control: optimization-based control design
- Ø ML: implicit models and energy-based learning
- oneuroscience: robust dynamical modeling







## Outline

#### History and resources

#### Basic definitions

- Discrete- and continuous-time dynamics on vector spaces
- Dynamics on Riemannian manifolds

#### 3 Examples

- Optimization-based dynamics
- Recurrent neural network dynamics

#### Properties of contracting dynamics

- ilss
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Forward Euler theorem

#### Generalizations

Conclusions and future research

#### Advanced Topics: Semicontractivity, ergodic coefficients, and duality

- Systems with invariance/conservation properties
- Induced seminorms and duality

Advanced Topics: Time-varying convex optimization via contracting dynamics
 Tracking equilibrium trajectories



Consider a vector field  $F : \mathbb{R}^n \to \mathbb{R}^n$ , and let  $\xi, \eta \in \mathbb{R}^n$ .

• Invariance property: for all  $x, y \in \mathbb{R}^n$  and  $\alpha \in \mathbb{R}$ ,

 $\mathsf{F}(x + \alpha \xi) = \mathsf{F}(x)$  or equivalently  $D\mathsf{F}(x)\xi = \mathbb{O}_n$ 

• Conservation property: for all  $x, y \in \mathbb{R}^n$ ,

 $\eta^{\top}\mathsf{F}(x) = \eta^{\top}\mathsf{F}(y)$  or equivalently  $\eta^{\top}D\mathsf{F}(x) = \mathbb{O}_{n}^{\top}$ 

Let  $A \in \mathbb{R}^{n \times n}$  be row-stochastic:  $A \mathbbm{1}_n = \mathbbm{1}_n$  and  $A \geq 0$ 

**Averaging Systems** 

**Dynamical Flow Systems** 

 $x_{k+1} = Ax_k$ 

Invariance: dynamics unaffected by translations in  $\text{span}\{\mathbb{1}_n\}$ 

Examples: distributed optimization, robotic coordination, frequency synchronization, ...

Conservation: quantity  $\mathbb{1}_n^\top x$  is constant

 $x_{k+1} = A^{\top} x_k$ 

Examples: compartmental models, Markov chains

Given row-stochastic  $A \in \mathbb{R}^{n \times n}$ , Markov-Dobrushin ergodic coefficient

$$\tau_1(A) = \max_{\|z\|_1 = 1, \mathbb{1}_n^\top z = 0} \|A^\top z\|_1$$

$$\begin{split} \tau_1(A) < 1 \mbox{ under mild connectivity conditions} \\ \tau_p(A) \mbox{ also defined for general } p \in [1,\infty] \\ \mbox{ How is } \tau_1 \mbox{ an induced norm?} \end{split}$$



A. A. Markov. Extensions of the law of large numbers to dependent quantities. *Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete*, 15, 1906. (in Russian)

R. L. Dobrushin. Central limit theorem for nonstationary Markov chains. I. Theory of Probability & Its Applications, 1(1):65–80, 1956. 🧐

 $A \in \mathbb{R}^{n \times n}$  row-stochastic

**Classical Property of Averaging Systems**  $x_{k+1} = Ax_k$ Given  $x \in \mathbb{R}^n$ , max-min disagreement:

 $s(Ax) \leq \tau_1(A) \ s(x),$  where  $s(x) = \max_i \{x_i\} - \min_i \{x_j\}$ 

**Classical Property of Markov Chains**  $x_{k+1} = A^{\top}x_k$ Given  $\pi, \sigma$  in the simplex  $\Delta_n$ , total variation distance:

 $d_{\mathsf{TV}}(A^{\top}\pi, A^{\top}\sigma) \leq \tau_1(A) d_{\mathsf{TV}}(\pi, \sigma), \quad \text{where} \quad d_{\mathsf{TV}}(\pi, \sigma) = \frac{1}{2} \sum_i |\pi_i - \sigma_i|$ 

