Geometry, Analysis and Computation for Network Systems

Francesco Bullo Department of Mechanical Engineering

Center for Control, Dynamical Systems & Computation

University of California at Santa Barbara

http://motion.me.ucsb.edu

Workshop on Resilient Control of Infrastructure Networks September 24-27, 2019 - DISMA, Politecnico di Torino

Acknowledgments

Saber Jafarpour UCSB

Xiaoming Duan UCSB

Kevin D. Smith UCSB

FB et al (UCSB)	Network Systems	Torino, 26 September 2019	1 / 56	FB et al (UCSB)	Network Systems	Torino, 26 September 2019	2 / 56
Lectures on Netwo	ork Systems			Outline			
Lectures on Network Systems	 S Lectures on Ne Createspace, 1 edit Self-Published a https:// PDF Freely ava http:// PDF Freely ava http:// For students: fr For instructors: incorporates les robotic multi-age now v1.3 v2.0 will expand 316 pages 205 pages soluti 4.4K downloads 164 exercises wi 33 instructors in 	etwork Systems, Francesco ition, 2018, ISBN 978-1-9864 and Print-on-Demand at: /www.amazon.com/dp/1986 ailable at //motion.me.ucsb.edu/boo ree PDF for download slides, classnotes, and answe ssons from 2 decades of resea gent, social networks, power g d nonlinear coverage ion manual Jun 2016-Aug 2019 th solutions 15 countries	b Bullo, 25-64-3 425649 bk-1ns: r keys rch: grids	 Linear Network Sy X. Duan, S. Jafarpour, Metzler matrices and mo <i>IEEE Transactions on Au</i> Submitted. URL: https://arxiv.or An emerging theor Kuramoto Synchromy 	stems and Metzler Ma and F. Bullo. Graph-theoretic notone systems. tromatic Control, June 2019. g/pdf/1905.05868.pdf ry for Nonlinear Networ	trices small gain theorems for rk Systems d lack of uniqueness)	
FB et al (UCSB)	Network Systems	Iorino, 26 September 2019	3 / 56	FB et al (UCSB)	Network Systems	Torino, 26 September 2019	4 / 56

Linear network systems

Network flow systems

Basic ideas: a simple cycle Basic ideas: Small-gain network stability Cyclic Small-Gain Theorem a network of systems with input is ISS if m_{12} $(2) = m_{22}$ cycle gain < 1about each simple cycle, for appropriate interconnection gains mii **1** V. Lakshmikantham, V. M. Matrosov, and S. Sivasundaram. *Vector Lyapunov* Functions and Stability Analysis of Nonlinear Systems. *M* Hurwitz $\iff \left(\frac{m_{12}}{-m_{11}}\right) \left(\frac{m_{23}}{-m_{22}}\right) \dots \left(\frac{m_{n1}}{-m_{n2}}\right) < 1$ Kluwer Academic Publishers, 1991 2 S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth. Small gain theorems for large scale systems and construction of ISS Lyapunov functions. where SIAM Journal on Control and Optimization, 48(6):4089-4118, 2010. doi:10.1137/090746483 • $\frac{m_{ij}}{-m_{ii}}$ represents a "gain" for subsystem *i* with respect to *j* • test: composition of "gains" along the cycle is less than 1 3 T. Liu, D. J. Hill, and Z.-P. Jiang. Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. FB et al (UCSB) FB et al (UCSB) Network Systems Torino, 26 September 2019 **Network Systems** Torino, 26 September 2019 9 / 56 10 / 56 Possible notions of ISS gains Summary of results An interconnected nonlinear system with subsystem dynamics $\dot{x}_i = f_i(x_i, x_{\mathcal{N}_i}, u_i), \qquad \forall i \in \{1, \ldots, n\}.$ Thm 1: Input-to-state interconnection gains for Metzler systems system has sum-interconnection gains $\{\gamma_{ij}\}$ if Thm 2: Max-interconnection gains and graph-theoretic conditions Thm 3: Sum-interconnection gains and graph-theoretic conditions $|x_i(t)| \leq \beta_i(|x_i(0)|, t) + \sum_{i \in \mathcal{N}} \gamma_{ij}(||x_j||_{[0,t]}) + \gamma_i(||u_i||_{\infty}).$ X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic small gain theorems for Metzler where $\beta_i \in \mathcal{KL}$, $\gamma_{ii} \in \mathcal{K}$, and $\gamma_i \in \mathcal{K}$. matrices and monotone systems. IEEE Transactions on Automatic Control, June 2019. Submitted. system has max-interconnection gains $\{\psi_{ii}\}$ if URL: https://arxiv.org/pdf/1905.05868.pdf $|x_i(t)| \leq \max_{i \in \mathcal{N}_i} \{\beta'_i(|x_i(0)|, t), \psi_{ij}(||x_j||_{[0,t]}), \psi_i(||u_i||_{\infty})\}.$

