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A Brief History of Sync
how it all began

Christiaan Huygens (1629 – 1695)

physicist & mathematician

engineer & horologist

observed “an odd kind of sympathy ”
between coupled & heterogeneous clocks

[Letter to Royal Society of London, 1665]

Recent reviews, experiments, & analysis
[M. Bennet et al. ’02, M. Kapitaniak et al. ’12]
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A Brief History of Sync
the odd kind of sympathy is still fascinating

watch movie online here:

http://www.youtube.com/watch?v=JWToUATLGzs&

list=UUJIyXclKY8FQQwaKBaawl A&index=3

Sync of 32 metronomes at Ikeguchi Laboratory, Saitama University, 2012
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A Brief History of Sync
a field was born

Sync in mathematical biology [A. Winfree ’80, S.H. Strogatz ’03, . . . ]

Sync in physics and chemistry [Y. Kuramoto ’83, M. Mézard et al. ’87. . . ]

Sync in neural networks [F.C. Hoppensteadt and E.M. Izhikevich ’00, . . . ]

Sync in complex networks [C.W. Wu ’07, S. Bocaletti ’08, . . . ]

. . . and countless technological applications (reviewed later)
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Coupled Phase Oscillators

∃ various models of oscillators & interactions

Today: canonical coupled oscillator model
[A. Winfree ’67, Y. Kuramoto ’75]

Coupled oscillator model:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

n oscillators with phase θi ∈ S1

non-identical natural frequencies ωi ∈ R1

elastic coupling with strength aij = aji

undirected & connected graph G = (V, E ,A) !1

!3!2

a12

a13

a23
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Phenomenology and Challenges in Synchronization

Synchronization is a trade-off:

coupling vs. heterogeneity
θ̇i = ωi −

∑n

j=1
aij sin(θi − θj)

coupling small & |ωi − ωj | large
⇒ incoherence & no sync

coupling large & |ωi − ωj | small
⇒ coherence & frequency sync

centroid

density

X

centroid

density

X

✓i(t)

✓i(t)

Some central questions:

(still after 45 years of work)

proper notion of sync & phase transition

quantify “coupling” vs. “heterogeneity”

interplay of network & dynamics
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Applications of the Coupled Oscillator Model

Coupled oscillator model:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

Some related applications:

Sync in a population of fireflies
[G.B. Ermentrout ’90, Y. Zhou et al. ’06, . . . ]

Deep-brain stimulation and neuroscience
[N. Kopell et al. ’88, P.A. Tass ’03, . . . ]

Sync in coupled Josephson junctions
[S. Watanabe et. al ’97, K. Wiesenfeld et al. ’98, . . . ]

Countless other sync phenomena in physics,
biology, chemistry, mechanics, social nets etc.
[A. Winfree ’67, S.H. Strogatz ’00, J. Acebrón ’01, . . . ]
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Example 1: AC Power Transmission Network
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DiPl,i

power transfer on line i  j : |Vi ||Vj ||Yij |︸ ︷︷ ︸
aij=max power transfer

· sin
(
θi − θj

)

power balance at node i : Pi︸︷︷︸
power injection

=
∑

j
aij sin(θi − θj)

Structure-Preserving Model [A. Bergen & D. Hill ’81]:

�� : swing eq with Pm,i > 0 Mi θ̈i + Di θ̇i = Pm,i −
∑

j
aij sin(θi − θj)

•◦ : Pl,i < 0 and Di ≥ 0 Di θ̇i = Pl,i −
∑

j
aij sin(θi − θj)
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Example 2: DC/AC Inverters in Microgrids

1 (islanded) microgrid =

autonomously managed
low-voltage network

2 inverter in microgrid

= controllable AC source

3 physics: Pi ` = ai` sin(θi − θ`) 1 2 n

+

−

+
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+

−
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Droop-control [M.C. Chandorkar et. al., ’93]: Di θ̇i = P∗i − Pi `

Closed-loop for inverters & load `:

[J.W. Simpson-Porco et. al., ’12]

Di θ̇i = P∗i − ai` sin(θi − θ`)

0 = P` −
∑

j
a`j sin(θ` − θi )
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Example 3: Flocking, Schooling, & Vehicle Coordination

Network of Dubins’ vehicles

ṙi = v e iθi

θ̇i = ui (r , θ)

with speed v and steering control ui (r , θ)

sensing/comm. graph G = (V, E ,A) for

coordination of autonomous vehicles

relative sensing control ui = fi (θi − θj)
for neighbors {i , j} ∈ E yields closed-loop

θ̇i = ω0(t)− K ·
∑

j
aij sin(θi − θj)

DCRN Chapter 3: Robotic network models and complexity notions

(x, y)
θ

(a)

(x, y)
θ

φ

#

(b)

Figure 3.1 A two-wheeled vehicle (a) and four-wheeled vehicle (b). In each case, the
orientation of the vehicle is indicated by the small triangle.

