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9 An emerging theory for Nonlinear Network Systems

© Kuramoto Synchronization (existence and lack of uniqueness)
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Network flow systems

—prccipita‘tionwevaporation. drainage, runoff — C.],' = E . (Fj%l - FIAU) - Fi;)() + uj
J
cvL‘)o . .
§ o0 uptake plants transpiration—
9P o o
. Fij = fijqi, F=1[fj]
°

%
o
L o drinking herbivory

o
- %o o A a o °
0°p 00 % ~ o, ° 4 q .
Pag 0 g0 i~ animals (—evaporation—
p o e oy d v,
o
4

‘ Linear network systems

g=(FT —diag(F1, + %)) g+ u

=C

Water flow model for a desert ecosystem (Noy-Meir '73)

o o
©o0

network structure <= function = asymptotic behavior

C compartmental matrix:

Model Dynamics Asy Behavior Graph property
averaging flow x = —Lx consensus 3 globally reach node
(Abelson '64) Laplacian matrix
network flow x=—LTx stationary dis- J globally reach node
(Noy Meir '73) transpose Laplacian tribution
network flow with x = Cx stability outflow-connected
decay (outflows) C = —L" — diag(d)

compartmental matrix
network flow with x = Mx stability unknown

decay/growth

M = —LT + diag(g — d)
Metzler matrix

FB et al (UCSB)

Network Systems

Stability of network flow systems

A Metzler M is Hurwitz
Q there exists £ € R” such that £ > 0, and M¢ < Op;
@ there exists n € R” such that n >0, and ' M < 0,; or

iff any following equivalent condition hold:

© there exists a diagonal matrix P > 0 such that MT P + PM < 0.

Torino, 26 September 2019
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(a) maxieqa,...,
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(b) n'x

Network Systems
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(c) x" Px

graph-theoretic conditions for stability

7 /56

quasi-positive (off-diag > 0) and non-positive column sums (fy > 0)
analysis tools: PF for quasi-positive, inverse positivity, algebraic graph

g

system (= each condensed sink) C is Hurwitz

is outflow-connected

=

lim: oo g(t) = —Ctu>0
(-C7lu); >0 <= ith compartment is inflow-connected

o
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Reducible and acyclic graphs

Reducible graphs

M € R™" is Hurwitz

0

Strongly connected components
are Hurwitz

Implication: large-scale system may be decomposed into smaller systems

.

Directed acyclic graphs
kg M € R™" is Hurwitz
ce»o:a

)
Implication: study cycles!

diagonal entries are negative

Network Systems Torino, 26 September 2019 8 /56
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Basic ideas: a simple cycle

myp mpp 0 0 E
0 Mmoo  Mo3 0
M =
0 0 Mp_1,n—1 Mp—1,n
mp1 0 0 Mpnp
: m m m
M Hurwitz <= < 12)( 23)...( n1)<1
—mi —my2 —Mpp
where
mj; I = n . - .
@ —- represents a “gain for subsystem i with respect to j
@ test: composition of “gains” along the cycle is less than 1
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Summary of results

Thm 1:

Thm 2: Max-interconnection gains and graph-theoretic conditions

Input-to-state interconnection gains for Metzler systems

Thm 3: Sum-interconnection gains and graph-theoretic conditions

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic small gain theorems for Metzler
matrices and monotone systems.

IEEE Transactions on Automatic Control, June 2019.

Submitted.

URL: https://arxiv.org/pdf/1905.05868.pdf
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Basic ideas: Small-gain network stability

Cyclic Small-Gain Theorem

a network of systems with input is ISS if
cycle gain <1

about each simple cycle,
for appropriate interconnection gains

@ V. Lakshmikantham, V. M. Matrosov, and S. Sivasundaram. Vector Lyapunov
Functions and Stability Analysis of Nonlinear Systems.
Kluwer Academic Publishers, 1991

@ S. N. Dashkovskiy, B. S. Riiffer, and F. R. Wirth. Small gain theorems for large
scale systems and construction of ISS Lyapunov functions.

SIAM Journal on Control and Optimization, 48(6):4089-4118, 2010.
doi:10.1137/090746483

© T. Liu, D. J. Hill, and Z.-P. Jiang. Lyapunov formulation of ISS cyclic-small-gain in
continuous-time dynamical networks.