11 / 56

Torino, 26 September 2019

where $\beta_i \in \mathcal{KL}$, $\psi_{ii} \in \mathcal{K}$, and $\psi_i \in \mathcal{K}$.

FB et al (UCSB)

Network Systems

Thm 1: ISS gains for Metzler systems	Thm 2: Max-cycle gains and graph conditions
Thm 1: ISS gains for Metzler systemsFor Metzler system $\dot{x} = Mx + u$, M with negative diagonals,(a) sum-interconnection gains $\{\gamma_{ij}\}$ satisfy $\frac{m_{ij}}{-m_{ii}} \leq \gamma_{ij}, \forall i \in \{1, \dots, n\}, j \in \mathcal{N}_i$ (a) max-interconnection gains $\{\psi_{ij}\}$ satisfy $\sum_{j \in \mathcal{N}_i} \left(\frac{m_{ij}}{-m_{ii}}\right) \psi_{ij}^{-1} < 1, \forall i \in \{1, \dots, n\}$ For $c = (i_1, i_2, \dots, i_k, i_1)$ be a simple cycle(a) the sum-cycle gain of c is $\gamma_c = (\gamma_{i_2i_1}) (\gamma_{i_3i_2}) \dots (\gamma_{i_1i_k})$ (a) max-cycle gain of c is $\psi_c = (\psi_{i_2i_1}) (\psi_{i_3i_2}) \dots (\psi_{i_1i_k})$	Thm 2: Conditions based on max-cycle gains Given an irreducible Metzler matrix $M \in \mathbb{R}^{n \times n}$ with negative diagonal elements and the set of simple cycles Φ , the followings are equivalent:• M is Hurwitz;• for every $i \in V$ and $j \in \mathcal{N}_i$, there exists $\psi_{ij} > 0$ such that $\sum_{j \in \mathcal{N}_i} \left(\frac{m_{ij}}{-m_{ii}}\right) \psi_{ij}^{-1} < 1$, $\forall i \in \{1, \dots, n\}$, $\psi_c < 1$, $\forall c \in \Phi$.• "cycle gain < 1 about each simple cycle" is now IFF
FB et al (UCSB)Network SystemsTorino, 26 September 201913 / 56Thm 3:Sum-cycle gains and graph conditions	FB et al (UCSB) Network Systems Torino, 26 September 2019 14 / 56 Thm 3: Example
Thm 3: Conditions based on sum-cycle gains Given an irreducible Metzler matrix $M \in \mathbb{R}^{n \times n}$ with negative diagonal elements, the followings are equivalent: a M is Hurwitz; a for each i , let Φ_i be simple cycles over $\{1, \ldots, i\}$ (or renumbered) $\sum_{\substack{c_1 \in \Phi_i \\ c_1 \cap c_2 = \emptyset}} \gamma_{c_1} \gamma_{c_2} + \cdots + \sum_{\substack{c_1, \ldots, c_{r_i}\} \subset \Phi_i \\ c_i \cap c_j = \emptyset}} (-1)^{r_i - 1} \gamma_{c_1} \cdots \gamma_{c_{r_i}} < 1$ a condition 2 \iff certain sums of products of gains < 1 b computation of sum-cycle gains and "sums of products" is straightforward (not iterative)	Hence, stability certificate $V_{1} = \{1\} \implies \emptyset$ $V_{2} = \{1,4\} \implies \{\gamma_{c_{1}} < 1\}$ $V_{3} = \{1,4,2\} \implies \{\gamma_{c_{1}} + \gamma_{c_{4}} < 1\}$ $V_{4} = \{1,4,2,3\} \implies \{\gamma_{c_{1}} + \gamma_{c_{4}} < 1, \\ \gamma_{c_{1}} + \gamma_{c_{2}} + \gamma_{c_{3}} + \gamma_{c_{4}} - \gamma_{c_{1}}\gamma_{c_{3}} < 1\}$ Hence, stability certificate $\gamma_{c_{1}} + \gamma_{c_{2}} + \gamma_{c_{3}} + \gamma_{c_{4}} - \gamma_{c_{1}}\gamma_{c_{3}} < 1$