The unicycle. The controls v and ω take value in [−1, 1] and [−1, 1], re-
spectively.

The differential drive robot. Set v = (ωright +ωleft)/2 and ω = (ωright −
ωleft)/2 and assume that both ωright and ωleft take value in [−1, 1].

The Reeds–Shepp car. The control v takes values in {−1, 0, 1} and the
control ω takes values in [−1, 1].

The Dubins vehicle. The control v is set equal to 1 and the control ω
takes value in [−1, 1].

Finally, the four-wheeled planar vehicle, composed of a front and a rear axle
separated by a distance ", is described by the same dynamical system (3.1.2)
with the following distinctions: (x, y) ∈ R2 is the position of the midpoint
of the rear axle, θ ∈ S1 is the orientation of the rear axle, the control v is
the forward linear velocity of the rear axle, and the angular velocity satisfies

ω =
v

"
tan φ, where the control φ is the steering angle of the vehicle. •

Next, we generalize the notion of synchronous network introduced in Def-
inition 1.38 and introduce a corresponding notion of robotic network.

Definition 3.2 (Robotic network). The physical components of a robotic
network S consist of a tuple (I,R, Ecmm), where

(i) I = {1, . . . , n}, I is called the set of unique identifiers (UIDs);

(ii) R = {R[i]}i∈I = {(X [i], U [i], X
[i]
0 , f [i])}i∈I is a set of mobile robots;

(iii) Ecmm is a map from
∏

i∈I X [i] to the subsets of I × I—this map is
called the communication edge map.

7

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript under contract. This version: May 20, 2009

K = +1
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”phase
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[R. Sepulchre et al. ’07, D. Klein et al. ’09, L Consolini et al ’10]
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Example 4: Canonical Coupled Oscillator Model

dynamical system with stable
limit cycle γ and weak perturb.

ẋ = f (x) + ε · δ(t)

local phase dynamics near γ
with phase response curve Q(ϕ)

ϕ̇ = Ω + ε · Q(ϕ)δ(t) +O(ε2)

x2

�

✏ · �(t)

)
'

⌦

✏ · Q(')�(t)

x1

⇒ same phase reduction applied to interacting oscillators

⇒ coord. & time transf. + averaging ⇒ θ̇i =
∑

j hij(θi − θj)

⇒ 0th and 1st (odd) Fourier mode: θ̇i = ωi +
∑

j aij sin(θi − θj)

[F.C. Hoppensteadt & E.M. Izhikevich ’00, Y. Kuramoto ’83, E. Brown et al. ’04, . . . ]
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Example 5: Other technological applications

Particle filtering to estimate limit
cycles [A. Tilton & P. Mehta et al. ’12]

Clock synchronization over networks

[Y. Hong & A. Scaglione ’05, O. Simeone

et al. ’08, Y. Wang & F. Doyle et al. ’12]

Central pattern generators and
robotic locomotion [J. Nakanishi et al.

’04, S. Aoi et al. ’05, L. Righetti et al. ’06]

Decentralized maximum likelihood
estimation [S. Barbarossa et al. ’07]

Carrier sync without phase-locked
loops [M. Rahman et al. ’11]

The remainder of this paper is organized as follows:
Section II describes the problem statement and modeling as-
sumptions. The coupled oscillator particle filter is presented
in Section III, and the experimental results are discussed in
Section IV.

II. PROBLEM STATEMENT
A. Signal Model

The cyclical movement of the limbs while walking is
referred to as a gait cycle [9]. The cycle begins when the heel
contacts the ground, and ends with the subsequent contact of
the same foot; see Fig. 1. At any instant of time during the
gait cycle, a ‘configuration’ of the limbs is defined by the
joint angles at the hip, knee and ankle joints. As a person
walks, the gait cycle is repeated, and the configurations of
the limbs are revisited in a nearly periodic fashion.

Fig. 1: Single gait cycle.

Mathematically, an idealized gait cycle is represented as
a limit cycle (periodic orbit) in the phase space comprising
of joint angles and their velocities. An idealized gait cycle
may be obtained by numerically solving the Euler-Lagrange
equations of motion; cf., [3].

In this paper, we take a phenomenological approach: We
use qt to denote the state of the gait cycle at time t. The state
evolves on the circle [0,2p], modeled here as a stochastic
differential equation (sde):

q̇t = w +sbḂt , mod 2p, (1)

where {Ḃt} is a white noise process, and w,sB are param-
eters that represent natural frequency of the gait cycle and
the standard deviation of the process noise, respectively.

The phenomenological model (1) is useful because we
are interested, after all, only in estimating the state qt of
the gait cycle. The model can be rigorously justified by
employing a normal form reduction starting from the limit
cycle in the phase space; cf., [1]. For an idealized gait cycle,
the normal form reduction procedure establishes one-one
correspondence between the values of the phase angle qt
and the configuration of the joint angles, and their velocities
in the phase space.

