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Coordination in multi-agent systems

Animals and robots:

each agent senses its immediate environment,

communicates/interacts with others,

processes information gathered, and

takes local action in response

Classic examples of motion coordination

Geese flying in formation Wildebeest herd in the Serengeti Fish swarm
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3 Searching evaders



Territory partitioning is ... art

abstract expressionism

“Ocean Park No. 27” and “Ocean Park No. 129”

by Richard Diebenkorn (1922-1993), inspired by aerial landscapes



Territory partitioning ... centralized space planning

UC Santa Barbara Campus Development Plan, 2008



Territory partitioning ... undemocratic voting districts

Gerrymandering the Ohio voting districts



Territory partitioning is ... animal territory dynamics

Tilapia mossambica, “Hexagonal

Territories,” Barlow ’74

Sage sparrows, “Territory dynamics in a sage

sparrows population,” Petersen and Best ’87

Nonoverlapping Foraging Ranges in Ants 537

Figure 5: Contours of foraging effort (number of foragers searching) in the crowded region. Contour levels run from 1 to 10 ants/m2, and distance
is in meters. Parameter values as in table 2 except as noted. a, Individual-level strategy. b, Colony-level strategy without conflict costs ( ). c,a p 0
Colony-level strategy with conflict costs.

as a function of travel distance predicted by each model.
The colony-level model has a lower slope and qualitatively
fits the data better. As a test, we created a modification of
the individual-level model in which ants weight search
time more heavily than travel time (thus equalizing search
times), but this model is not supported by the additional
analyses.

The individual-level model accurately predicts the mean
distance ants move (fig. 7), while the colony-level model
overestimates the mean. Both models predict a lower var-
iance than observed (and are therefore rejected by a
Kolmogorov-Smirnov test at the 0.05 level). This deviation
may occur because these simplified models ignore move-
ment during the searching process itself, which could
spread ants assigned to a given site. Furthermore, ants
were tracked in pairs, one that left early in the day and
one that left later. Because distances traveled increase dur-
ing the day, these pairs would tend to include one short
and one long foraging trip, leading to increased variance.

Our models are designed to average over these effects, and
the individual-level model is thus quite successful in pre-
dicting the average.

Finally, each model explains a significant portion of the
variance in measured ant density (fig. 8). The colony-level
model produces a slope of 0.69, closer to the predicted
value of 1.0. Although some of the variance is due to lower
densities in the uncrowded site, analysis performed on the
two sites separately gives similar results. Stepwise regres-
sion indicates that the colony-level model is better sup-
ported by the data.

If we tentatively accept the colony-level model, we can
examine patterns of deviation between model predictions
and measured values. Sites with more ants than predicted
tend to lie close to predicted boundaries, while sites with
fewer ants than predicted lie farther from boundaries (fig.
9). There is no effect of distance to the nest on the de-
viations between predicted and measured densities. Results

This content downloaded from 128.111.061.009 on November 17, 2019 07:25:34 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

Red harvester ants, “Optimization, Conflict, and Nonoverlapping Foraging Ranges,”

Adler and Gordon ’03
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Territory partitioning: behaviors and optimality

ANALYSIS of cooperative distributed behaviors

1 how do animals share territory?
how do they decide where to forage?
how do they decide nest locations?

2 what if each robot goes to “center” of own dominance region?

DESIGN of performance metrics

3 how to cover a region with n minimum-radius overlapping disks?

4 how to design a minimum-distortion (fixed-rate) vector quantizer?



Multi-center functions

n robots at p = {p1, . . . , pn}
environment is partitioned into v = {v1, . . . , vn}
customer arrives and waits for service:

H(p, v) =

∫
v1

‖q − p1‖dq + · · · +

∫
vn
‖q − pn‖dq

H(p, v) =
n∑

i=1

∫
vi
f (‖q − pi‖)φ(q)dq

φ : R2 → R≥0 density

f : R≥0 → R penalty function
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Optimal partitioning

The Voronoi partition {V1, . . . ,Vn} generated by points (p1, . . . , pn)

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}

= Q
⋂
j

(half plane between i and j , containing i)



Optimal centering (for region v with density φ)

function of p minimizer = center

p 7→
∫
v
‖q − p‖φ(q)dq Fermat–Weber point (or median)

p 7→
∫
v
‖q − p‖2φ(q)dq centroid (or center of mass)

p 7→ area(v ∩ disk(p, r)) r-area center

p 7→ radius of largest disk centered
at p enclosed inside v

incenter

p 7→ radius of smallest disk cen-
tered at p enclosing v

circumcenter

From online
Encyclopedia of
Triangle Centers



From optimality conditions to algorithms

H(p, v) =

∫
v1

f (‖q − p1‖)φ(q)dq + · · · +

∫
vn

f (‖q − pn‖)φ(q)dq

1 at fixed positions, optimal partition is Voronoi

2 at fixed partition, optimal positions are “generalized centers”