Outline

Linear Network Systems and Metzler Matrices

An emerging theory for Nonlinear Network Systems

- F. Bullo. Lectures on Network Systems.
 Kindle Direct Publishing, 1.3 edition, July 2019.
 With contributions by J. Cortés, F. Dörfler, and S. Martínez.
 URL: http://motion.me.ucsb.edu/book-lns
- Kuramoto Synchronization (existence and lack of uniqueness)

Nonlinear network systems

Rich variety of emerging behaviors

- equilibria / limit cycles / extinction in populations dynamics
- epidemic outbreaks in spreading processes
- **③** synchrony and multi-stability in coupled oscillators

Rich variety of analysis tools

- nonlinear stability theory
- 2 passivity, small gain theorems, and dissipativity
- Ontractivity and monotonicity

FB et al (UCSB)	Network Systems	Torino, 26 September 2019	17 / 50	FB et al (UCSB)	Network S	Systems	Torino, 26 September 2019	18 / 56
Example: Population systems in ecology			Dichotomy in mutualistic Lotka-Volterra system					
(Vito Volterra, Universita' di	Torino, 1860-1940)							
Mutualism clownfish / anemones (Takeuchi interaction matrix A: (+, +) mutualism, (-	Lotka-Volterr $\frac{\dot{x}}{x}$ \dot{x} \dot{x} \dot{x} \dot{x} \dot{x} \dot{x} \dot{x} \dot{x} \dot{x}	a: $x_i = \text{quantity/density}$ $\frac{i}{i} = b_i + \sum_j a_{ij}x_j$ = diag(x)(Ax + b)) competition	,	$x_{1}^{*} = -\frac{1}{11}$ Case I: $a_{12} > 0, a_{21} > 0$		c_{a}	x_1 -mul-line x_2 -mul-line x_3 -mul-line x_4	
rich behavior: persist	tence, extinction, equil	bria, periodic orbits, .		$a_{12}a_{21} > a_{11}a_{22}$. There positive equilibrium point for the positive equilibrium point for the positive equilibrium for	exists no nt. All	$a_{12}a_{21} < a$ unique pos	$a_{11}a_{22}$. There exists a sitive equilibrium point.	
• mutualism: $a_{ij} \ge 0$				trajectories starting in I	$\mathbb{X}_{>0}$ alverge.	All trajecto	pries starting in $\mathbb{R}^{-}_{>0}$	
2 either unbounded evolution or					converge t	o the equilibrium point.		
exists unique steady state $-A^{-1}b > 0$								
$\lim_{t\to\infty} x($	$(t) = -A^{-1}b$ from all x	x(0) > 0						

19 / 56

Research questions in Nonlinear Network Systems	Example systems
 what are key example systems? what is a useful underlying structure? what is a practical, simple, rich technical approach? how do we treat dichotomy and richer behaviors? how do we automatically generate Lyapunov functions? 	Kuramoto oscillators ('75)Yorke network propagation ('76) $\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$ $\dot{x} = \beta(I_n - \operatorname{diag}(x))Ax - \gamma x$ Metzler Jac: phase cohesive region Ex: active power flow, motion patterns $\dot{x} = \beta(I_n - \operatorname{diag}(x))Ax - \gamma x$ Lotka-Volterra population ('20) $\dot{x} = \operatorname{diag}(x)(Ax + r)$ $\dot{x} = \operatorname{diag}(x)(Ax + r)$ Daganzo cell transmission ('94) $\dot{p}_e = f_e^{\operatorname{in}}(\rho) - f_e^{\operatorname{out}}(\rho)$ Metzler Jac: mutualistic interactions Ex: biochemical networks, repressilator with 2 genesMetzler Jac: free flow region Ex: monotone distributed routing (Como, Savla, et al), Maeda '78, Sandberg '78Matrosov interconnection of ISS systems ('71) $\dot{y} \leq -A(v) + \Gamma(v) + G(w)$
	Metzler Jac and positive
A review of Contraction Theory	FB et al (UCSB) Network Systems Torino, 26 September 2019 22 / 56
given norm, the matrix measure of A is $\mu(A) := \lim_{h \to 0^+} \frac{\ l_n + hA\ - 1}{h}$ assume: vector field f is infinitesimally contracting over C, that is, $\mu(Df(x)) \le c < 0, \text{for all } x \in C$ assume: set C is f-invariant, closed and convex Desirable consequences • flow of f is a contraction, i.e., distance between solutions exponentially decreases with rate c • there exists an equilibrium x*, unique, globally exponentially stable with global Lyapunov functions $x \mapsto x - x^* ^2 \text{and} x \mapsto f(x) ^2$	Figure: Any two trajectories of an infinitesimally contracting system converge.
ER et al. (IICSR) Network Systems Toring 26 September 2010 23 / 56	FR et al. (IICSR) Network Systems Torino, 26 September 2019 24 / 56

