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Coordination in multi-agent systems

Animals and robots:
@ each agent senses its immediate environment,
@ communicates/interacts with others,
@ processes information gathered, and

@ takes local action in response

Classic examples of motion coordination

Geese flying in formation Wildebeest herd in the Serengeti Fish swarm



O Territory partitioning
@ Routing through known locations

@ Searching evaders



Territory partitioning is ... art

abstract expressionism
“Ocean Park No. 27" and “Ocean Park No. 129"
by Richard Diebenkorn (1922-1993), inspired by aerial landscapes
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Territory partitioning ...

UC Santa Barbara Campus Development Plan, 2008



Territory partitioning ... undemocratic voting districts
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Gerrymandering the Ohio voting districts



Territory partitioning is ... animal territory dynamics
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Tilapia mossambica, “Hexagonal

Territories,” Barlow '74



Territory partitioning is ...

’ g i g
o ) 4‘

[ Pk 1

|52 o~ A
i - ¢ B £

Bade S’ i AP

el e A

Tilapia mossambica, “Hexagonal

Territories,” Barlow '74

animal territory dynamics

1982 1983

Sage sparrows, “Territory dynamics in a sage

sparrows population,” Petersen and Best '87



Territory partitioning is ... animal territory dynamics
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Red harvester ants, “Optimization, Conflict, and Nonoverlapping Foraging Ranges,”

Adler and Gordon '03



Territory partitioning: behaviors and optimality

ANALYSIS of cooperative distributed behaviors

@ how do animals share territory?
how do they decide where to forage?
how do they decide nest locations?

@ what if each robot goes to “center” of own dominance region?

DESIGN of performance metrics
© how to cover a region with n minimum-radius overlapping disks?

Q how to design a minimum-distortion (fixed-rate) vector quantizer?



Multi-center functions

@ nrobots at p = {p1,...,Pn}
@ environment is partitioned into v = {vq,..., vy}

@ customer arrives and waits for service:

H(p,v>=/ ||q—p1||dq+~--+/ la = pallda
%1 Vn




Multi-center functions

@ nrobots at p = {p1,...,Pn}
@ environment is partitioned into v = {vq,..., vy}

@ customer arrives and waits for service:

H(p,v>=/ ||q—p1||dq+---+/ la = pallda
%1 Vn

Hipv) =3 | Fla=pil)o(a)da

e ¢:R2 — Rx density
e f :R>o — R penalty function



Optimal partitioning

The Voronoi partition {V4,..., V,} generated by points (p1,...,pn)

Vi={qe Q| lla—pill <llg—pill. Vi #i}
= Qﬂ (half plane between i and j, containing i)




Optimal centering (for region v with density ¢)

function of p minimizer = center
p / llg — pllo(q)dq Fermat—Weber point (or median)
p— / lg — pl*¢(q)dq centroid (or center of mass)
v
p — area(v Ndisk(p, r)) r-area center

p — radius of largest disk centered incenter
at p enclosed inside v

p +— radius of smallest disk cen- circumcenter
tered at p enclosing v

\ 4 A%\
From online / a ° ¢ . :
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Triangle Centers




From optimality conditions to algorithms

Hp.v) = / F(lg — pul)é(a)dg + - + / £(lq = pall)6(q)da

Vn

@ at fixed positions, optimal partition is Voronoi

@ at fixed partition, optimal positions are “generalized centers”

o




From optimality conditions to algorithms

H(p,v) = / f(lqg — pl)d(a)dq + - + / £(lq = pall)6(q)da

O at fixed positions, optimal partition is Voronoi

@ at fixed partition, optimal positions are “generalized centers”

© alternate v-p optimization = local opt = center Voronoi partition




Voronoi+centering algorithm

Voronoi+centering law

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region

3: move towards center of own
dominance region

Area-center

Incenter

Circumcenter



nonconvex converage

........
Physical Sciences

discrete peer-to-peer



Lesson 1/3

territory partitioning:
o well developed in engineering

@ existing connection with the study of animal behavior
. even if cost functions may differ

Potential for future research and collaborations
@ do animals achieve optimal territory partitioning?
recent game-theoretic work proposes “elaborate” coordination al-
gorithms to achieve constant-factor optimality
@ how to incorporate exploration in robotic territory partitioning?