Why is the same  $\tau_1$  relevant in both cases?
A seminorm is a function  $\| \cdot \| : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$  s.t.,  $\forall a \in \mathbb{R}$  and  $\forall x, y \in \mathbb{R}^n$ :

- **(**homogeneity): |||ax||| = |a||||x|||
- **2** (subadditivity):  $|||x + y||| \le |||x||| + |||y|||$

The *kernel* is the vector space:

$$\mathcal{K} = \{ x \in \mathbb{R}^n : |||x||| = 0 \}$$

We focus on *consensus seminorms*, where  $\mathcal{K} = \operatorname{span}\{\mathbb{1}_n\}$ .

Note:  $||| \cdot |||$  is invariant under translations in  ${\cal K}$ 

## Projection and distance-based seminorms: graphical definitions



### When $\mathcal{K} = \operatorname{span}\{\mathbb{1}_n\}$ , consensus seminorms



where we have sorted  $x_{(1)} \ge x_{(2)} \ge \cdots \ge x_{(n)}$ 



Figure: Two-dimensional sections of three-dimensional unit disks of projection (solid contours) and distance (dashed contours) consensus seminorms. We plot the sections corresponding to  $(x_1, x_2, x_3 = 0)$ .

Consider a seminorm  $\|\cdot\|$  on  $\mathbb{R}^n$  with kernel  $\mathcal{K}$ .

**Induced matrix seminorm**: function  $\|\|\cdot\|\| : \mathbb{R}^{n \times n} \to \mathbb{R}_{>0}$  where

$$|||A||| = \max_{\substack{\||x\|| \le 1\\ x \perp \mathcal{K}}} |||Ax|||, \qquad \forall A \in \mathbb{R}^{n \times n}$$



In general,  $|||Ax||| \leq |||A||| |||x|||$ Inequality is true if  $x \in \mathcal{K}^{\perp}$  or  $A\mathcal{K} \subseteq \mathcal{K}$ 

### Key facts about dual and induced norms

### Properties of dual and induced norms

**1** 
$$\ell_p$$
 and  $\ell_q$  norms are dual, for  $1/p + 1/q = 1$ 

$$\|\cdot\|_{p} = (\|\cdot\|_{q})_{\star} \qquad \|\cdot\|_{q} = (\|\cdot\|_{p})_{\star}$$

3 dual norm satisfies (sharp) *Hölder inequality*:  $x^{\top}y \leq ||x||_p ||y||_q$ 

**3** equality between dual induced norms:  $||A||_p = ||A^{\top}||_q$ 

() induced norm is submultiplicative:  $||AB|| \leq ||A|| ||B||$ 

## Key facts about dual and induced seminorms

### Properties of dual and induced seminorms

•  $\ell_p$ -distance and  $\ell_q$ -projection seminorms are dual, for 1/p + 1/q = 1

 $||| \cdot |||_{\text{dist},p} = (||| \cdot |||_{\text{proj},q})_{\star} \qquad \qquad ||| \cdot |||_{\text{proj},q} = (||| \cdot |||_{\text{dist},p})_{\star}$ 

3 dual seminorm satisfies (sharp) *Markov inequality*:  $x^{\top}\Pi_{\perp}y \leq |||x|||_{\text{dist},p} |||y|||_{\text{proj},q}$ 

3 equality between dual induced seminorms:  $|||A|||_{\text{dist},p} = |||A^{\top}|||_{\text{proj},q}$ 

• induced seminorm is submultiplicative:  $|||AB||| \leq |||A||| |||B|||$  if  $A\mathcal{K} \subseteq \mathcal{K}$  or  $B\mathcal{K}^{\top} \subseteq \mathcal{K}^{\top}$ 

### Ergodic coefficients are induced seminorms

$$|||A|||_{\operatorname{dist},p} = |||A^{\top}|||_{\operatorname{proj},q} = \tau_q(A) := \max_{||z||_q = 1, \ z \perp \mathbb{1}_n} ||A^{\top}z||_q$$