Common matrix me	easures	The Euclidean case: works by Krasovskii & Vidyasagar			
Vector norm	Matrix measure	Viduosagar '70. Luopupov functions and matrix massures			
$\ x\ _{1} = \sum_{i=1}^{n} x_{i} $ $\ x\ _{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ $\ x\ _{\infty} = \max_{i \in \{1, \dots, n\}} x_{i} $	$\mu_1(A) = \max_{j \in \{1,,n\}} \left(a_{jj} + \sum_{i=1,i\neq j}^n a_{ij} \right)$ = max column "absolute sum" of A $\mu_2(A) = \lambda_{\max} \left(\frac{A + A^{\top}}{2} \right)$ $\mu_{\infty}(A) = \max_{i \in \{1,,n\}} \left(a_{ii} + \sum_{j=1,j\neq i}^n a_{ij} \right)$ = max row "absolute sum" of A	Given $P \succ 0$ and $c \in \mathbb{R}$, $\mu_{2,P}(A) < c \iff A^{\top}P + PA \prec 2cP$ 1 A Hurwitz \iff A has negative weighted 2-norm (w.r.t. some P) 2 $\inf_{P \succ 0} \mu_{2,P}(A) =$ spectral abscissa of A			
Simplifications for a Metz	ler matrix <i>M</i>	Krasovskiĭ '60: method to design Lyapunov function			
$\mu_1(M) = \max_{j \in \{1,\dots,n\}} \sum_{i=1}^n \mu_\infty(M) = \max_{i \in \{1,\dots,n\}} \sum_{j=1}^n \mu_\infty(M)$	$m_{j=1} m_{ij} = \max(M^{ op} \mathbb{1}_n) = \max ext{ column sum of } M$ $m_{j=1} m_{ij} = \max(M \mathbb{1}_n) = \max ext{ row sum of } M$	f is weighted 2-norm contracting if $\exists P \succ 0$ and $c < 0$ $P Df(x) + Df(x)^{\top}P \preceq 2cP$, for all $x \in \mathbb{R}^n$ Constant Lyapunov weight P at each x implies desirable consequences			
FB et al (UCSB)	Network Systems Torino, 26 September 2019 25 / 56	FB et al (UCSB) Network Systems Torino, 26 September 2019 26 / 56			
The non-Euclidean	case for Metzler Jacobians	Krasovskii Lyapunov functions			
Coogan '16: matrix measu	ures of a Metzler matrix <i>M</i>	for systems with Metzler Jacobians and constant weights			
Given vectors $\eta, \xi > \mathbb{O}_m$ a	nd $c \in \mathbb{R}$,	Weighted diagonal 2-norm:			
$\mu_{1, diag(\eta)}(M) \ \mu_{\infty, diag(\xi)^{-1}}(M)$	$< c \qquad \Longleftrightarrow \qquad \eta^{\top} M < c \eta^{\top}, \text{ and}$ $< c \qquad \Longleftrightarrow \qquad M \xi < c \xi,$	$\ x - x^*\ _P^2 = \sum_{i=1}^n p_i (x_i - x_i)^2$ and $\ f(x)\ _P^2 = \sum_{i=1}^n p_i f_i(x)^2$			
• <i>M</i> Hurwitz \iff	M has negative weighted 1- or ∞ -measure	Weighted 1-norm			
$ inf_{\eta > \mathbb{O}_m} \mu_{1, diag(\eta)}(M) = $	$\inf_{\xi \mathbb{O}_m} \mu_{\infty, diag(\xi)^{-1}}(M) = spectral \ abscissa \ of \ M$	$\ x - x^*\ _{1,\eta} = \sum_{i=1}^n \eta_i x_i - x_i^* $ and $\ f(x)\ _{1,\eta} = \sum_{i=1}^n \eta_i f_i(x) $			
Sum-separable and max-se	eparable Lyapunov functions	Weighted ∞ -norm			
f with Metzler Jac is weig $\eta^ op {\sf D} f$	$ \begin{array}{ll} \text{ghted 1-norm contracting if } \exists \eta > \mathbb{O}_n \text{ and } c < 0 \\ f(x) \leq c \eta^\top, \text{ for all } x \in \mathbb{R}^n \end{array} $	$\ x - x^*\ _{\infty, \xi^{-1}} = \max_{i \in \{1, \dots, n\}} \frac{ x_i - x_i^* }{\xi_i} \text{ and } \ f(x)\ _{\infty, \xi^{-1}} = \max_{i \in \{1, \dots, n\}} \frac{ f_i(x) }{\xi_i}$			
Constant column weights	η at each x implies desirable consequences	Recall: sublevel sets of Lyapunov functions are <i>f</i> -invariant			