" Network Systems

Possible notions of ISS gains

FB et al (CSB) Torino, 26 September 2019 10 / 56

An interconnected nonlinear system with subsystem dynamics

xi = fi(xi, x5 Uj), Vie{l,...,n}.

system has sum-interconnection gains {~;} if

() < Bili(O) ) + D viillixilio.g) + villluilloo):

JEN:

where 8; € KL, v;; € K, and v; € K.

system has max-interconnection gains {¢;;} if

8 = mex {Bi(1xi(0)]. £), ¥ii(lIxillio, ) illluilloo) }-

where 8; € KL, v € K, and ¥; € K.

Network Systems Torino, 26 September 2019 11 / 56
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Thm 1: ISS gains for Metzler systems

Thm 2: Max-cycle gains and graph conditions

Thm 1: ISS gains for Metzler systems

For Metzler system x = Mx + u, M with negative diagonals,
@ sum-interconnection gains {v;} satisfy

m

- <y, Vie{l,...nhjeN,

n

@ max-interconnection gains {v;;} satisfy

mjj —1 .
Z<_mii>1/}ij <1, Vie{l,...,n}

JEN;

For ¢ = (i, 2, ..., ik, 1) be a simple cycle

Q the sum-cycle gain of c is ve = (Vi) (Visin) - - - (Vivi)
@ a max-cycle gain of cis e = (Viiy) Wisiy) - - - (Vii)

FB et al (UCSB) Network Systems Torino, 26 September 2019 13 / 56

Thm 2: Conditions based on max-cycle gains

Given an irreducible Metzler matrix M € R"*" with negative diagonal
elements and the set of simple cycles ®, the followings are equivalent:

Q@ M is Hurwitz;
@ for every j € V and j € N;, there exists t;; > 0 such that

Z(m—,;z)w;la, vie{l,...,n},
JEN; — Ijj
Ye < 1, Ve e o.

@ ‘“cycle gain < 1 about each simple cycle” is now IFF

@ convex problem

FB et al (UCSB) Network Systems Torino, 26 September 2019

Thm 3: Sum-cycle gains and graph conditions

Thm 3: Conditions based on sum-cycle gains

Given an irreducible Metzler matrix M € R™" with negative diagonal
elements, the followings are equivalent:
Q M is Hurwitz;
@ for each i, let ®; be simple cycles over {1,...,i} (or renumbered)
—1
Z Ve — Z YaYe T F Z (=1)""q - e, <1
c€P; {c1,2}CP; {er,c }CO;
ciNe=0 ciNc=0

@ condition 2 <= certain sums of products of gains < 1

@ computation of sum-cycle gains and “sums of products” is
straightforward (not iterative)

Thm 3: Example

Vi={1} = 0
o Vo ={1,4} = {74 <1}
< Vs ={1,4,2} = {7y +7 <1}
Vy = {1747273} = {'Ycl + 7 <1,
“ o Yo + Ver + Ves + Ve — YaVer < 1}

Hence, stability certificate

Yo + Ve <1
Yo + Voo T Vs + Ve — VoV <1

FB et al (UCSB) Network Systems Torino, 26 September 2019 15 / 56
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‘ Qutline Nonlinear network systems

Rich variety of emerging behaviors
@ equilibria / limit cycles / extinction in populations dynamics

@ epidemic outbreaks in spreading processes

O |inear Network Systems and Metzler Matrices ] . g :
© synchrony and multi-stability in coupled oscillators
An emerging theory for Nonlinear Network Systems Rich variety of analysis tools
(2 F. Bullo. Lectures on Network Systems. @ nonlinear stability theory
Kindle Direct Publishing, 1.3 edition, July 2019.
With contributions by J. Cortés, F. Dorfler, and S. Martinez. Q passivity, small gain theorems, and dissipativity

URL: http://motion.me.ucsb.edu/book-1ns

© contractivity and monotonicity

3 (infection rate)

© Kuramoto Synchronization (existence and lack of uniqueness) ]

Susceptible

 (recovery rate)

