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@ A story in three chapters



Chapter 1: Contraction theory

contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J




Chapter 2: Recurrent and implicit neural networks

artificial neural network AlexNet '12 C. elegans connectome '17

recurrent neural networks
well-posedness, stability, computation and input/output robustness J




Chapter 3: Time-varying optimization algorithms

J]w(t)

. . - u y
|—(> U= Opt|m|zer(t, U, y) 7 (slt:a)ljl?,?aft) .

optimization via dynamical systems
online time-varying optimization, optimization-based feedback control, ... J




© Contractivity of dynamical systems
o Key definitions
@ Table of infinitesimal contractivity conditions
@ Examples
o Properties



Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux &
équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922. ¢

@ Dynamics:

G. Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology,
No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differen-
tial equations. |. [zvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90,
1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian) .

@ Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |EEE Transactions on Circuit Theory, 19(5):480-486, 1972. 4

@ Systems and control:

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):
683-696, 1998. ¢


http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3

Linear algebra: induced norms

Vector norm

Induced matrix norm

Induced matrix log norm
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Discrete-time dynamics and Lipschitz constants

Tp+1 = F(zg) on R™ with norm || - || and induced norm || - ||

Lipschitz constant

Lip(F) = inf{¢ > 0 such that ||F(z) — F(y)|| < {||lz —y| for all z,y}
= sup, [ Jr(z)|

For scalar map f, Lip(f) = sup, |f'()|
For affine map F4(z) = Az +a

|z]o.p = (x" Px)*/? Lipy p(Fa) = [|A]l2,p < ¢ — ATPA=<2P
12/l ooy = max |z:] /1 Lips y(Fa) = | Allccy < € = n'|Al < n'



Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then
@ F is contracting = distance between trajectories decreases exp fast (o)

@ F has a unique, glob exp stable equilibrium z*
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From discrete to continuous time

The induced log norm of A € R™*™ wrt to || - ||:
. |+ hA|| -1
A):=1 —_—
uld) = g = J
subadditivity: w(A+ B) < u(A) 4+ u(B)
scaling: w(bA) = bu(A), Vb >0
///,)/\espo(:(A) \\\\\ \\\\ A € spec(A) i
;¥ X ) . a(4)
B e e I I % X
LR e S R




Example induced log norms

Vector norm Induced matrix norm Induced matrix log norm
et =307 Joid Al = max 3T Jayl A= max (o 4307 lag)
= max column “absolute sum” of A
n A+ AT
lall = /> 72 Al = Amax(AT4) p2(4) = Amar (Z5)
n n
l#lloo = max fail  flAlloo = max ST fas poo(A) = max (it 327 las])

= max row “absolute sum" of A




Continuous-time dynamics and one-sided Lipschitz constants

& =F(x) on R™ with norm || - || and induced log norm pu(-)

One-sided Lipschitz constant

osLip(F) = inf{b € R such that (F(z) — F(y),z —y)) <bllz —y|*> for all z,y}
= Sup, M(JF(:‘UD

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az + a
osLipy p(Fa) = po,p(A) < ¢ — ATP+ AP < 2P
</

— ai; + Z |aijni/n; < €
J#i

OSLipoo,n(FA) = /’1’0077)("4)



Banach contraction theorem for continuous-time dynamics:
If —c:= osLip(F) < 0, then

@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

—ct




Detour: From inner products to weak pairings

— DM@ = [b9]

e D7 is upper-right Dini derivative

e weak pairing [-,-] : R" x R"™ — R exists for each norm, i.e.,

[y, 2], = |lz[lsign(z) "y (sign pairing)
ool = o o for Ase(w) = {i | |2l = llollc} ~ (max pairing)
1E€EAo (T

theory of weak pairings: computational properties
and applications to monotone operators J




Log norm Demidovich One-sided Lipschitz
bounds conditions conditions

p2,p(Jr(z)) < —¢  Pp(a) + Je(x) TP < —2¢P (@ —y)TP(F(z) — F(y)) < —clz —yl3

m(Ir(@) < —c sign(v) Je(2)v < —cllvllx sign(z —y)" (F(z) = F(y)) < —cllz — ylh
HooUr(@)) < —¢ max v; (Jr(2)v), < —cllvll3, e nax (@i—ys) (Fi(@)—Fi(y)) < —cllz—yl%

Each row = three equivalent statements. To be understood for all z,y € R™ and all v € R™.