Example application to Lotka-Volterra	Weakly contracting systems
• change of variable $y = \ln x$, so that $x \in \mathbb{R}^n_{>0}$ maps into $y \in \mathbb{R}^n$ and $\dot{y} = A \exp(y) + r := f_{LVe}(y)$	For a vector field f a and norm C1 there exists a convex and f -invariant set C , C2 f is infinitesimally weakly contractive on the set C
Pick $v > \mathbb{O}_n$ such that $v \land A < \mathbb{O}_n$ and show $v^\top Df_{LVe}(y) = v^\top A \operatorname{diag}(\exp(y)) < -cv^\top \operatorname{diag}(\exp(y)) \leq 0.$	Desirable consequences (under additional incremental assumptions) Then one of the following mutually-exclusive conditions hold: either
In the second	 f has no equilibrium in C and every trajectory in C is unbounded, or f has at least one equilibrium x* ∈ C and: every trajectory starting in C is bounded and each equilibrium x** is
$\begin{split} \ y - y^*\ _{1, \operatorname{diag}(v)} \text{and} \ f_{\operatorname{LVe}}(y)\ _{1, \operatorname{diag}(v)} \end{split}$ that is, $x \mapsto \sum_{i=1}^n v_i \ln(x_i/x_i^*) , \qquad x \mapsto \sum_{i=1}^n v_i (Ax + r)_i $	 every trajectory starting in C is bounded and each equilibrium x → is stable with weak Lyapunov function x → x - x** , if the norm · is a (p, R)-norm, p ∈ {1,∞} and f is piecewise real analytic, then every trajectory converges to the set of equilibria, if x* is locally asy stable, then x* is globally asy stable in C, if µ(Df(x*)) < 0, then x → x - x* is a global Lyapunov function and x → f(x) is a local Lyapunov function.
FB et al (UCSB) Network Systems Torino, 26 September 2019 29 / 56	FB et al (UCSB) Network Systems Torino, 26 September 2019 30 / 56
Why is this recover for find structure networks: $i = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty$	 Linear Network Systems and Metzler Matrices An emerging theory for Nonlinear Network Systems An emerging theory for Nonlinear Network Systems S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections. <i>IEEE Transactions on Automatic Control</i>, 64(7):2830–2844, 2019. doi:10.1109/TAC.2018.2876786 problem statement solution Kuramoto Multi-Stability (lack of uniqueness) S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Multistable synchronous power flows: From geometry to analysis and computation. <i>SIAM Review</i>, January 2019. Submitted. URL: https://arxiv.org/pdf/1901.11189.pdf

Today: Sync & Multi-Stability in Coupled Oscillators

Model #1: Spring network analog and applications

Kuramoto model

- *n* oscillators with angle $\theta_i \in \mathbb{S}^1$
- **non-identical** natural frequencies $\omega_i \in \mathbb{R}^1$
- **coupling** with strength $a_{ij} = a_{ji}$

$$\dot{ heta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

Coupled swing equations Euler-Lagrange eq for spring network on ring:

$$m_i\ddot{ heta}_i + d_i\dot{ heta}_i = au_i - \sum_j k_{ij}\sin(heta_i - heta_j)$$