FB et al (UCSB) Network Systems Torino, 26 September 2019 17 / 56 FB et al (UCSB) Network Systems Torino, 26 September 2019 18 / 56
Example: Population systems in ecology Dichotomy in mutualistic Lotka-Volterra system
(Vito Volterra, Universita' di Torino, 1860-1940)
Lotka-Volterra: x; = quantity/density
X; .
S bt e N Ny
i R S g g T
= AN\
@ o A = s
, : NN S =
' — . R 7 e
Mutualism clownfish / anemones (Takeuchi et al '78) | X = dlag(x) (AX + b) *L *i‘? f//gvgég//é?@s::gg:%
) / 7 I/ \ E —
interaction matrix A: [ N ST
. . .. r=-1/ 1
mutualism, —) predation, (—, —) competition
(+f71—}l;)h . .(—h ) P . . ( ’ .I.)b . P iodi bi Case |: a;2 >0, ax1 >0, Case Il: a1 > 0, a1 >0,
ric ehavior: persistence, extinction, equilibria, periodic orbits, ... 21031 > a11ax. There exists no 210321 < a1132. There exists a
positive equilibrium point. All unique positive equilibrium point.
© mutualism: a; >0 trajectories starting in R%, diverge. All trajectories starting in R2>0.
@ either unbounded evolution or converge to the equilibrium point.
:> exists unique steady state —A~1h > 0
lim:_o0 x(t) = —A~1b from all x(0) > 0

FB et al (UCSB) Network Systems Torino, 26 September 2019 FB et al (UCSB) Network Systems Torino, 26 September 2019



Research questions in Nonlinear Network Systems Example systems

Kuramoto oscillators ('75) Yorke network propagation ('76)

. n .

9,’ :w,-—z_ a,-jsm(H,-—Hj)
x = B(I, — diag(x)) Ax — yx

Metzler Jac: phase cohesive region

@ what are key example systems? Ex: active power flow, motion patterns Metzler Jac and positive

Ex: network SIR, patchy SIS

© what is a useful underlying structure? - =
Lotka-Volterra population ('20) |Daganzo cell transmission ('94)

© what is a practical, simple, rich technical approach? x = diag(x)(Ax + r) pe = fi"(p) — £2"(p)

© how do we treat dichotomy and richer behaviors?
. . Metzler Jac: mutualistic interactions Metzler Jac: free flow region
© how do we automatically generate Lyapunov functions?

Ex: biochemical networks, repressilator | Ex: monotone distributed routing (Como,
with 2 genes Savla, et al), Maeda '78, Sandberg '78

Matrosov interconnection of ISS systems (’71)

Xi=fi(xt, .. %, ui) = V< —A(v) +T(v) + G(w)

Metzler Jac and positive

FB et al (UCSB) Network Systems

A review of Contraction Theory

Torino, 26 September 2019 21 / 56 Network Systems
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given norm, the matrix measure of A is

assume: vector field f is infinitesimally contracting over C, that is,
n(Df(x)) <c <0, forallxeC

assume: set C is f-invariant, closed and convex

Desirable consequences

© flow of f is a contraction, i.e., Figure: Any two trajectories of an infinitesimally contracting system converge.
distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, unique, globally exponentially stable
with global Lyapunov functions

Xl—>HX—X*H2 and XI—)Hf(X)H2

FB et al (UCSB) Network Systems Torino, 26 September 2019 23 / 56 FB et al (UCSB) Network Systems Torino, 26 September 2019 24 / 56



Common matrix measures

The Euclidean case: works by Krasovskii & Vidyasagar

Vector norm Matrix measure

n
Il =327 I

n
Ha(A) :je?;f.).(,n} (ajj + Zi:l,i;ﬁj |aij’)
= max column “absolute sum” of A

n T
ele =[S0 2 a(A) = da( A 2)

2
n
A b Hoo(A) ey VT v 1231

= max row “‘absolute sum” of A

Xl =
1

Simplifications for a Metzler matrix M

w1 (M) :je?fi).(,n} 27:1 m;; = max(M"1,) = max column sum of M
too(M) = max n mj; = max(M1,) = max row sum of M
ie{l,...,n} —j=1

FB et al (UCSB)

