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Biological and Artificial Neural Networks

artificial neural network (AlexNet '12) human neocortical neuron

Aim: understand the dynamics of neural networks, so that
o reproducible behavior, i.e., equilibrium response as function of stimula
@ robust behavior in face of uncertain stimuli
@ robust behavior in face of uncertain dynamics

@ learning models, efficient computational tools, periodic behaviors ...



Fixed point computation

Feedforward NN Implicit/Recurrent NN
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o = U, .’L':(I)(Al'—i-Bu—Fb),

y=Cx+d

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. 4



http://dx.doi.org/10.1109/TSP.2021.3069677

© Contraction theory
@ Banach contractions and infinitesimal counterparts
@ Contraction on Euclidean and inner product spaces
@ Contraction on non-Euclidean normed vector spaces



Contraction theory: historical notes

@ Origins
S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. @
S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. |. /zvestiya
Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958. URL http://mi.mathnet.ru/eng/ivm2980.
(in Russian)
C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. IEEE Transactions on Circuit Theory, 19(5):480-486, 1972. ¢

@ Application in dynamics and control: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683-696, 1998. @

@ Reviews:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In |EEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. ¢

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Lii, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. @

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview. Annual Reviews in Control, 52:135-169, 2021. 4


http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1109/CDC.2014.7039986
http://dx.doi.org/10.1007/978-3-662-47824-0_12
http://dx.doi.org/10.1016/j.arcontrol.2021.10.001

@ contraction conditions without Jacobians have been studied under many different names:

uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of
autonomous networks. |[EEE Transactions on Circuits and Systems, 23(6):355-379, 1976. L

one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer,
1993. 4 (Section 1.10, Exercise 6)

maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis
for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370, 2001. 4

dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. ¢

maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics,
46(3):631-652, 2006. ¢

QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D:
Nonlinear Phenomena, 213(2):214-230, 2006. €

incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and
Optimization, 3:175-201, 2013. 4
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@ deep connections: infinitesimal contraction, fixed point and monotone operator theory

V. Berinde. Iterative Approximation of Fixed Points. Springer, 2007. ISBN 3-540-72233-5
H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2 edition, 2017. ISBN
978-3-319-48310-8

e E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022


http://dx.doi.org/10.1109/TCS.1976.1084228
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1007/s10543-006-0069-9
http://dx.doi.org/10.1016/j.physd.2005.11.009
http://dx.doi.org/10.3934/naco.2013.3.175

On fixed point algorithms and Banach contractions

x = G(x)
Banach Contraction Theorem

If Lip(G) < 1 that is ||G(u) — G(v)|| < Lip(G)]|ju — v],
then Picard iteration x4+ = G(zy) is a Banach contraction

e

For Lip(G) > 1, define the average/damped/Mann-Krasnosel'skii iteration

Tpr1 = (1 — a)xg + aG(zy)

Infinitesimal Contraction Theorem
@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1
© the dynamics & = —z + G(«) is infinitesimally strongly contracting




Robustness of fixed point algorithms

Robustness via Lipschitz constants (Lim’s Lemma)
x} is a fixed point of z = G(x,u) and Lip, G < 1, then

u

| < Lip, G
"= 1—Lip, G

23

s = [ =]

N

Robustness via one-sided Lipschitz constants
v is a fixed point of x = G(x, u)
x} is a fixed point of z = G(x,v) 4+ D(x,v), and

osLip,(G+ D) < 1, then

1
* _ * <
lew =2l < T e 7 o)

(Lipu(G + D)llu— v + (s, ) )




On infinitesimal contraction theory

Given & = F(t,x), F is infinitesimally strongly contractive if its flow is a Banach contraction

ball centered at z(t) with radius e~



Properties of contracting dynamical systems
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i ball centered at z(t) with radius e~

Highly ordered transient and asymptotic behavior:

Zo

@ time-invariant F: unique globally exponential stable equilibriumfmmm1
two natural Lyapunov functions

@ periodic F: contracting system entrain to periodic inputs
© contractivity rate is natural measure/indicator of robust stability