Classical Property of Averaging Systems Given row-stochastic  $A \in \mathbb{R}^{n \times n}$  and  $x, y \in \mathbb{R}^{n}$ :

$$|||A(x-y)|||_{\mathsf{dist},\infty} \leq \tau_1(A)|||x-y|||_{\mathsf{dist},\infty} = |||A|||_{\mathsf{dist},\infty} |||x-y|||_{\mathsf{dist},\infty}$$

### **Classical Property of Markov Chains**

Given row-stochastic  $A \in \mathbb{R}^{n \times n}$  and  $\pi, \sigma$  in the simplex  $\Delta_n$ :

$$\begin{split} \||A^{\top}(\pi - \sigma)|||_{\text{proj},1} &\leq \tau_1(A) |||\pi - \sigma|||_{\text{proj},1} \\ &= |||A^{\top}|||_{\text{proj},1} |||\pi - \sigma|||_{\text{proj},1} \end{split}$$

## Summary and future work

- ergodic coefficients are contraction factors
- 2 duality explains their roles in both averaging and flow systems
- InonEuclidean norms play a key role

### semicontraction theory

- discrete/continuous-time Markov chains
- Ø discrete/continuous-time nonlinear consensus algorithms
- Iocal contractivity of Kuramoto and Kuramoto-Sakaguchi models

### Future work

consider the set of undirected, unweighted connected graphs + selfloops for each adjacency  $A_i$ , define row-stochastic  $\mathcal{A}_i = \operatorname{diag}(A_i \mathbb{1}_n)^{-1} A_i$  (equal neighbor) find a consensus seminorm  $\|\cdot\|$  such that, for each i,

$$\|\!|\!|\mathcal{A}_i|\!|\!|| < 1$$

or **prove** that it does not exist

### Continuous-time semicontraction theory

The *induced log seminorm* of  $A \in \mathbb{R}^{n \times n}$  is

$$\mu_{\mathbb{H} \cdot \mathbb{H}}(A) \triangleq \lim_{h \to 0^+} \frac{\|\|I_n + hA\|\| - 1}{h}$$

Laplacian L, corresponding to weighted digraph with adj. matrix A:

$$\begin{split} \mu_{\mathsf{dist},1}(-L) &= -\min_{j} \left\{ (d_{\mathrm{out}})_{j} - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor - 1} a_{(i),j} + \sum_{i=\lceil \frac{n}{2} \rceil}^{n-1} a_{(i),j} \right\}, \quad d_{\mathrm{out}} = A \mathbb{1}_{n} \\ \mu_{\mathsf{dist},2}(-L) &= \min\left\{ b : \Pi_{\perp} L + L^{\top} \Pi_{\perp} \succeq -2b \Pi_{\perp} \right\}, \quad \Pi_{\perp} = I_{n} - \frac{1}{n} \mathbb{1}_{n} \mathbb{1}_{n}^{\top} \\ \mu_{\mathsf{dist},\infty}(-L) &= -\min_{i \neq j} \left\{ a_{ij} + a_{ji} + \sum_{k \neq i,j} \min\{a_{ik}, a_{jk}\} \right\} \end{split}$$

Let  $p, q \in [1, \infty]$  such that  $p^{-1} + q^{-1} = 1$ . For any matrix  $M \in \mathbb{R}^{n \times n}$ , and any kernel  $\mathcal{K}$ ,  $\mu_{\operatorname{dist}, p}(M) = \mu_{\operatorname{proj}, q}(M^{\top})$ 

## Outline

- Discrete- and continuous-time dynamics on vector spaces
- Dynamics on Riemannian manifolds

- Optimization-based dynamics
- Recurrent neural network dynamics

- ilss
- Periodic systems
- Composite norms and interconnected systems
- Contractivity of delay dynamics
- Eorward Euler theorem

- Systems with invariance/conservation properties
- Induced seminorms and duality

### Advanced Topics: Time-varying convex optimization via contracting dynamics 8

Tracking equilibrium trajectories

## Solving optimization problems via dynamical systems





- studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
- neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)
- optimization on manifolds (Brockett 1991)
- . . .
- power grids (Bolognani, Carli, Cavraro, Zampieri 2013)
- online and dynamic feedback optimization (Dall'Anese, Dörfler, Simonetto, ...)