Kuramoto coupled oscillators

$$\dot{ heta}_i = \omega_i - \sum_j a_{ij} \sin(heta_i - heta_j)$$

Kuramoto equilibrium equation

$$0 = \omega_i - \sum_j a_{ij} \sin(heta_i - heta_j)$$

Proof sketch 1	/2: Rewriting the ea	quilibrium equation	Proof sketch 2/2: Amplification factor & Brouwer
			STEP 1: look for x solving
For what B, \mathcal{A}, p_{act}	v does there exist θ solution $p_{actur} = BA \sin(B^2)$	on to: $\left(\frac{1}{\theta}\right)$	$x = h(x) = (\mathcal{P} \operatorname{diag}[\operatorname{sinc}(x)])^{-1}z$
STEP 1: For what	flow z and projection \mathcal{P}	onto cutset/flow space	IDEA: assume $ x _p \le \gamma$ and ensure $ h(x) _p \le \gamma$
₽ sin	does t $(x) = z$ $\iff \mathcal{P} \operatorname{diag}[\operatorname{sinc}(x)]x =$ $\iff x = (\mathcal{P} \operatorname{diag}[\operatorname{sinc}(x)]x)$	here exist a flow x that solves = z (z) = h(x)	STEP 2: If one defines min amplification factor $\alpha_{p}(\gamma) := \min_{\ x\ _{p} \leq \gamma} \min_{\ y\ _{p}=1} \ \mathcal{P} \operatorname{diag}[\operatorname{sinc}(x)]y\ _{p}$ then $\ h(x)\ _{p} \leq \max_{x} \max_{y} \ (\mathcal{P} \operatorname{diag}[\operatorname{sinc}(x)])^{-1}y\ _{p} \cdot \ z\ _{p}$ $= \left(\min_{x} \min_{y} \ \mathcal{P} \operatorname{diag}[\operatorname{sinc}(x)]y\ _{p}\right)^{-1} \ z\ _{p} \leq \frac{\ z\ _{p}}{\alpha_{p}(\gamma)}$
		T : 000	STEP 3: $ z _p \le \gamma \alpha_p(\gamma)$, then $ h(x) _p \le \gamma$ so that <i>h</i> satisfies Brouwer
Comparison of	sufficient and appro	ximate sync tests	Summary: Kuramoto equilibrium and active power flow
Any test predicts m Compare with nume	ax transmittable power (berically computed.	pefore bifurcation).	Given topology (incidence <i>B</i>), admittances (Laplacian <i>L</i>), injections p_{actv} , $p_i = \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$
Test Case o	ld 2-norm new ∞-norm	$g(\ \mathcal{P}\ _{\infty}) \approx 1 \alpha_{\infty} \text{ test}$ approximate fmincon	Equilibrium angles exist if, in some <i>p</i> -norm,
IEEE 9 IEEE 14 IEEE RTS 24 IEEE 30	16.54 % 73.74 % 8.33 % 59.42 % 3.86 % 53.44 % 2.70 % 55.70 %	92.13 % 85.06 % [†] 83.09 % 81.32 % [†] 89.48 % 89.48 % [†] 85.54 % 85.54 % [†]	$\ B^{\top}L^{\dagger}p_{actv}\ _{p} \leq \gamma \alpha_{p}(\gamma)$ for all graphs (New α_{p} T) For $p = \infty$, after bounding,
IEEE 9 IEEE 14 IEEE RTS 24 IEEE 30 IEEE 118 IEEE 300	16.54 % 73.74 % 8.33 % 59.42 % 3.86 % 53.44 % 2.70 % 55.70 % 0.29 % 43.70 % 0.20 % 40.33 %	92.13 % $85.06 \%^{\dagger}$ 83.09 % $81.32 \%^{\dagger}$ 89.48 % $89.48 \%^{\dagger}$ 85.54 % $85.54 \%^{\dagger}$ 85.95 % $-^*$ 99.80 % $-^*$	$\begin{split} \ B^{\top}L^{\dagger}p_{actv}\ _{p} &\leq \gamma \alpha_{p}(\gamma) \text{for all graphs} \qquad (New \ \alpha_{p} \ T) \\ For \ p &= \infty, \text{ after bounding,} \\ \ B^{\top}L^{\dagger}p_{actv}\ _{\infty} &\leq g(\ \mathcal{P}\ _{\infty}) \qquad (New \ \infty\text{-norm} \ T) \end{split}$
IEEE 9 IEEE 14 IEEE RTS 24 IEEE 30 IEEE 118 IEEE 300 Polish 2383 [†] fmincon with 100 [*] fmincon does not	16.54 % 73.74 % 8.33 % 59.42 % 3.86 % 53.44 % 2.70 % 55.70 % 0.29 % 43.70 % 0.20 % 40.33 % 0.11 % 29.08 % 0 randomized initial conditions	92.13 % $85.06 \%^{\dagger}$ 83.09 % $81.32 \%^{\dagger}$ 89.48 % $89.48 \%^{\dagger}$ 85.54 % $85.54 \%^{\dagger}$ 85.95 % $-^*$ 99.80 % $-^*$ 82.85 % $-^*$	$\ B^{\top}L^{\dagger}p_{actv}\ _{p} \leq \gamma \alpha_{p}(\gamma) \text{for all graphs} \qquad (\text{New } \alpha_{p} \text{ T})$ For $p = \infty$, after bounding, $\ B^{\top}L^{\dagger}p_{actv}\ _{\infty} \leq g(\ \mathcal{P}\ _{\infty}) \qquad (\text{New } \infty\text{-norm } \text{T})$ Q1: \exists a stable operating point (with pairwise angles $\leq \gamma$)? Q2: what is the network capacity to transmit active power? Q3: how to quantify robustness as distance from loss of feasibility?