The non-Euclidean case for Metzler Jacobians

Coogan '16: matrix measures of a Metzler matrix M

Given vectors n,&¢ > 0, and ¢ € R,

Network Systems Torino, 26 September 2019 25 / 56

n'M< cn', and
M¢ < c€,

<cC =

Nl,diag(n)(M)

Hoo,diag(e)-1(M) < ¢ —

QO M Hurwitz
(2] ni>n(];m 11, diag(n) (M) = égi Moo diag(¢)-1 (M) = spectral abscissa of M

<= M has negative weighted 1- or co-measure

i

Sum-separable and max-separable Lyapunov functions

f with Metzler Jac is weighted 1-norm contracting if 3n > 0, and ¢ < 0
n' Df(x) < cn', forall x € R"

Constant column weights n at each x implies desirable consequences

Vidyasagar '78: Lyapunov functions and matrix measures

Given P > 0 and c € R,

p2.p(A) < c — ATP + PA < 2cP

Q A Hurwitz
@ inf up p(A) = spectral abscissa of A
P-0" "

<= A has negative weighted 2-norm (w.r.t. some P)

Krasovskil '60: method to design Lyapunov function
f is weighted 2-norm contracting if 3P > 0 and ¢ < 0

P Df(x) + Df(x)"P < 2cP, for all x € R”

Constant Lyapunov weight P at each x implies desirable consequences

FB et al (UCSB)

Krasovskil Lyapunov functions
for systems with Metzler Jacobians and constant weights

Network Systems Torino, 26 September 2019 26 / 56

Weighted diagonal 2-norm:

n n
Ix—x* 3 =Y pilxi —x)?* and  [IF(x)|E = pifi(x)?
i=1 i=1

Weighted 1-norm

n
Lo = S milxi = x|
i=1

Weighted oo-norm

lIx — x*

and | F(x)llLy = D milfi(x)|
i=1

X — x|

|fi(x)]
and f(x cog~1 = _Max
H ( )“ £ ie{1,..,n} &

max

ie{1,...,n} &

5 = X[l 1 =

Recall: sublevel sets of Lyapunov functions are f-invariant

FB et al (UCSB) Network Systems Torino, 26 September 2019
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Example application to Lotka-Volterra

Weakly contracting systems

© change of variable y = Inx, so that x € R, maps into y € R" and
y = Aexp(y) + r:= five(y)
@ pick v > 0, such that v' A < 0, and show
v' Dfive(y) = v' Adiag(exp(y)) < —cv ' diag(exp(y)) < 0.

© fLve, and so fiy, has a unique globally exponentially stable equilibrium
with sum-separable global Lyapunov functions

1y = ¥ ll1diagv) and  [[five(y)ll1,diag(v)

that is,

X Z vi|(Ax + r)jl

i=1

n
x = Y vilIn(xi/x7),
i=1

FB et al (UCSB)

Why is this relevant for infrastructure networks?

Network Systems Torino, 26 September 2019

29 / 56

Consider a network flow system x = f(x) preserving a commodity

constant = 1! x(t)
— 0=1]x(t) =1, f(x(t))
— 0, =1, Dfx(t)

If additionally f has Meztler Jacobian, then f is automatically weakly
contracting (non-expansive) with respect to the ¢; norm.

FB et al (UCSB) Network Systems Torino, 26 September 2019
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For a vector field f a and norm

C1 there exists a convex and f-invariant set C,

C2 f is infinitesimally weakly contractive on the set C

Desirable consequences (under additional incremental assumptions)

Then one of the following mutually-exclusive conditions hold: either

@ £ has no equilibrium in C and every trajectory in C is unbounded, or
@ f has at least one equilibrium x* € C and:
@ every trajectory starting in C is bounded and each equilibrium x** is
stable with weak Lyapunov function x — [[x — x**||,
@ if the norm || - || is a (p, R)-norm, p € {1,00} and f is piecewise real
analytic, then every trajectory converges to the set of equilibria,
@ if x* is locally asy stable, then x* is globally asy stable in C,

0 if u(DFf(x*)) <0, then x — ||x — x*|| is a global Lyapunov function
and x — ||f(x)]| is a local Lyapunov function.