A small process noise is included in the phenomenological
model (1) to account for the small cycle-to-cycle variability.

B. Observation Model

Figure 2 depicts the Ankle Foot Orthosis (AFO) device
used in the experiments. The device includes a pneumatic
power source, a rotary actuator at the ankle, and is equipped
with three sensors. The two force sensors on the bottom of
the foot are referred to as the heel sensor and the toe sensor.

Under normal walking conditions, the toe and heel sensors
are approximately binary valued. For example, the heel

Fig. 2: PPAFO system components: A) Power Supply: a com-
pressed CO2 bottle with a regulator provides up to 120psi for the
system; B) Valves: two 3-2 solenoid valves control the flow of CO2
to the actuator; C) Actuator: a pneumatic rotary actuator provides
up to 12Nm at 120psi; D) Sensors: two force sensors under the heel
and toe, and potentiometer at the ankle joint [8].

sensor outputs one value when the foot is in contact with
the ground, and another value when it is not. In this paper,
we model the sensor response of each of the sensors with an
indicator function:

hm(q) =

⇢
h+

m q 2 (f 1
m,f 2

m)
h�m otherwise,

where f 1
m, f 2

m , h+
m , and h�m for m = 1,2 are determined from

the experimental data (see Sec. III).
Using the corresponding sensor’s response function

hm(qt), the observation model for each sensor is,

Y m
t = hm(qt)+smẆ m

t ,

where {Ẇ m
t } is an independent white noise processes, and

sm is the standard deviation for m = 1,2. The noise term has
been included to account for the presence of sensor noise.

C. Filtering Problem

The objective of the filtering problem is to estimate the
posterior distribution of qt given the history of observations
Yt := s(Y 1

s ,Y 2
s : s  t). We denote the posterior distribution

by p⇤(q , t), so that for any measurable set A ⇢ [0,2p],
Z

A
p⇤(q , t)dq = P[qt 2 A|Yt ].

The posterior distribution p⇤(q , t) represents the ‘belief
state’ of the process qt given the history of observations.
Using the posterior, the estimate (conditional mean) is ob-
tained as,

q̂t := E[qt |Yt ] =
Z 2p

0
q p⇤(q , t)dq .

In the remainder of this paper, we describe a coupled
oscillator particle filter to approximate the filtering task.
Here, we recall that a particle filter comprises of N stochastic
processes {q i

t : 1  i  N}, where the value q i
t 2 [0,2p] is

the state for the ith particle at time t. For any measurable set
A ⇢ [0,2p], the empirical distribution formed by the particle
population is defined by,

p(N)(A, t) :=
1
N

N

Â
i=1

1{q i
t 2 A}.

and on possibly random factors such as fading and shadowing.
Notice that the graph is typically directed (αi j != α ji) and further-
more, it is bidirectional (i.e., αi j > 0 if and only if α ji > 0) unless
different nodes have different power constraints (so that, given a
pair of nodes, one node may be within the transmission radius of
the other but not vice versa).

As illustrated in the rest of the article, diffusion synchroniza-
tion protocols for both analog and discrete cases can be described
by linear dynamic systems (see (11) and (17) for a preview)
whose system matrix is linearly related to a key algebraic quanti-
ty that describes the connectivity graph G, namely the Laplacian
matrix L [32]. This is defined as L = I − A, where A is the adja-
cency matrix of the graph ([A]i j = αi j for i != j and [A]ii = 0). It
is then clear that the performance of mutual synchronization
depends on the network topology (connectivity graph G) through
the eigenstructure of the Laplacian matrix L. As elaborated in the
following (and with some details in “Algebraic Graph Theory and
Distributed Synchronization”), of particular relevance is the null
space of matrix L, that is sometimes referred to as the synchro-
nization subspace. Specifically, the multiplicity of the zero-eigen-
value λ(L) = 0 determines whether a synchronized state is
eventually achieved or not, while the left eigenvector
v = [v1 · · · vN]T corresponding to λ(L) = 0 (vT L = 0) yields the
steady-state frequency and phases of the clocks (see (12), (14),
and (19) for a preview).

As a final remark, in the discussion above, we have limited
the scope to time-invarying and deterministic topologies, but
the analysis can be extended to both time-varying [31], [33]
and random [34] topologies. We will provide some comments
on these important cases in the following, and we point to ref-
erences for further details. 

REMARK 3
The (average) accuracy of different
clocks is sometimes measured in parts-
per-million (PPM) by calculating the
average (absolute value of) the clock
error after one second. There exists a
clear trade-off between accuracy and
power consumption. For instance, accu-
racies of typical clocks range between
around 10−4 and 10−11 PPM with cor-
responding power consumptions on the
order of 1µW and hundreds of
megawatts, respectively [12].