@ accurate numerical integration, and

@ there exist efficient methods for their equilibrium computation



Scalar maps and vector field

F :R — R is one-sided Lipschitz with osLip(F) = b if

F'(z) < b, Va
<~ F(z)-F(y) <b(z—y), Vr >y
= (z-y)(F(z) - F(y) <blz —y)* v,y

@ Fis osL with b = 0 iff F' weakly decreasing

o if I is Lipschitz with bound ¢, then F'is osL with b </
o For

&= F(x)
the Gronwall lemma implies |z(t) — y(t)| < €% |x(0) — y(0)]



Contraction theory on inner product space (R, ¢5)

For x € R™ and differentiable time-dep

For P = PT = 0, define ||x||§ pijz = z! Px

Main equivalences: For ¢ > 0, map F is c-strongly contracting (i.e., osLip(F) < —¢) if
Q@ osL : (F(z)=F(y) Plx—y) < —cla—ylls ., forallz,y

@ d-osL : PDF(z)+ DF(z)TP < —2cP for all =

Q dIS : DF|x(t) —y(t)

2 pi/2 < —cllz(t) — y(t)lg p1/2 for all soltns z(-),y(+)




Contraction theory on inner product space (R, ¢5)

For differentiable V' : R — R, equivalent statements:
Q@ V is strongly convex with parameter m

@ —gradV is m-strongly contracting, that is

(- gradV (z) + gradV () (z — y) < —ml|z — y|3

For map F : R® — R", equivalent statements:

© F is a monotone operator (or a coercive operator) with parameter m,

© -—F is m-strongly contracting




Contraction theory on inner product space (R, ¢5)

Equilibria of contracting vector fields:

For a time-invariant F, c-strongly contracting with respect to || - ||y p1/2

Q@ flow of F is a contraction,

i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, that is unique, globally exponentially stable with global

Lyapunov functions

x|z — 1’*“3,131/2

and 2> [F(@)[2 e




Contraction theory on inner product space (R, ¢5)

Given F: R — R"™

x* € zero(F) < " € fixed(G), where G =Id+F
consider forward step = Euler integration for ' = averaged iteration for G:
1 = (Id+aF)x = z + aF (xg) =(1—a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

@ the map Id +aF is a contraction map with respect to || - ||, p1/2 for

2
0<Oé<—2
CK

@ the optimal step size minimizing and minimum contraction factor:

aE




© Contraction theory
@ Banach contractions and infinitesimal counterparts
@ Contraction on Euclidean and inner product spaces
@ Contraction on non-Euclidean normed vector spaces



Contraction theory on the normed vector spaces (R", {1 /()

Norms From inner products to From LMIs to
sign and max pairings log norms
J@lZ pro =2 Pz [yl pre =37 Py 1z, p1/2(A) = min{b | ATP 4+ PA < 2P}
||.'L’||1 = Z |xl| [[q;,y]]l = ||y||1 Sign(y)-rx ,ufl(A) max (CL_” aF Z | A5 >
2
lalloc = masxlei|  [29le = max yia poo(A) = max (@i + Y Jay)

where Io(z) = {i € {1,...,n} | |z;| = ||z]|oc}



Generalizing LMIs: log norms conditions

The log norm of A € R™*™ wrt to || - ||:

. |Hn+RA| -1
A):=lim ——
A = I
Basic properties:
subadditivity: w(A+ B) < u(A) + u(B)
scaling: w(bA) = bu(A), Vb >0
convexity: @A+ (1—0)B) <0u(A)+ (1 —0)u(B), Vo € [0,1]
p(A) < —c = A+ AT < —2cl,
,LLOO(A) <—c <= a;-+ Z |aij| < —c¢ for all ¢

JFi

T. Strém. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. 4



http://dx.doi.org/10.1137/0712055

Generalizing inner products: weak pairings

A weak pairing is [-,-] : R® x R" — R satisfying
Q [z1+ x2,y] < [z1,y] + [x2,y] and z — [z, y] is continuous,
Q [bz,y] = [z,by] = b[z,y] for b > 0 and [—z, —y] = [z, ],
@ [z,z] >0, for all x # Oy,

O [[z.9]| < [w,2]"* [y 9],
Given norm || - ||, compatibility: [z, 2] = ||z||? for all =