Example #1: Gradient flow for strongly convex function

Given strongly convex f : R™ — R with parameter y, gradient dynamics

&= fe(z) = =V [(x)

fc is infinitesimally contracting wrt || - |2 with rate J

If f is twice-differentiable, then Hess f(x) = I, for all

v (@) = —Hess f(@) = —pl
<~ I, J(,vf)(fli) + ‘J(fo)(fli)TI,L < —oul,



Example #2: Primal-dual gradient dynamics

strongly convex function f s.it. 0 < pmindn = Hess f < pimaxIn
constraint matrix A st. 0 < amindy < AAT < amaxm
min T
win f(2)
st. Ax=1b

primal-dual gradient dynamics:

4] = foocton = [‘Vﬁ?__bﬂﬂ

fppg is infinitesimally contracting wrt weighted || - ||, p1/2 with rate ¢

. 1, aAT . 1 . 1 Hmin - 5 . Gmin  Amin
P= [aA I || 4= gmln{ﬂmax7a}’ and = Tgmln{ﬂmax, amax'umm}

.
—Q —AT —Q —AT
bind,y, =< ) < 1 ) < —2c
For each piminlyn = @ = tmaxIn, { A 0 } P+ P { A 0 < —2¢P



Example #3: Firing-rate recurrent neural network

& = frr(x) := —x + ®(Az + Bu)

tanh(y) ReLU(y)
sigmoid, hyperbolic tangent ] Y II y
ReLU = max{z,0} = (z)+ - e o
0<®i(y) <1 ‘ )
fer is infinitesimally contracting wrt | - || with rate 1 — 1o (A)4  if
foo(A) < 1 (i.e., as + Zj |asj| < 1 for all 7)

osLipa (fFr) = sup oo ( — In + (Jo(Az + Bu))A) = —1 + sup poo (Jo (Az + Bu)A)

Tu

=-1+ Il[lél)? Hoo(diag(d)A) (max convex polytope, 2" vertices)
defo,1]n

= —1 + max { too(0), f1oc (A) } = =1 4 poo(A)+



contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior:
@ unique globally exponential stable equilibrium
& two natural Lyapunov functions
@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics
periodic input, periodic output
modularity and interconnection properties
accurate numerical integration and equilibrium point computation

000

search for contraction properties
design  engineering systems to be contracting

A




Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.1 edition, 2023, ISBN 979-8836646806

Contraction Theory o |
i Q Textbook with exercises and answers. Format: textbook, slides,
for Dynamical Systems and paperbook

@ Content:
Fixed point theory
Theory of contracting dynamics on vector spaces
Applications to nonlinear and interconnected systems

@ Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/B0B4K1BTF4

O PDF Freely available at

https://fbullo.github.io/ctds

@ 10h minicourse on youtube:
https://youtu.be/RvR47Zbqljc

@ Future version to include: systems on Riemannian manifolds,

Francesco Bu"o homogeneous spaces, and solid cones

" Continuous improvement is better than delayed perfection”
Mark Twain



https://www.amazon.com/dp/B0B4K1BTF4
https://fbullo.github.io/ctds
https://youtu.be/RvR47ZbqJjc

© Application to recurrent neural networks
@ Recurrent and implicit networks
@ Forward Euler theorem



While most ML architectures are feedforward,
biological neural networks are recurrent and resemble implicit ML architectures

artificial neural network AlexNet '12 C. elegans connectome ’17

Aim: understand the dynamics of neural networks, so that
o reproducible behavior, i.e., equilibrium response as function of stimula
@ robust behavior in face of uncertain stimuli and dynamics
@ learning models, efficient computational tools, periodic behaviors ...
A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012