Outline

Introduction to Network Systems

 F. Bullo. Lectures on Network Systems. Kindle Direct Publishing, 1.3 edition, July 2019.
 With contributions by J. Cortés, F. Dörfler, and S. Martínez. URL: http://motion.me.ucsb.edu/book-lns

Synchronization (existence)

S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections. IEEE Transactions on Automatic Control, 64(7):2830–2844, 2019. doi:10.1109/TAC.2018.2876786

Multi-Stability (lack of uniqueness)

S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Multistable synchronous power flows: From geometry to analysis and computation.
 SIAM Review, January 2019.
 Submitted.
 URL: https://arxiv.org/pdf/1901.11189.pdf

Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:

sometimes undesirable power flows around loops sometimes sizable difference between predicted and actual power flows

New York Independent System Operator, Lake Erie Loop Flow Mitigation, Technical Report, 2008

THEMA Consulting Group, Loop-flows - Final advice, Technical Report prepared for the European Commission, 2013

FB et al (UCSB)	Network Systems	Torino, 26 September 2019	49 / 56	FB et al (UCSB)	Network Systems	Torino, 26 September 2019	50 / 56
Lack of uniqueness	and winding solu	itions		Winding number o	f <i>n</i> angles		
Given topology (incidence <i>B</i>), admittances (Laplacian <i>L</i>), injections p_{actv} , $p_i = \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$			Given undirected graph with a cycle $\sigma = (1,, n_{\sigma})$ and orientation • winding number of $\theta \in \mathbb{T}^n$ along σ is: $w_{\sigma}(\theta) = \frac{1}{2} \sum_{i=1}^{n_{\sigma}} d_{cc}(\theta_i, \theta_{i+1})$				
 Is solution unique? how to localize /class 	fr colutions?				$2\pi \prod_{i=1}^{2\pi}$		
triangle graph, homogenee	bus weights $(a_{ij} = 1)$,	$p_{actv} = 0$		•16600	asses of	CECECECECE C	
		A A A A A A A A A A A A A A A A A A A		(θ) 2 given basis $\sigma_1, \ldots, \sigma_n$) = 0 σ_r for cycles, winding	$(\theta) = \pm 1$ vector of θ is	
phase syn	c s	splay state			$w(heta) = (w_{\sigma_1}(heta), \ldots, heta)$	$w_{\sigma_r}(heta))$	
EB et al. (IICSB)	Network Systems	Torino, 26 September 2019	51 / 56	EB et al (UCSB)	Network Systems	Torino, 26 September 2019	52 / 56