CONTINUOUSLY
COUPLED ANALOG CLOCKS
In this section, we study the problem of
distributed synchronization of coupled
analog clocks. The interest of such prob-
lem for wireless communications is relat-
ed to applications such as, e.g.,
cooperative beamforming or frequency
division multiple access in ad hoc net-

works. Moreover, it is historically the first studied model of dis-
tributed synchronization, and sets the ground for the discussion
on discrete-time clocks in the next section.

With coupled analog clocks, each node transmits a signal
proportional to its local oscillator si (t) in (1) and updates the
instantaneous phase #i(t) based on the signal received from
other nodes. Notice that this procedure assumes that each node
is able to transmit and receive continuously and at the same
time (full duplex, see Remark 2). The basic mechanism of con-
tinuously coupled clocks is phase locking (see Figure 6). Each
node, say the ith, measures through its phase detector (PD) the
convex combination of phase differences

$#i (t) =
N∑

j=1, j !=i
αi j · f(#j(t) − #i (t)), (9)

where # j(t) − #i(t) is the phase difference with respect to
node j, and f(·) and αi j are phase detector-specific features,
namely a nonlinear function and convex combination weights
(i.e., 

∑ N
j=1 αi j = 1 and αi j ≥ 0),respectively (recall the discus-

sion in the previous section). Notice that the choice of a convex
combination in (9) ensures that the output of the phase detector
$#i (t) takes values in the range between the minimum and the
maximum of phase differences f (#j(t) − #i (t)). Finally, the
difference $#i(t) (9) is fed to a loop filter ε(s), whose output
drives the voltage controlled oscillator (VCO), which updates the
local phase as

#̇i(t) = 2π

Ti
+ ε0

N∑

j=1, j !=i
αi j · f(#j (t) − #i(t)), (10)

[FIG6] Block diagram of N = 3 continuously coupled oscillators (PD: phase detector; VCO:
voltage controlled oscillator).
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other nodes. Notice that this procedure assumes that each node
is able to transmit and receive continuously and at the same
time (full duplex, see Remark 2). The basic mechanism of con-
tinuously coupled clocks is phase locking (see Figure 6). Each
node, say the ith, measures through its phase detector (PD) the
convex combination of phase differences

$#i (t) =
N∑

j=1, j !=i
αi j · f(#j(t) − #i (t)), (9)

where # j(t) − #i(t) is the phase difference with respect to
node j, and f(·) and αi j are phase detector-specific features,
namely a nonlinear function and convex combination weights
(i.e., 

∑ N
j=1 αi j = 1 and αi j ≥ 0),respectively (recall the discus-

sion in the previous section). Notice that the choice of a convex
combination in (9) ensures that the output of the phase detector
$#i (t) takes values in the range between the minimum and the
maximum of phase differences f (#j(t) − #i (t)). Finally, the
difference $#i(t) (9) is fed to a loop filter ε(s), whose output
drives the voltage controlled oscillator (VCO), which updates the
local phase as

#̇i(t) = 2π

Ti
+ ε0

N∑

j=1, j !=i
αi j · f(#j (t) − #i(t)), (10)

[FIG6] Block diagram of N = 3 continuously coupled oscillators (PD: phase detector; VCO:
voltage controlled oscillator).
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Order Parameter
(for homogenous coupling aij = K/n)

Define the order parameter (centroid) by re iψ = 1
n

∑n
j=1 e

iθi , then

θ̇i = ωi−
K

n

∑n

j=1
sin(θi−θj) ⇔ θ̇i = ωi − Kr sin(θi − ψ)

Intuition: synchronization = entrainment by mean field re iψ

K small &
|ωi − ωj | large

density density

X X

r ei 

r ei 
K large &
|ωi −ωj | small

⇒ analysis based on concepts from statistical mechanics & cont. limit:

[Y. Kuramoto ’75, G.B. Ermentrout ’85, J.D. Crawford ’94, S.H. Strogatz ’00,

J.A. Acebrón et al. ’05, E.A. Martens et al. ’09, H. Yin et al. ’12, . . . ]
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Synchronization Notions & Metrics

1) frequency sync: θ̇i (t) = θ̇j(t) ∀ i , j
⇔ θ̇i (t) = ωsync ∀ i ∈ {1, . . . , n}

2) phase sync: θi (t) = θj(t) ∀ i , j
⇔ r = 1

3) phase balancing: r = 0

(e.g., splay state = uniform spacing on S1)

4) arc invariance: all angles in Arcn(γ)

(closed arc of length γ) for γ ∈ [0, 2π]

5) phase cohesiveness: all angles in

∆̄G (γ) =
{
θ ∈ Tn : max{i ,j}∈E |θi − θj | ≤ γ

}

for some γ ∈ [0, π/2[

X

r ei =0

�

�

✓i = \ei 

X2)

3)

4)

5)
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Geometric & Algebraic Insights I
symmetries

Coupled oscillator model:

θ̇i = f (θ) = ωi−
∑n

j=1
aij sin(θi−θj)

|✓1 � ✓2|  ⇡/2

✓1 = ✓2 12

✓⇤

vector field f (θ) possesses rotational symmetry: f (θ∗) = f (θ∗ + ϕ1n)

n∑
i=1

θ̇i (t) =
n∑

i=1
ωi

!
=

n∑
i=1

ωsync ⇒ sync frequ. ωsync = ωavg = 1
n

n∑
i=1

ωi

⇒ transf. to rot. frame with freq. ωavg ⇔ ωsync =0 ⇔ ωi 7→ ωi −ωavg

wlog: assume ωavg = 0 ⇒ frequency sync = equilibrium manifold

[θ∗] =
{
θ ∈ Tn : θ∗ + ϕ1n , f (θ∗) = 0 , ϕ ∈ [0, 2π]

}
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Geometric & Algebraic Insights II
Jacobian is Laplacian

Coupled oscillator model:

θ̇i = f (θ) = ωi−
∑n

j=1
aij sin(θi−θj)

|✓1 � ✓2|  ⇡/2

✓1 = ✓2 12

✓⇤

negative Jacobian −∂f /∂θ evaluated at θ∗ ∈ Tn is given by

L(θ∗) =




n∑
k=2

a1k cos(θ∗1 − θ
∗
k ) −a12 cos(θ∗1 − θ

∗
2 ) . . . −a1n cos(θ∗1 − θ

∗
n )

.

.

.
. . .

. . .
.
.
.

−an1 cos(θ∗n − θ
∗
1 ) . . . −an,n−1 cos(θ∗n − θ

∗
n−1)

n−1∑
k=1

ain cos(θ∗n − θ
∗
k )




= Laplacian matrix of graph (V, E , Ã) with weights ãij =aij cos(θ∗i −θ∗j )

⇒ all weights ãij > 0 for {i , j} ∈ E ⇔ max{i ,j}∈E |θ∗i − θ∗j | < π/2

⇒ algebraic graph theory: L(θ∗) is p.s.d. and ker(L(θ∗)) = span(1n)

Lemma [C. Tavora and O.J.M. Smith ’72]

If there exists an equilibrium manifold [θ∗] in

∆G (π/2) =
{
θ ∈ Tn : max{i ,j}∈E |θi − θj | < π/2

}
,

then [θ∗] is

1 locally exponentially stable (modulo symmetry), and

2 unique in ∆̄G (π/2) (modulo symmetry).
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Phase Synchronization
a forced gradient system

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) {phase sync} = {θ ∈ Tn : θi =θj ∀ i , j}

Classic intuition [P. Monzon et al. ’06, Sepulchre et al. ’07]:

Coupled oscillator model is forced gradient flow θ̇i = ωi −∇iU(θ) ,

where U(θ) =
∑
{i ,j}∈E aij

(
1− cos(θi − θj)

)
(spring potential)

assume that ωi = 0 ∀ i ∈ {1, . . . , n} ⇒ gradient flow θ̇ = −∇U(θ)

⇒ global convergence to critical points {∇U(θ) = 0} ⊇ {phase sync}

⇒ previous Jacobian arguments: {phase sync} is local minimum & stable
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Phase Synchronization
main result

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) {phase sync} = {θ ∈ Tn : θi =θj ∀ i , j}

Theorem: [P. Monzon et al. ’06, Sepulchre et al. ’07]

The following statements are equivalent:

1 For all {i , j} ∈ {1, . . . , n}, we have that ωi = ωj ; and

2 There exists a locally exp. stable phase synchronization manifold.

Proof of “⇒”: wlog in rot. frame: ωi = ωj = 0 ⇒ follow previous args

Proof of “⇐”: phase sync’d solutions satisfy θi = θj & θ̇i = θ̇j ⇒ ωi = ωj

Remark: “almost global phase sync” for certain topologies

(trees, cmplt., short cycles) [P. Monzon, E.A. Canale et al. ’06-’10, A. Sarlette ’09]
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Phase Synchronization
further insights when all ωi = 0

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) {phase sync} = {θ ∈ Tn : θi =θj ∀ i , j}

Convexity simplifies life:

if all oscillators in open semicircle Arcn(π)

⇒ convex hull maxi ,j∈{1,...,n} |θi (t)− θj(t)|
is contracting

[L. Moreau ’04, Z. Lin et al. ’08]

Phase balancing:

inverse gradient flow (ascent) θ̇ = +∇U(θ)

⇒ phase balancing for circulant graphs

[L. Scardovi et al. ’07, Sepulchre et al. ’07]

X

r ei =0

max
i,j

|✓i(t) � ✓j(t)|
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Synchronization in a Complete & Homogeneous Graph
recall definitions

Classic Kuramoto model of coupled oscillators:

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj)

One appropriate sync notion:

1 arc invariance: θ ∈ Arcn(γ)

for small γ ∈ [0, π/2[

2 frequency sync: θ̇i = ωavg

with ωavg = 1
n

∑n
i=1 ωi

Detour – Kron reduction of graphs

2

1

0

3

0

2

5

8

3

7

2

9

9

3

8

2

3

7

3

6

2

2

6

3

5

1

9

4

3

3

2

0

5

3

4

1

0

3

3

2

6

2

3

1

1

8

7

5

4

3

1

8

1

7

2

6

2

7 2

8

2

4

2

1

1

6

1

5

1

4

1

3

1

2

1

1

1

3

9

9

Ynetwork
Yreduced =
Ynetwork/Y interior

2

3

0

2

5

3

7

2

9

3

8

2

3

3

6

2

2

3

5

1

9

3

3

2

0

3

4

1

0

3

2

63

1

1

8

7

5

4

3

1

8

1

7

2

6

2

7 2

8

2

4

2

1

1

6

1

5

1

4

1

3

1

2

1

1

3

9

9

1

0

9

7

6

4

5

3

2

1

8

Some properties of the Kron reduction process:

1 Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices
can be reduced and are closed under Kron reduction

2 Topological properties:

interior network connected � reduced network complete

at least one node in interior network features a self-loop �

� all nodes in reduced network feature self-loops �

3 Algebraic properties: self-loops in interior network . . .

decrease mutual coupling in reduced network

increase self-loops in reduced network
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� !sync

Numerous results on sync conditions & bifurcations
[A. Jadbabaie et al. ’04, P. Monzon et al. ’06, Sepulchre et al. ’07, F. de Smet et al. ’07, N. Chopra et al. ’09, A. Franci et al.

’10, S.Y. Ha et al. ’10, D. Aeyels et al. ’04, , J.L. van Hemmen et al. ’93, R.E. Mirollo et al. ’05, M. Verwoerd et al. ’08, . . . ]
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Synchronization in a Complete & Homogeneous Graph
brief review

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj)

∣∣∣∣∣
frequency sync: θ̇i = ωavg ∀ i
arc invariance: θ ∈ Arcn(γ)

Implicit equations for existence of sync’d fixed points

[D. Aeyels et al. ’04, R.E. Mirollo et al. ’05, M. Verwoerd et al. ’08]

Necessary conditions: θ̇i = θ̇j ∀i , j ⇒ K > ωmax−ωmin
2 · n

n−1

[N. Chopra et al. ’09, A. Jadbabaie et al. ’04, J.L. van Hemmen et al. ’93]

Sufficient conditions, e.g., K > ‖(. . . , ωi−ωj , . . . )‖2 ,∞ · f (n, γ)

[J.L. van Hemmen et al. ’93, A. Jadbabaie et al. ’04, F. de Smet et al. ’07, N.

Chopra et al. ’09, G. Schmidt et al. ’09, F. Dörfler and F. Bullo ’09, S.J. Chung

and J.J. Slotine ’10, A. Franci et al. ’10, S.Y. Ha et al. ’10, . . . ]
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Synchronization in a Complete & Homogeneous Graph
main result

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj)

∣∣∣∣∣
frequency sync: θ̇i = ωavg ∀ i
arc invariance: θ ∈ Arcn(γ)

Theorem [F. Dörfler & F. Bullo ’11]

The following statements are equivalent:

1 Coupling dominates heterogeneity, i.e., K > Kcritical , ωmax − ωmin ;

2 ∃ γmax ∈ ]π/2, π] s.t. all Kuramoto models with ωi ∈ [ωmin, ωmax]

and θ(0) ∈ Arcn(γmax) achieve exponential frequency sync; and

3 ∃ γmin ∈ [0, π/2[ s.t. all Kuramoto models with ωi ∈ [ωmin, ωmax]

feature a locally exp. stable equilibrium manifold in Arcn(γmin).

Moreover, we have Kcritical/K = sin(γmin) = sin(γmax)

and practical phase synchronization: from γmax arc → γmin arc
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Synchronization in a Complete & Homogeneous Graph
main proof ideas

1 Arc invariance: θ(t) in γ arc ⇔ arc-length V (θ(t)) is non-increasing

V (✓(t))

⇔





V (θ(t)) = maxi ,j∈{1,...,n} |θi (t)− θj(t)|

D+V (θ(t))
!
≤ 0

true if K sin(γ) ≥ Kcritical

2 Frequency synchronization ⇔ consensus protocol in Rn

d

dt
θ̇i = −

∑n

j=1
aij(t)(θ̇i − θ̇j) ,

where aij(t) = K
n cos(θi (t)− θj(t)) > 0 for all t ≥ T

3 Necessity: all results exact for bipolar distribution ωi ∈ {ωmin, ωmax}
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Synchronization in a Complete & Homogeneous Graph
robustness and extensions