Sup of non-Euclidean numerical range: w(A) = sup [Azx,z]
llzll=1

Norm derivative formula: IDMz(t)|? = [&(t), z(t)]



Contraction theory on the normed vector spaces (R", {1 /()

For x € R™ and differentiable time-dep
& = F(z) (1)

For norm || - || with log norm p(-) and compatible weak pairing [-, -]

Main equivalences: for ¢ > 0
@ osL : [F(z)=F(y)z—yl < —clz—yl>  forallz,y
Q d-osL : wu(DF(z)) < —c for all =

© d-IS : DF|z(t) —y®)ll < —clla(t) —y(t)|  for soltns (), y(")

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Conditionally

accepted as Paper


https://arxiv.org/abs/2103.12263

Contraction theory on the normed vector spaces (R", {1 /()

Consider a norm || - || with compatible weak pairing [-, ]
Recall forward step method x4 = (Id +aF)z, = z; + oF (z)

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

© the map Id +aF is a contraction map with respect to || - || for

0 -
<a<cm(1+;@)

@ the optimal step size minimizing and minimum contraction factor:

iem ke 0l )

. 1 1 1
e =1- 53+ 5o+ ()




© Detour: Network systems



virus spread coupled oscillators social power

< gl
BT

averaging compartmental flows

network structure — function = dynamic behavior

Control theories: general Lyapunov theory, passivity/dissipativity, monotone dynamics ...



Networks of contracting systems

Interconnected subsystems: z; € RYi and z_; € RV —Ni:

1"1‘ :fz(.%'z,x_l)’ fOFZ - {17,’”}

e oslL: z; — fi(x;, z_;) is infinitesimally strongly contracting with rate ¢;

o Lip: z_; = fi(wi, z—;) is Lipschitz: || fi(zi, 2—s) — fi(wi, y-i)lli < D5 visllzs — yslls

—C1 ... Yin
@ the gain matrix | : . | is Metzler Hurwitz
Tl .- —Cp
= the interconnected system is infinitesimally strongly contracting

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Conditionally

accepted as Paper


https://arxiv.org/abs/2103.12263

Contraction theory for networks

Challenge: many real-world networks are not contracting.

For a vector field F and positive vectors 7, £ € RY,

conservation law n' f(x)=n"f(y) Yz,y = n' DF(z) =0 Yz
translation invariance  f(z + af) = f(z) Vz,a = DF(z){ =0 Vz

If F satisfies a conservation law or translation invariance, then
Q osLip(f) >0
@ if additionally F is monotone, then osLip; ,;(f) = 0 or osLip g-1(f) =0




Weakly contracting systems

& = f(x) is weakly contracting wrt || - ||:

osLip(f) <0

© Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (¢1-norm for mutualistic)

@ Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981) (/;-norm
and {o.-norm)

© Daganzo’s cell transmission model for traffic networks (Daganzo, 1994), (¢:-norm for non-FIFO
intersection)

@ compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al., 1978).
(¢1-norm)

@ saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958). (/2-norm)



Semi-contracting systems

& = f(x) is semi-contracting wrt the semi-norm |||-|| with rate ¢ > 0:

osLipyy(f) < —¢

or, for differentiable systems, . (DF(z)) < —c

© Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981), (¢1-norm)
@ Chua’s diffusively-coupled circuits (Wu and Chua, 1995), (¢>-norm)
© morphogenesis in developmental biology (Turing, 1952), (/;-norm, over some param ranges)

@ Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (¢1-norm, over some param
ranges)

S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. /EEE Transactions on Automatic
Control, 67(3):1285-1300, 2022. ¢


http://dx.doi.org/10.1109/TAC.2021.3073096

k and a-contracting systems

e M. Y. Liand J. S. Muldowney. A geometric approach to global-stability problems. SIAM
Journal on Mathematical Analysis, 27(4):1070-1083, 1996. 4

o C. Wu, |. Kanevskiy, and M. Margaliot. k-contraction: Theory and applications.
Automatica, 136:110048, 2022a. 9

o C. Wu, R. Pines, M. Margaliot, and J.-J. E. Slotine. Generalization of the multiplicative
and additive compounds of square matrices and contraction in the Hausdorff dimension.
IEEE Transactions on Automatic Control, 2022b. 4


http://dx.doi.org/10.1137/s0036141094266449
http://dx.doi.org/10.1016/j.automatica.2021.110048
http://dx.doi.org/10.1109/TAC.2022.3162547

@ Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks
@ Implicit neural networks in machine learning



Continuous-time recurrent neural networks:

t=—x+AP(z) +u

(Hopfield)
t=—x+ ®(Az + u) =: frr(z) (Firing rate ~ Implicit NNs)
T = AdP(x) (Persidskii-type)
&= Az — ®(x) (...)

sigmoid, hyperbolic tangent

Tanh activation function

ReLU = max{z,0} = (z)+

ReLU activation function

ouput

ouput

.....

activation functions are locally-Lip and slope-restricted: for all ¢
0% (y)

o0P;
8yy >0 and  dmay 1= €SSSUD,cR aéy) < 00

Amin := essinf,cr




fer(x) = —z + ®(Ax + u)

Tight transcription.

osLipo, (frr) = esssup pioo ( — Iy + (D®(z))A) = —1+ max  poo(dg(d)A)
zeR™ de[dmimdmax]n

Max log norms over hypercubes. For A € R"*" and 0 < dmin < dmax

S el @)) = 0 (i), i)}

max  u1(dg(d)A)= max{pui(dmaxA), 11 (dmaxA — (dmax — dmin)(Ln 0 A))}

| i e @

de[dlr:’iln?:liwax}h Hoo (Adg(d))= . ..

; Adg(d))= ...
dE[dImlilrijfnax]n ,ul( g( ))

Recall: max convex function over polytope achieved at a vertex; here 2" — 2 vertices only.




NonEuclidean contractivity of firing rate model

t=—Cx+ ®(Az +u) =: frr(z)
© for arbitrary n € R

osLipag -1 (fFR) = max{ fog [y 1 (—C + dminA), fiog -1 (=C + dmaxA) }

@ optimal weight 7 and minimim value of osLip 1,1 (frr) from quasiconvex opt:

inf b
beR,NERY
s.t. (=C + dmin|Alm)n < bn

(=C + dmax| Alm)n < bn
Specifically, if dmin =0 and C = 0,

inf osLipy, ;) (frr) = max {a(—C), (=C + dmax|Alm) }
neRY,

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In
American Control Conference, 2022. URL https://arxiv.org/abs/2110.08298. To appear


https://arxiv.org/abs/2110.08298

@ Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks
@ Implicit neural networks in machine learning



Implicit neural networks in machine learning

Feedforward NN Implicit/Recurrent NN
(©)
(@)
(©)
(@)
T Tk
Tyl = P(Ajr; + b;), T = u, r = ®(Az + Bu+b),
y=Cxr+d y=Cx+d

ML advantages of implicit/equilibrium/fixed point formulation:
bio-inspired, simplicity, accuracy, memory efficiency, input-output robustness

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021. URL
http://arxiv.org/abs/2106.03194


http://arxiv.org/abs/2106.03194

Motivation #1: Generalizing FF to fully-connected synaptic matrices
't = ®(Ai2' + Biu+b) <<= 1 = ®(Azx + Bu+b), where A has
upper diagonal structure.

Aupper-diagonal = E :> Acomplete =

Motivation #2: Weight-tied infinite-depth NN — fixed-point of INN

A A A y
uT x1 —> T2 x3 o Tk -
|1 T T *?

= ®(Az' + Bu+b) = lim; . 2" = z* solution to the INN

Motivation #3: Neural ODE model (infinite time) — fixed-point of INN

t=—-x+P(Az+ Bu+b) = limy_ x(t) = z* solution to INN



Recent literature on implicit NNs

© 6 o o

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information
Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377

L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai. Implicit deep learning. SIAM Journal on
Mathematics of Data Science, 3(3):930-958, 2021. 4

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural
Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591

M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL
https://arxiv.org/abs/2010.01732

A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A
panacea for vanishing and exploding gradients? In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylpqA4FwS

K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In

International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=p-NZluwghl4

S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit
depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803.
ArXiv e-print
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https://arxiv.org/abs/2103.12803

Implicit Neural Networks (INNs)

@ Training INNs:

@ loss function £
@ training data (U;,4:)Y;
© training optimization problem

N
4 in ; L(yi, Cxi + c)

T; = (I)(A:L‘Z' + Bu; + b)
o Efficient back-propagation through implicit differentiation

@ Stochastic gradient descent: at each step solve x = ®(Ax + Bu + b).