FB et al (UCSB) Network Systems Torino, 26 September 2019 30 / 56
Outline
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Kuramoto Synchronization (existence)

o S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections.
IEEE Transactions on Automatic Control, 64(7):2830-2844, 20109.
doi:10.1109/TAC.2018.2876786

@ problem statement
@ solution

Kuramoto Multi-Stability (lack of uniqueness)

S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Multistable synchronous power
Q flows: From geometry to analysis and computation.

SIAM Review, January 2019.

Submitted.

URL: https://arxiv.org/pdf/1901.11189.pdf
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Today: Sync & Multi-Stability in Coupled Oscillators

Model #1: Spring network analog and applications

Kuramoto model

e n oscillators with angle 0; € S*
e non-identical natural frequencies w; € R?

o coupling with strength a;; = aj;

n
= Wi — Z a,-J- sin(9,~ — 9_,')
j=1

FB et al (UCSB) Network Systems Torino, 26 September 2019 33 / 56

Model #2: Active Power Flow Problem

AC, Kirckhoff and Ohm, quasi-sync, lossless lines, constant voltages.

supply/demand p;, max power coeff aj;, voltage phase 6;

) ».é}:

Given: network parameters & topology, load & generation profile,

f,'j = ajj sin(9,- — GJ-)

power flow
0 30 60 %0 120 150 180

power angle § — 6

Torino, 26 September 2019 35 /56

Network Systems
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Coupled swing equations
Euler-Lagrange eq for spring network on ring:

m,-é,- + C/,'é,' =T — Z k,'j sin(9,- — 91')
J

Kuramoto coupled oscillators
9,’ = Wj — Zj ajj sin(«9,~ — 91)

Kuramoto equilibrium equation

0= Wi — Z ajj sin(9,- — 91)
J

Torino, 26 September 2019 34 / 56
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Phenomenon #1: Transition from incoherence to sync

Function = synchronization . n .
y 0; =w,-—z_ ajjsin(6; — 0;) J
j=1
o /
10 9 ( ) 15 0 ( )
large |w; — w;j| & small coupling ~ small [wj — wj| & large coupling

= incoherence = no sync = coherence = frequency sync

Torino, 26 September 2019 36 / 56
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Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:
sometimes undesirable power flows around loops
sometimes sizable difference between predicted and actual power flows

Figure 8: Average unscheduled flows for the years 2011 and 2012, MWh/h®

MISO

verage counter-cl Wil ion of Lake Erie Loop Flow

THEMA Consulting Group, Loop-flows - Final ad-
vice, Technical Report prepared for the European
Commission, 2013

New York Independent System Operator, Lake Erie
Loop Flow Mitigation, Technical Report, 2008

FB et al (UCSB) Network Systems Torino, 26 September 2019

Primer on algebraic graph theory (slide 1/2)

37 / 56

Weighted undirected graph with n nodes and m edges:
Incidence matrix: 1 x m matrix B s.t. (BT pactv) () = Pi — Pj
Weight matrix: m x m diagonal matrix A
Laplacian stiffness: L= BAB"T >0

Linearization of Kuramoto equilibrium equation:

pacty = BAsin(B') =  p.ww~BAB'0) =160

Algebraic connectivity:

A2(L) = second smallest eig of L

= notion of connectivity and coupling

FB et al (UCSB) Network Systems Torino, 26 September 2019 39 /56
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Kuramoto Synchronization (existence)

o S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections.
IEEE Transactions on Automatic Control, 64(7):2830-2844, 2019.
doi:10.1109/TAC.2018.2876786

@ problem statement
@ solution

Kuramoto Multi-Stability (lack of uniqueness)

S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Multistable synchronous power
Q flows: From geometry to analysis and computation.

SIAM Review, January 2019.

Submitted.