1 Switching natural frequencies: dwell-time assumption X
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2 Slowly time-varying: ‖ω̈(t)− ω̈avg(t)‖∞ sufficiently small X
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Synchronization in a Complete & Homogeneous Graph
scaling & statistical analysis

Kuramoto model with ωi ∈ [−1, 1]: θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj)

Cont. limit predicts largest Kcritical = 2 for bipolar distribution & smallest

Kcritical = 4/π for uniform distribution [Y. Kuramoto ’75, G.B. Ermentrout ’85]

n

4/π

K
cr

it
ic

a
l

necessary bound (◦), sufficient & tight bound (�), & exact & implicit bound (♦)
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Primer on Algebraic Graph Theory

Undirected graph G = (V, E ,A) with weight aij > 0 on edge {i , j}

adjacency matrix A = [aij ] ∈ Rn×n (induces the graph)

degree matrix D ∈ Rn×n is diagonal with dii =
∑n

j=1 aij

Laplacian matrix L = D − A ∈ Rn×n, L = LT ≥ 0

Notions of connectivity

topological: connectivity, path lengths, degree, etc.

spectral: 2nd smallest eigenvalue of L is “algebraic connectivity”λ2(L)

Notions of heterogeneity

‖ω‖E,∞ = max{i ,j}∈E |ωi − ωj |, ‖ω‖E,2 =
(∑

{i ,j}∈E |ωi − ωj |2
)1/2
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Synchronization in Sparse Networks
a brief review I

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

Assume connectivity &

ωavg = 1
n

∑n
i=1 ωi = 0

1 necessary condition:
∑n

j=1 aij ≥ |ωi | ⇐ sync

[C. Tavora and O.J.M. Smith ’72]

Proof idea: θ̇i = 0 has no solution if condition is not true

2 sufficient condition I: λ2(L) > λcritical , ‖ω‖Ecmplt,2 ⇒ sync

[F. Dörfler and F. Bullo ’09]

Proof idea: analogous Lyapunov proof with V (θ) =
∑

i<j |θi − θj |2 ;

condition also implies θ∗ ∈ Arcn(λcritical/λ2(L)) ⇒ evtl. too strong!
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Synchronization in Sparse Networks
a brief review II

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

Assume connectivity &

ωavg = 1
n

∑n
i=1 ωi = 0

3 sufficient condition II: λ2(L) > λcritical , ‖ω‖E,2 ⇒ sync

[F. Dörfler and F. Bullo ’11]

Proof idea inspired by [A. Jadbabaie et al. ’04]: fixed point theorem with

incremental 2-norms; condition implies ‖θ∗‖E,2 ≤ λcritical/λ2(L)

⇒ ∃ similar conditions with diff. metrics on coupling & heterogeneity
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Synchronization in Sparse Networks
problems . . .

Problems: the sharpest general nec. & suff. conditions known to date

∑n
j=1 aij < |ωi | , λ2(L) > ‖ω‖Ecmplt,2 , and λ2(L) > ‖ω‖E,2

have a large gap and are conservative !

Why?

1 conservative bounding of trigs & network interactions

2 conditions θ∗ ∈ Arcn
(
λcritical
λ2(L)

)
or ‖θ∗‖E,2 ≤ λcritical

λ2(L)
are too strong

3 analysis with 2-norm is conservative

Open problem: quantify “coupling/connectivity” vs. “heterogeneity”

[S. Strogatz ’00 & ’01, J. Acebrón et al. ’00, A. Arenas et al. ’08, S. Boccaletti et al. ’06]
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A Nearly Exact Synchronization Condition
a “back of the envelope calculation”

Recall: if ∃ equilibrium [θ∗] ∈ ∆̄G (γ), then it is unique and stable

ωi =
∑n

j=1
aij sin(θi − θj) (?)

Consider linear “small-angle” approximation of (?) :

ωi =
∑n

j=1
aij(δi − δj) ⇔ ω = Lδ (??)

Unique solution (modulo symmetry) of (??) is δ∗ = L†ω

⇒ Solution ansatz for (?): θ∗i − θ∗j = arcsin(δ∗i − δ∗j ) (for a tree)

ωi =
∑n

j=1
aij sin(θi − θj) =

∑n

j=1
aij sin

(
arcsin(δ∗i − δ∗j )

)
= ωi X

⇒ Theorem: (for a tree) ∃ [θ∗] ∈ ∆̄G (γ) ⇔
∥∥L†ω

∥∥
E,∞ ≤ sin(γ)
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A Nearly Exact Synchronization Condition

Theorem [F. Dörfler, M. Chertkov, and F. Bullo ’12]

Under one of following assumptions:

1) graph is either tree, homogeneous, or short cycle (n ∈ {3, 4})

2) natural frequencies: L†ω is bipolar, small, or symmetric (for cycles)

3) arbitrary one-connected combinations of 1) and 2)