Challenge #1: well-posedness of fixed-point equation
Challenge #2: algorithm for fixed-point equation J




Robustness of INNs

Adversarial examples: small input change causes large output change!

0.005 x

Robustness measures: input-to-output Lipschitz constant
@ /o-norm Lipschitz constant: not informative in many scenarios

@ /s -norm Lipschitz constant: large-scale input wrt wide-spread perturbations

Challenge #3: compute robustness margins

Challenge #4: implement robustness in training




Well-posedness and robustness of /.-contracting INNs

z=®(Ax + Bu+b) (INN fixed point)
&t =—x+ ®(Az + Bu+b) (Recurrent NN)
Tpr1 = (1 — a)xg + a®(Axg + Bu +b) (Average iter.n)

,U,OO(A) <1 (i.e., A Z ‘(1,1‘.}" < 1 for all ])
J

@ dynamics is contracting with rate 1 — o (A)+

1-— A 1
@ average iteration is Banach with factor 1 — w ata=———-—
— min;(a;;)— 1 — min;(as;)—
| Blloo |Clloo

e input-output Lipschitz constant Lip,_,, = T @)
— Moo +




Training INNs

Training optimization problem:

N
A,mB}ICl',b ; E(y’u Cw’L + C) + A Llpu~>y
x; = <I>(Axi + Bu; + b)
foo(A) <7y

@ )\ > 0 is a regularization parameter

@ v < 1 is a hyperparameter

Parametrization of ., constraint:

poo(A) <~ <<= ITst. A=T —diag(|T|1,) + vIn.




Graph-Theoretic Regularization

Synaptic matrix A encodes interactions between neurons

.

—| B

Acom plete

> — >
:> Ad ropout

@ Adropout 1S @ principal submatrix of Acomplete

o Noo(Adropout) S Noo(Acomplete)

o Well-posedness of original INN implies well-posedness of INN with subset of neurons
e Promotes compression and sparsity of overparametrized models



Numerical Experiments

e MNIST handwritten digit dataset (60K+10K, 28x28, grayscale)

@ implicit neural network order: n = 100

Glolstd]alglal o
Oololsidlalalal ¢
OlolsiHlalalal ¢
OlojsiHlalglal ¢



Numerical Experiments

Robustness of INNs

Tradeoff between accuracy and robustness

Test error vs Lipschitz constant on MNIST handwritten digits Accuracy vs perturbation on MNIST handwritten digits

] 1.0
"l e ® =10 — A=10"!
16 1 ® =10 A= 102
® =100 084 — A=10-25
144 A=10"% A=10"%
A=10"4 A=10"*
3121 A=107° 061 A=10"5
5 ® =0 g — =0
g{ @ ° @ Al <095 E — Al <095
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Numerical Experiments

Robustness of INNs

Clean performance vs. robustness
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© Scientific and engineering problems from neural networks

© Contraction theory
@ Banach contractions and infinitesimal counterparts
@ Contraction on Euclidean and inner product spaces
@ Contraction on non-Euclidean normed vector spaces

© Detour: Network systems

@ Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks
@ Implicit neural networks in machine learning

© Conclusions and future research



Conclusions

From Contracting Dynamics to Contracting Algorithms:
@ contraction theory, monotone operator theory, convex optimization

o effective methodologies to tackle control, optimization and learning problems
e extensions to network dynamics

@ from Euclidean to non-Euclidean norms
© application to recurrent and implicit neural networks

e existence, uniqueness, and computation of fixed-points
e robustness analysis and robust training via Lipschitz bounds
o https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net

From Contracting Dynamics to Contracting Algorithms:

@ mixed-monotone contraction theory
(L4DC https://arxiv.org/abs/2112.05310, oral presentation)

@ implicit graph neural architectures
© bio-inspired Hebbian learning

@ robustness of implicit models


https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net
https://arxiv.org/abs/2112.05310
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