URL: https://arxiv.org/pdf/1901.11189.pdf
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Primer on algebraic graph theory (slide 2/2)

Laplacian linear balance equation

Torino, 26 September 2019 38 / 56

+1 —1

current
source,

T

3 2 current
source
€T A
z AAAAZ

(a) spring network

=

(b) resistive circuit

Ltitfness X = fioad and Leonductance V = Cinjected

Laplacian linear balance equation: pycty = L6

if Zip,- =0 in pactv = L O, then equilibrium exists : 0 = LTpactv

pairwise displacements : BTo = BTLTp‘.,,CtV

FB et al (UCSB) Network Systems 0, 26 September 2019
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From Old to New Tests

where g is monotonically decreasing

Question: Given balanced pacty, do angles exist satisfying

Pactv = BA sin(BTQ)

Old Tests: Equilibrium angles (neighbors within 7/2 arc) exist if

(Old 2-norm T)
(Old co-norm T)

BT pactvlla < Aa(L) for unweighted graphs

1B L pactyloo < 1 for trees, complete

==

New Tests: Equilibrium angles (neighbors within 7 /2 arc) exist if

HBTLTPactv“Z < 1
||BTLTPactV||oo < g([|P]lco)

FB et al (UCSB)

and where P is a projection matrix

(New 2-norm T)

(New oco-norm T)

for unweighted graphs
for all graphs

Network Systems Torino, 26 September 2019 41 / 56

P=B'"LTBA = oblique projection onto Im(B") parallel to Ker(B.A)
1,\2 1,\2
AN
2§e;:§o o_aﬁiﬁo
R™ = Im(B") @ Ker(BA)
edge space cutset space weighted cycle space

flow vectors cycle vectors

© if G unweighted, then P is orthogonal and ||Pj> =1
Q if G acyclic, then P = I, and ||P|, =1
© if G uniform complete or ring, then |[|P|loc =2(n—1)/n < 2

FB et al (UCSB) Network Systems Torino, 26 September 2019

g :[1,00) — [0,1]
o YO Hsin () () — sin(y(x)
2 2

y(x) = arccos(i ; 1)

0.0 [ I I I I |

FB et al (UCSB) Network Systems Torino, 26 September 2019 42 / 56

New Tests: Equilibrium angles (neighbors within 7 /2 arc) exist if

||BTLTpact\,H2 <1 for unweighted graphs

18T LT pactvlloo < &(IIPllc)

(New 2-norm T)

for all graphs (New oo-norm T)

Unifying theorem with a family of tests

Equilibrium angles (neighbors within + arc) exist if, in some p-norm,

||BTLTpactv||p < yop(7) for all graphs

(New o T)

where nonconvex optimization problem:

min amplification factor of P diag[sinc(x)]

FB et al (UCSB) Network Systems Torino, 26 September 2019
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Proof sketch 1/2: Rewriting the equilibrium equation

Proof sketch 2/2: Amplification factor & Brouwer

For what B, A, pactv does there exist 6 solution to:

Pactv = BA sin(BTG)

STEP 1: For what flow z and projection P onto cutset/flow space,
does there exist a flow x that solves

Psin(x) =z

<= Pdiag[sinc(x)]x = z
x = (P diag[sinc(x)]) 'z =:

= h(x)

FB et al (UCSB) Network Systems Torino, 26 September 2019 45 / 56

Comparison of sufficient and approximate sync tests

Any test predicts max transmittable power (before bifurcation).
Compare with numerically computed.

ratio of test prediction to numerical computation

Test Case old 2-norm  new co-norm  g(||Pllec) ®1 o test
approximate fmincon
IEEE 9 16.54 % 73.74 % 92.13 % 85.06 %
|EEE 14 8.33 % 59.42 % 83.09 % 81.32 %f
IEEE RTS 24  3.86 % 53.44 % 89.48 % 89.48 %t
IEEE 30 2.70 % 55.70 % 85.54 % 85.54 %'
|EEE 118 0.29 % 43.70 % 85.95 % —
IEEE 300 0.20 % 40.33 % 99.80 % —
Polish 2383 0.11 % 29.08 % 82.85 % —

' fmincon with 100 randomized initial conditions
* fmincon does not converge

STEP 1: look for x solving

x = h(x) = (P diag[sinc(x)]) "z

IDEA: assume ||x||, < and ensure ||h(x)||, < v |

STEP 2: if one defines min amplification factor

ap(y) == min  min_||Pdiag[sinc(x)]y|p

Ixllp<v llyllp=1

then [(x)[|, < maxmax /(P diag[sinc(x))) "'yl - llzll,

Izl
ap()

= (minmin [P diag[sinc(x)lyllo) " llzll, <

STEP 3: ||z||, < vap(7y), then ||h(x)||p < 7y so that h satisfies Brouwer
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Summary: Kuramoto equilibrium and active power flow