G. Yan, P. E. Vértes, E. K. Towlson, Y. L. Chew, D. S. Walker, W. R. Schafer, and A.-L. Barabdsi. Network control principles predict neuron function in the Caenorhabditis
elegans connectome. Nature, 550(7677):519-523, 2017. &


http://dx.doi.org/10.1038/nature24056

Fixed point computation

Feedforward NN Implicit/Recurrent NN

(©)
(@)

- 8 7
(©)
(@)
Tk

o = U, .’L':(I)(Al'—i-Bu—Fb),

y=Cx+d

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. ¢



http://dx.doi.org/10.1109/TSP.2021.3069677

Application: /.-contracting neural networks

&t =—x+ ®(Az + Bu+1b) (recurrent NN)
x = ®(Ax + Bu+1b) (implicit NN)
( .
If
too(A) < 1 (l.e., ai; + Z/ la;j| <1 for all 1,)

o recurrent NN is infinitesimally contracting with rate 1 — oo (A)+

o implicit NN is well posed




Forward Euler theorem

Forward Euler theorem for contracting dynamics
Given arbitrary norm || - ||, equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that x;+1 = x; + aF(xy) is contracting

Ol

Given contraction rate ¢ and Lipschitz constant ¢, define condition number xk =

O |d+aF is contracting for

0 -
<a<cﬁ(1+,€)

@ the optimal step size minimizing and minimum contraction factor:

=Lk o(2)

z*:1—41 +823+O< )




Application: /.-contracting neural networks

&t =—x+ P(Ax + Bu+b) (recurrent NN)
x = ®(Azx + Bu+b) (implicit NN)
Tp+1 = (1 — @)z + a®(Azxy + Bu + b) (forward Euler)

A) <1 (i.e., i+ ;7| < 1 for all 1)
ool ) o+ Yl

o recurrent NN is contracting with rate 1 — poo(A)+

o implicit NN is well posed

1-— A 1

o forward Euler is contracting with factor 1 — M ata = ———
— min;(a;;)— 1 — min;(ay;) -
| Blloo

@ input-state Lipschitz constant Lip,_,, =

1- :uoo(A)-i-




0 Application to time-varying convex optimization via contracting dynamics
@ Convexity and contractivity
@ Tracking equilibrium trajectories



Solving optimization problems via dynamical systems

J]w(t)

U Plant Yy

’—> @ = Optimizer(t,u,y) =] b e

studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)
optimization on manifolds (Brockett 1991)

power grids (Bolognani, Carli, Cavraro, Zampieri 2013)

online and dynamic feedback optimization (Dall'Anese, Dorfler, Simonetto, ... )



Convexity and contractivity

Kachurovskii’s Theorem: For differentiable f : R — R, equivalent statements:

@ f is strongly convex with parameter m
@ —V is (strongly) infinitesimally contracting with respect to | - |2 with rate m
Also: global minimum of f = globally-exponentially stable equilibrium of —V f

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960



From convex optimization to contracting dynamics — time-varying

Many convex optimization problems can be solved with contracting dynamics

& = F(z,0)

Convex Optimization

Contracting Dynamics

Unconstrained milqn f(z,0) &= —-Vyf(x,0)

rER™
min  f(x,0)

Constrained | z€R" & = —x + Projy(g)(x — vV f(z,0))
st. zeX()

Composite miRn f(z,0) +g(x,0) | & = —x+prox, , (v — ¥V f(z,0))
zeR™
min  f(z,0) P = Vo f(x,0)— ATX

Equality z€R™ v f(@,9) ’
st. Az =b(0) A=Az —b(0)
. min  f(z,0) &= =V [f(2,0) = ATVM, pp)(Az +7N),

Inequality z€R . ’

sit. Az < b(0) A=7(=A+ VM, o) (Az + )