3



From optimality conditions to algorithms

H(p, v) =

∫
v1

f (‖q − p1‖)φ(q)dq + · · · +

∫
vn

f (‖q − pn‖)φ(q)dq

1 at fixed positions, optimal partition is Voronoi

2 at fixed partition, optimal positions are “generalized centers”

3 alternate v -p optimization =⇒ local opt = center Voronoi partition



Voronoi+centering algorithm

Voronoi+centering law

At each comm round:

1: acquire neighbors’ positions

2: compute own dominance region

3: move towards center of own

dominance region

Area-center Incenter Circumcenter



3D coverage nonconvex converage

discrete peer-to-peer



Lesson 1/3

territory partitioning:

well developed in engineering

existing connection with the study of animal behavior
... even if cost functions may differ

Potential for future research and collaborations

1 do animals achieve optimal territory partitioning?
recent game-theoretic work proposes “elaborate” coordination al-
gorithms to achieve constant-factor optimality

2 how to incorporate exploration in robotic territory partitioning?

3 how about animal behavior in nonconvex environment
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Routing through known locations

customers appear sequentially randomly space/time

robotic network knows locations and provides service

Goal: distributed algorithm that minimizes wait time



Algo #1: Receding-horizon shortest-path policy

Receding-horizon Shortest-Path (RH-SP)

For η ∈ (0, 1], single agent performs:

1: while no customers, move to center

2: while customers waiting

1 compute shortest path through current

customers

2 service η-fraction of path

shortest path is NP-hard, but effective
heuristics available

delay is optimal in light traffic

delay is constant-factor optimal in high traffic
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Algo #2: Load balancing via territory partitioning

RH-SP + Partitioning

For η ∈ (0, 1], agent i performs:

1: compute own cell vi in optimal partition

2: apply RH-SP policy on vi

Asymptotically constant-factor optimal in light and high traffic



Lesson 2/3

I am unaware of comparable animal behavior

Potential for future research and collaborations

1 can animals can solve shortest-path problems?

2 do they adopt simpler efficient heuristics?
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3 Searching evaders



Search and surveillance 1/2

Design motion strategies to search unpredictably and quickly

pursuer / predator

evader / prey



Search and surveillance 1/2

Design motion strategies to search unpredictably and quickly

pursuer / predator

evader / prey

How many steps on average for predator to detect prey?
How to minimize? How to maximize?



Stochastic surveillance: Motivating example 2/2

San Francisco

crime rate at 12 locations

all-to-all driving times
(quantized in minutes)

police:

on patrol, moves around city

bank robber:

robber picks bank

attacks at time with minimum detection likelihood
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Approach: Markov chains for routing and planning

rain sun

p21

p12

p22p11

Advantages of adopting Markov chains:

1 rich behavior

2 finite-dimensional optimization problem

3 well-defined notion of unpredictability: entropy

4 well-defined notion of speed: hitting time



The entropy of a discrete random variable X ∈ {1, . . . , k} is

H(X ) = −
∑k

i=1
pi log pi

Unbiased coin: P[X = Head] = 0.5 H(X ) = 0.69

Biased coin: P[X = Head] = 0.75 H(X ) = 0.56

Predictable coin: P[X = Head] = 1 H(X ) = 0



The entropy of what variable?

#1: sequence of random locations

#2: sequence of return times
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Compare three chains
Several journal papers later

1 MaxReturnEntropy
max
P

Hreturn-time(P)

2 MaxLocationEntropy
max
P

Hlocation(P)

3 MinCaptureTime: min
P

E[capture time(P)]

simplified intruder model: random attack location / time



Comparison over San Francisco map 1/4

(a) MaxReturnEntropy (b) MinCaptureTime

Pixel image of Markov chains: i th row are transition probabilities out of i

MinCaptureTime chain is close to “TSP + self weights”

MaxReturnEntropy chain is dense, i.e., has higher entropy



MaxReturnEntropy versus MinCaptureTime 2/4
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Comparison in catching rational intruder 3/4

Rational intruder:

Picks a node i to attack with probability πi

Collects the return time statistics of the pursuer

Attacks when the pursuer is absent for si timesteps since last visit

si = argmin
0≤s≤Si

{∑τ

k=1
P(Tii = s + k |Tii > s)

}
,

where τ is the attack duration and Si is determined by the degree of
impatience δ, i.e., P(Tii ≥ Si ) ≤ δ



Comparison in catching the rational intruder 3/4
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Lesson 3/3

search strategies by optimizing transition probabilities

I am unaware of comparable animal behavior

Potential for future research and collaborations

1 how do animal play this search/hide games?

2 do they ever move unpredictably?
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Conclusions

Robotic problems

Vehicle
Routing

Stochastic
Surveillance

Data
Aggregation

Potential collaborations on bioinspired coordination

1 optimal exploration-based territory partitioning

2 heuristics for routing through locations

3 unpredictability in animal motion
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