## Example: Time-varying optimization algorithms

$$\dot{u} = \mathsf{Optimizer}(t, u, y) \underbrace{u}_{\text{(stable, fast)}} \underbrace{w(t)}_{y}$$

### optimization via dynamical systems

online time-varying optimization, optimization-based feedback control, ...

$$\begin{cases} \min & \mathsf{cost}_1(u) + \mathsf{cost}_2(y) \\ \mathsf{s.t.} & y = \mathsf{Plant}\big(u, w(t)\big) \end{cases} \implies \begin{cases} \dot{u} = \mathsf{Optimizer}(t, u, y) \\ y = \mathsf{Plant}\big(u, w(t)\big) \end{cases}$$

## From convex optimization to contracting dynamics – time-varying

Many convex optimization problems can be solved with contracting dynamics

 $\dot{x} = \mathsf{F}(x, \theta)$ 

|               | <b>Convex Optimization</b>                                                                                            | Contracting Dynamics                                                                                                                                                                        |
|---------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unconstrained | $\min_{x \in \mathbb{R}^n}  f(x, \theta)$                                                                             | $\dot{x} = -\nabla_x f(x, \theta)$                                                                                                                                                          |
| Constrained   | $ \begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x, \theta) \\ \text{s.t.} & x \in \mathcal{X}(\theta) \end{array} $ | $\dot{x} = -x + \operatorname{Proj}_{\mathcal{X}(\theta)}(x - \gamma \nabla_x f(x, \theta))$                                                                                                |
| Composite     | $\min_{x \in \mathbb{R}^n}  f(x, \theta) + g(x, \theta)$                                                              | $\dot{x} = -x + \operatorname{prox}_{\gamma g_{\theta}}(x - \gamma \nabla_x f(x, \theta))$                                                                                                  |
| Equality      | $ \min_{x \in \mathbb{R}^n}  f(x, \theta) $ s.t. $Ax = b(\theta)$                                                     | $\dot{x} = -\nabla_x f(x, \theta) - A^\top \lambda,$<br>$\dot{\lambda} = Ax - b(\theta)$                                                                                                    |
| Inequality    | $ \begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x, \theta) \\ \text{s.t.} & Ax \le b(\theta) \end{array} $          | $\dot{x} = -\nabla f(x, \theta) - A^{\top} \nabla M_{\gamma, b(\theta)} (Ax + \gamma \lambda),$<br>$\dot{\lambda} = \gamma (-\lambda + \nabla M_{\gamma, b(\theta)} (Ax + \gamma \lambda))$ |

## Tracking equilibrium trajectories

For parameter-dependent vector field  $F : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^n$  and differentiable  $\theta : \mathbb{R}_{\geq 0} \to \mathbb{R}^d$ 

 $\dot{x}(t) = \mathsf{F}(x(t), \theta(t))$ 

Assume there exist norms  $\|\cdot\|_{\mathcal{X}}$  and  $\|\cdot\|_{\Theta}$  s.t.