Tracking equilibrium trajectories

For parameter-dependent vector field F : R” x R¢ — R™ and differentiable 6 : R>o — R4

Assume there exist norms || - ||x and || - ||o s.t.
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in w
@ Lipschitz wrt u: Lip,(F) <, uniformly in z

Theorem: Incremental ISS any two soltns: x(t) with input u, and y(t) with input w,

Dfl|lz(t) —y(@®)llx < —clla(t) —y@®llx + Clus(t) —uy(®)lle )




Tracking equilibrium trajectories

For parameter-dependent vector field F : R” x R — R™ and differentiable 6 : R>o — R4

Assume there exist norms || - ||x and || - || s.t.
@ contractivity wrt x: osLip,(F) < —¢ <0, uniformly in w
e Lipschitz wrt u: Lip,(F) <, uniformly in x

.

Theorem: Equilibrium tracking for contracting dynamics
@ for each fixed 0, there exists a unique equilbrium z*(6)

@ the equilibrium map z*(-) is Lipschitz with constant -
c

0 Ll @W)lx < e @W)x + < 10)le




Consequences for tracking error

%Hfﬂ(t)—w*(ﬂt))\lx < —cllz(®)=2"(O0)llx + éHé(t)He

bounded input, bounded error
with asymptotic bound:

. . :
limsup 2(t) 2" @(®)lx < = limsup (8o
— 00

t—o00

bounded energy input, bounded energy error
vanishing input, vanishing error

exponentially vanishing input, exponentially vanishing error

periodic input, periodic error




Numerical simulations

. 1 2 . 1 2
o —r(t - t
min oz —r(t)ll2 min Sl +r(t)]l2
sit.  x1 + 2z + x3 = sin(wt), st.  —x1 + x9 < cos(wt),
r(t) = (sin(wt), cos(wt), 1),w = 0.2 r(t) = (sin(wt), cos(wt)),w = 0.2




Error

Upper bound
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30
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Summary and future work

Summary:
@ from convex optimization to contracting dynamics
@ tracking-bounds for time-varying contracting systems

© applications to standard convex optimization problems

Ongoing work and open problems:
© contracting predictor-corrector methods
@ tracking bounds in time-varying norms

© convex but not strongly convex problems



@ A story in three chapters

© Contractivity of dynamical systems
o Key definitions
@ Table of infinitesimal contractivity conditions
@ Examples
o Properties

© Application to recurrent neural networks
@ Recurrent and implicit networks
@ Forward Euler theorem

0 Application to time-varying convex optimization via contracting dynamics
@ Convexity and contractivity
@ Tracking equilibrium trajectories

© Conclusions and future research



Robust and computationally-friendly stability theory

@ contractivity conditions on normed vector spaces
@ application to recurrent and implicit neural networks
© application to time-varying convex optimization

'

Lyapunov Theory Contraction Theory for Dynamical Systems
F admits global Lyapunov function F is strongly contracting

existence of equilibrium | assumed implied 4+ computational methods

Lyapunov function arbitrary |z — z*|| and ||F(z)|

inputs ISS via KL and L functions iISS via explicit formulas

search for contraction properties
design  engineering systems to be contracting J




Theoretical frontiers
@ higher order contraction
@ relationship with monotone operator theory

@ metric spaces: seminorms, Hilbert metrices ...

Limitations: not all stable systems are contractive:
@ Lyapunov-diagonally-stable networks

@ multistable and locally contracting systems

@ biochemical networks
°

control contraction design

Application to control and learning
control: optimization-based control design

ML: implicit models and energy-based learning

©0@0

neuroscience: robust dynamical modeling
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Resources on contraction theory for dynamics, control and learning

@ free online book and 10h minicourse
https:/ /fbullo.github.io/ctds
https://youtu.be/RvR47Zbqljc

@ upcoming Workshop on " Contraction Theory for Systems, Control, and Learning” at the 2023 American
Control Conference in San Diego, California:
http://motion.me.ucsb.edu/contraction-workshop-2023
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