If
∥∥L†ω

∥∥
E,∞ ≤ sin(γ) where γ < π/2

⇒ ∃ a unique & locally exponentially stable equilibrium manifold in

∆̄G (γ) =
{
θ ∈ Tn | max{i ,j}∈E |θi − θj | ≤ γ

}
.
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A Nearly Exact Synchronization Condition
comments

Statistical correctness through Monte Carlo simulations: construct

nominal randomized graph topologies, weights, & natural frequencies

⇒ sync “for almost all graphs G (V, E ,A) & ω ” with high accuracy

Possibly thin sets of degenerate counter-examples for large cycles

Intuition: the condition
∥∥L†ω

∥∥
E,∞ ≤ sin(γ) is equivalent to

∥∥∥∥∥∥∥∥∥
[
eigenvectors of L

]


0 0 . . . . . . 0
0 1

λ2(L)
0 . . . 0

...
. . .

. . .
. . . 0

0 . . . . . . 0 1
λn(L)

 [eigenvectors of L
]T
ω

∥∥∥∥∥∥∥∥∥
E,∞

≤ sin(γ)

⇒ includes previous conditions on λ2(L) and degree (≈ λn(L))
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A Nearly Exact Synchronization Condition
statistical analysis for power networks

Randomized power network test cases

with 50 % randomized loads and 33 % randomized generation

Randomized test case Correctness of condition: Accuracy of condition: Phase

(1000 instances) ‖L†ω‖E,∞≤ sin(γ) max
{i,j}∈E

|θ∗i − θ
∗
j | cohesiveness:

⇒ max
{i,j}∈E

|θ∗i − θ
∗
j | ≤ γ − arcsin(‖L†ω‖E,∞) max

{i,j}∈E
|θ∗i − θ

∗
j |

9 bus system always true 4.1218 · 10−5 rad 0.12889 rad

IEEE 14 bus system always true 2.7995 · 10−4 rad 0.16622 rad

IEEE RTS 24 always true 1.7089 · 10−3 rad 0.22309 rad

IEEE 30 bus system always true 2.6140 · 10−4 rad 0.1643 rad

New England 39 always true 6.6355 · 10−5 rad 0.16821 rad

IEEE 57 bus system always true 2.0630 · 10−2 rad 0.20295 rad

IEEE RTS 96 always true 2.6076 · 10−3 rad 0.24593 rad

IEEE 118 bus system always true 5.9959 · 10−4 rad 0.23524 rad

IEEE 300 bus system always true 5.2618 · 10−4 rad 0.43204 rad

Polish 2383 bus system always true 4.2183 · 10−3 rad 0.25144 rad
(winter peak 1999/2000)

⇒ condition
∥∥L†ω

∥∥
E,∞ ≤ sin(γ) is extremely accurate for γ ≤ 25◦
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A Nearly Exact Synchronization Condition
statistical analysis for complex networks

Comparison with exact Kcritical for θ̇i = ωi−K ·∑n
j=1 aij sin(θi−θj)
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⇒ condition
∥∥L†ω

∥∥
E,∞ ≤ sin(γ) is extremely accurate for γ = π/2
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Outline
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6 Open problems and research directions
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Exciting Open Problems and Research Directions

1 Q: What about networks of second-order oscillators ?

Mi θ̈i + Di θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

Apps: mechanics, synchronous generators, Josephson junctions, . . .

Problems: kinetic energy is a mixed blessing for transient dynamics

2 Q: What about asymmetric interactions ?

e.g., directed graphs: aij 6= aji or phase shifts: aij sin(θi − θj − ϕij)

Apps: sync protocols, lossy circuits, phase/time-delays, flocking, . . .

Problems: algebraic & geometric symmetries are broken

3 Q: How to derive sharper results for heterogeneous networks ?

F. Dörfler and F. Bullo (UCSB) Sync in Complex Oscillator Networks CDC 2012 35 / 37

Exciting Open Problems and Research Directions

4 Q: What about the transient dynamics beyond Arcn(π), general
equilibria beyond ∆G (π/2), or the basin of attraction ?

Apps: phase balancing, volatile power networks, flocking, . . .

Problems: lack of analysis tools (only for simple cases), chaos, . . .

5 Q: Beyond continuous, sinusoidal, and diffusive coupling ?

θ̇i ∈ ωi −
∑
{i ,j}∈E

fij(θi , θj) , θ ∈ C ⊂ Tn

θ+i ∈ θi +
∑
{i ,j}∈E

gij(θi , θj) , θ ∈ D ⊂ Tn

Apps: impulsive coupling, relaxation oscillators, neuroscience, . . .

Problems: lack of analysis tools, coping with heterogeneity, . . .

6 Q: Does anything extend from phase to state space oscillators ?
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Conclusions

Coupled oscillator model:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

history: from Huygens’ clocks to power grids

applications in sciences, biology, & technology

synchronization phenomenology

network aspects & heterogeneity

available analysis tools & results !1

!3!2

a12

a13

a23
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