© how about animal behavior in nonconvex environment



O Territory partitioning
@ Routing through known locations

@ Searching evaders



Routing through known locations

@ customers appear sequentially randomly space/time
@ robotic network knows locations and provides service

@ Goal: distributed algorithm that minimizes wait time




Algo #1: Receding-horizon shortest-path policy

Receding-horizon Shortest-Path (RH-SP)
For n € (0,1], single agent performs:

1: while no customers, move to center
2: while customers waiting

© compute shortest path through current
customers

©Q service n-fraction of path




Algo #1: Receding-horizon shortest-path policy

Receding-horizon Shortest-Path (RH-SP)
For n € (0,1], single agent performs:
1: while no customers, move to center
2: while customers waiting
© compute shortest path through current
customers

©Q service n-fraction of path

i c “ @ shortest path is NP-hard, but effective
T L heuristics available
73 0% o delay is optimal in light traffic

S e delay is constant-factor optimal in high traffic



Algo #2: Load balancing via territory partitioning

RH-SP + Partitioning

For n € (0,1], agent / performs:

1: compute own cell v; in optimal partition
2: apply RH-SP policy on v;

Asymptotically constant-factor optimal in light and high traffic



Lesson 2/3

| am unaware of comparable animal behavior

Potential for future research and collaborations
@ can animals can solve shortest-path problems?

@ do they adopt simpler efficient heuristics?



O Territory partitioning
@ Routing through known locations

@ Searching evaders



Search and surveillance

Design motion strategies to search unpredictably and quickly J

e pursuer / predator

e evader / prey



Search and surveillance

Design motion strategies to search unpredictably and quickly )

e pursuer / predator

e evader / prey

How many steps on average for predator to detect prey?
How to minimize? How to maximize?




Stochastic surveillance: Motivating example 2/2

@ San Francisco
@ crime rate at 12 locations

@ all-to-all driving times
(quantized in minutes)




Stochastic surveillance: Motivating example 2/2

@ San Francisco
@ crime rate at 12 locations

@ all-to-all driving times
(quantized in minutes)

police:
BANK

@ on patrol, moves around city

bank robber: 7 7
@ robber picks bank l
@ attacks at time with minimum detection likelihood



Approach: Markov chains for routing and planning

P12

P21

Advantages of adopting Markov chains:
@ rich behavior
@ finite-dimensional optimization problem
© well-defined notion of unpredictability: entropy
@ well-defined notion of speed: hitting time



The entropy of a discrete random variable X € {1,... k} is

k
H(X)=—) . pilogpi

Unbiased coin: P[X = Head] = 0.5 H(X) = 0.69
Biased coin: P[X = Head] = 0.75 H(X) = 0.56
Predictable coin:  P[X = Head] =1 H(X) =



The entropy of what variable?



The entropy of what variable?

#1: sequence of random locations

A
A




The entropy of what variable?

#1: sequence of random locations

° A

Google

#2: sequence of return times

o o ? )

O~ 0 O\/J

location entropy vs.  return time entropy



Compare three chains
Several journal papers later

@ MaxReturnEntropy
mSX I[']Ireturn—time(P)

@ MaxLocationEntropy
mgx Hlocation(P)

© MinCaptureTime: mPin E[capture time(P)]

simplified intruder model: random attack location / time



Comparison over San Francisco map

S

B H N H

I I B .. =
- e .

TR h

(a) MaxReturnEntropy (b) MinCaptureTime

Pixel image of Markov chains: it row are transition probabilities out of

@ MinCaptureTime chain is close to “TSP + self weights”

@ MaxReturnEntropy chain is dense, i.e., has higher entropy



MaxReturnEntropy

Return Proability

MaxReturnEntropy: P[0—10m] = 10%, P[10—20m] ~ 25%, P[20—30m] ~ 20%, ...

Return Proability
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Comparison in catching rational intruder

Rational intruder:
@ Picks a node i to attack with probability 7;
o Collects the return time statistics of the pursuer
@ Attacks when the pursuer is absent for s; timesteps since last visit

. T
s = g(l)rggsggrj {Zkzllp(T,-,- =s+ k| T;> S)},

where 7 is the attack duration and S; is determined by the degree of
impatience 0, i.e., P(T; > S;) <6

P
11



Comparison in [ rational intrud

. 1
o axRetumEntopy —e—MaxReturnEntropy
—=—MaxEntropyRate N

£ 0.8 {|—e—inkemeny Los ——MinKemeny
I I

8 3
Lo6 Lo6
° o

= z
504 504
s ©

kS =}

o [

a 02 02

=)
o

) 5 0 15 20 25 0 10 20 30 40 50 60
Attack duration Attack duration

4x4 grid (unit travel times) SF map



Comparison in catching the rational intruder
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Lessons

@ 4 x 4 grid: MaxReturnEntropy > MaxLocationEntropy
@ 4 x 4 grid: MaxReturnEntropy > MinCaptureTime for short attacks
o SF: MaxReturnEntropy > MinCaptureTime for short attacks



Lesson 3/3

@ search strategies by optimizing transition probabilities

@ | am unaware of comparable animal behavior

Potential for future research and collaborations
© how do animal play this search/hide games?
@ do they ever move unpredictably?
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Conclusions

Robotic problems
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Potential collaborations on bioinspired coordination
© optimal exploration-based territory partitioning
@ heuristics for routing through locations

© unpredictability in animal motion
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