• contractivity wrt x:osLip $_x(\mathsf{F}) \leq -c < 0$ ,uniformly in u• Lipschitz wrt u:Lip $_u(\mathsf{F}) \leq \ell$ ,uniformly in x

**Theorem:** Incremental ISS any two soltns: x(t) with input  $u_x$  and y(t) with input  $u_y$ 

 $D^{+} \|x(t) - y(t)\|_{\mathcal{X}} \leq -c \|x(t) - y(t)\|_{\mathcal{X}} + \ell \|u_{x}(t) - u_{y}(t)\|_{\Theta}$ 

## Tracking equilibrium trajectories

For parameter-dependent vector field  $\mathsf{F}:\mathbb{R}^n\times\mathbb{R}^d\to\mathbb{R}^n$  and differentiable  $\theta:\mathbb{R}_{\geq 0}\to\mathbb{R}^d$ 

 $\dot{x}(t) = \mathsf{F}(x(t), \theta(t))$ 

Assume there exist norms  $\|\cdot\|_{\mathcal{X}}$  and  $\|\cdot\|_{\Theta}$  s.t.

### Theorem: Equilibrium tracking for contracting dynamics

- $\textbf{0} \text{ for each fixed } \boldsymbol{\theta} \text{, there exists a unique equilbrium } \boldsymbol{x}^{\star}(\boldsymbol{\theta})$
- **2** the equilibrium map  $x^*(\cdot)$  is Lipschitz with constant  $\frac{\ell}{c}$

**9** 
$$D^+ \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} \leq -c \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} + \frac{\ell}{c} \|\dot{\theta}(t)\|_{\mathbf{G}}$$

## Consequences for tracking error

$$D^{+} \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} \leq -c \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} + \frac{\ell}{c} \|\dot{\theta}(t)\|_{\Theta}$$

 bounded input, bounded error with asymptotic bound:

$$\limsup_{t \to \infty} \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} \leq \frac{\ell}{c^2} \limsup_{t \to \infty} \|\dot{\theta}(t)\|_{\mathbf{G}}$$

- bounded energy input, bounded energy error
- vanishing input, vanishing error
- exponentially vanishing input, exponentially vanishing error
- periodic input, periodic error

# Numerical simulations

$$\min_{x \in \mathbb{R}^3} \quad \frac{1}{2} \|x - r(t)\|_2^2$$
  
s.t.  $x_1 + 2x_2 + x_3 = \sin(\omega t),$ 

$$\min_{x \in \mathbb{R}^2} \quad \frac{1}{2} \|x + r(t)\|_2^2$$
  
s.t.  $-x_1 + x_2 \le \cos(\omega t),$ 

$$r(t) = (\sin(\omega t), \cos(\omega t), 1), \omega = 0.2$$

$$r(t) = (\sin(\omega t), \cos(\omega t)), \omega = 0.2$$







### Proof sketch for equilibrium tracking

Given  $\dot{x} = F(x, \theta(t))$  with  $osLip_x(F) \le -c$  and  $Lip_u(F) \le \ell$ Task: compare trajectory x(t) with equilibrium trajectory  $x^*(\theta(t))$ 

Consider auxiliary dynamics with two trajectories:

$$\dot{x} = \mathsf{F}(x,\theta(t)) + v(t) \quad =: \quad \mathsf{F}_{\mathsf{aux}}(x,\theta,v)$$

 $F_{aux}$  is contracting with  $osLip_x(F_{aux}) \leq -c$  and  $Lip_v(F_{aux}) = 1$ . Hence, iISS:

$$\begin{aligned} D^+ \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} &\leq -c \cdot \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} + 1 \cdot \|0 - \dot{x}^{\star}(\theta(t))\|_{\mathcal{X}} \\ &\leq -c \cdot \|x(t) - x^{\star}(\theta(t))\|_{\mathcal{X}} + \frac{\ell}{c} \cdot \|\dot{\theta}(t)\|_{\Theta} \quad \left(\text{since } \operatorname{Lip}(x^{\star}) = \frac{\ell}{c}\right) \end{aligned}$$

### Summary:

- I from convex optimization to contracting dynamics
- Itracking-bounds for time-varying contracting systems
- **③** applications to standard convex optimization problems

### Ongoing work and open problems:

- O contracting predictor-corrector methods
- tracking bounds in time-varying norms
- S convex but not strongly convex problems

Thank you for reading so far!

For any questions, please do not hesitate to email me