Given topology (incidence B), admittances (Laplacian L), injections pacty,

pi = ijl ajjsin(0; — 6;)

Equilibrium angles exist if, in some p-norm,

||BTLTpactV||p < yap(v) for all graphs (New ap T)

For p = oo, after bounding,

18T L pactulloc < &(IIPll) (New oc-norm T)

i

Q1: 3 a stable operating point (with pairwise angles < +)?
Q2: what is the network capacity to transmit active power?
Q3: how to quantify robustness as distance from loss of feasibility?
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Outline

Introduction to Network Systems

(1) F. Bullo. Lectures on Network Systems.
Kindle Direct Publishing, 1.3 edition, July 2019.
With contributions by J. Cortés, F. Dorfler, and S. Martinez.
URL: http://motion.me.ucsb.edu/book-1ns

Synchronization (existence)

(2 S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections.
IEEE Transactions on Automatic Control, 64(7):2830-2844, 20109.
doi:10.1109/TAC.2018.2876786

Multi-Stability (lack of uniqueness)

S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Multistable synchronous power
© flows: From geometry to analysis and computation.

SIAM Review, January 2019.

Submitted.

URL: https://arxiv.org/pdf/1901.11189.pdf
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Lack of uniqueness and winding solutions

Given topology (incidence B), admittances (Laplacian L), injections pacty,

pi = ijl ajjsin(0; — 6;)

@ is solution unique?

@ how to localize/classify solutions?

triangle graph, homogeneous weights (a;; = 1), pactv =0
000
@/ THETTETEE\ @
phase sync splay state
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Network Systems

Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:
sometimes undesirable power flows around loops
sometimes sizable difference between predicted and actual power flows

Figure 8: Average unscheduled flows for the years 2011 and 2012, MWh/h®
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THEMA Consulting Group, Loop-flows - Final ad-
vice, Technical Report prepared for the European
Commission, 2013

New York Independent System Operator, Lake Erie
Loop Flow Mitigation, Technical Report, 2008
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Winding number of n angles

Given undirected graph with a cycle 0 = (1,..., n,) and orientation

© winding number of § € T" along o is:

1 &
wo(60) = o= D dec(6,0141)
i=1

) =0

(0) = +1

., 0, for cycles, winding vector of 0 is

» Wo, (6))

@ given basis o1, . .

w(0) = (W, (0), - ..

0, 26 September 2019
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“Kirckhoff Angle Law” and partition of the n-torus

Winding partition of triangle graph

Theorem: Kirchhoff angle law on T”

we(0) =0,%1,...,£|n,/2]
= w(0) is piecewise constant
= w(0) takes value in a finite set

~~

Theorem: Winding partition

For each possible winding vector u, define
WindingCell(u) := {6 € T" | w(f) = u}

Then
T" = U, WindingCell(u)
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The Kuramoto model and the winding partition
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Given topology (incidence B), admittances
(Laplacian L), injections pacty,

9',' = pi — Zj ajj sin(9,~ — 91')

Theorem: At-most-uniqueness and extensions

@ each WindingCell has at-most-unique equilibrium with Af <7 /2
@ equilibrium loop flow increases monotonically wrt winding number
@ existence + uniqueness in WindingCell(u) with A8 < /2 if

18" L pacty + Culloo < g([IPl0), or (Static T)
3 a trajectory inside WindingCell(u) with A@<7/2 (Dynamic T)

w=-1

w=+1

@ each winding cell is connected
@ each winding cell is invariant under rotation
@ bijection:
reduced winding cell <— open convex polytope

1
: -
7? —n/2 L /2 x
(01.02)
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Summary and Future Work
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mutualism

averaging

compartmental flows virus spread coupled oscillators social systems

Review
@ a rather comprehensive theory of linear network systems
@ an emergent theory of nonlinear network systems based on
contractivity and monotonicity
© existence and multistability for Kuramoto

Future research
O a little bit more on Metzler matrices
@ much work on monotonicity and contractivity
© applications to other dynamic flow networks
O outreach/collaboration opportunities for our community with
sociologists, biologists, economists, physicists ...
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