Acknowledgements

Attack Detection and Identification in Cyber-Physical Systems

Francesco Bullo

F. Bullo UCSB

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

International Workshop on Emerging Frontiers in Systems and Control Tsinghua University, Beijing, China, May 18, 2012

Cyber-Physical Security

Florian Dörfler

Fabio Pasqualetti

Beijing 19may2012

Workshop Organizers: Center for Intelligent and Networked Systems, Tsinghua University Institute of Systems Science, Chinese Academy of Sciences

Chair: Xiaohong Guan, Co-Chair: Yiguang Hong, Program Chair: Qingshan Jia

Cyber-Physical Security

F. Bullo UCSB	Cyber-Physical Security	Beijing 19may2012 1 / 30	F. Bullo UCSB	Cyber-Physical Security	Beijing 19may2012	2 / 30
Outline			Cyber-Physical Sys	stems		
 Cyber-Physical Sect Models of Cyber-Ph Analysis and Design Summary Some Technical Design Summary and Future 	urity nysical Systems and Atta n Results tails re Directions	cks				
			Moore's Law i	n Computing/Communic	cation/Control	
			Renewables and PMUs in	n smart grid, autonomy/ne	etworking in robotics	5,
			distributed intelligence in	n industrial processes \longrightarrow	cyber-physical netwo	orks

3 / 30

F. Bullo UCSB

Beijing 19may2012

Application Domains

The Cyber-Physical Security Problem

- power generation, transportation, distribution networks
- water, oil, gas and mass transportation systems
- sensor networks
- process control and industrial automation systems (metallurgical process plants, oil refining, chemical plants, pharmaceutical manufacturing ... ubiquitous SCADA/PLC systems)

Stuxnet worm (Iran, 2010)

New York Times 15jan2011: replay attack as if "out of the movies:"

- records normal operations and plays them back to operators
- 2 spins centrifuges at damaging speeds

"Repository of Ind. Security Incidents" http://www.securityincidents.org

SOME OF MANY Maroochy Shire sewage spill; Salt

River Project SCADA hack: software

flaw makes MA water undrinkable;

Trojan/Keylogger on Ontario SCADA

aptops: audit/blaster causes water

wastewater treatment plant SCADA;

message: 'I enter in your server like

Electronic sabotage of Venezuela oil

iberian gas explosion; anti-virus

shutdown: slammer infected laptor shuts down DCS: electronic

sabotage of gas processing plant;

mer impacts offshore

operations; CIA Trojan causes

software prevents boiler safety

System: viruses on Aussie SCADA

SCADA crash; penetration of California irrigation district

SCADA system tagged with

Petroleum industrv

you in Iraq'.

Water industry

platforms; Code Red Worm defaces automation Web pages; penetration test locks-up gas SCADA System.

Chemical industry

IP address change shuts down chemical plant: hacker changes chemical plant set points; Nachi Worm on advanced process control servers; SCADA attack on plant of chemical company; contractor connects to remote PLC; Blaster Worm infects chemical plant

Power industry

Slammer infects control central LAN via VPN: Slammer causes loss of comms to substations: Slammer infects Ohio nuclear plant SPDS; Iranian hackers attempt to disrupt Israel power system: utility SCADA System attacked; virus attacks a European Utility; facility cyber attacks on Asian utility; power plant security details leaked on Internet.

Security of these networks is critically important

\sim	
	utling
\mathbf{U}	uline

An Example of Cyber-Physical Attack

 Cyber-Physical Security Models of Cyber-Physical Systems and Attacks Analysis and Design Results Summary Some Technical Details Summary and Future Directions 		 Image: the second and third generators while remaining
F. Bullo UCSB Cyber-Physical Security	Beijing 19may2012 9 / 30	E. Bullo, UCSB Cyber-Physical Security Beijing 19may2012 10 / 30
Models of Power Networks		Models of Water Networks
Small-signal structure-preserving power network m	nodel:	Linearized municipal water supply network model:
 transmission network: generators ■, buses ●, DC load flow assumptions, and network susceptance matrix Y = Y^T 		 reservoirs with constant pressure heads: h_i(t) = h_i^{reservoir} = const. pipe flows obey linearized Hazen-Williams eq: Q_{ij} = g_{ij} · (h_i - h_j)
generators modeled by swing equations:		3 balance at tank: $A_i \dot{h}_i = \sum_{j \to i} Q_{ji} - \sum_{i \to k} Q_{ik}$
$M_{i}\ddot{\theta}_{i} + D_{i}\dot{\theta}_{i} = P_{\text{mech.in},i} - \sum_{j} Y_{ij} \cdot (\theta_{i} - \theta_{j})$		Image: demand = balance at junction: $d_i = \sum_{j \to i} Q_{ji} - \sum_{i \to k} Q_{ik}$
Solution buses • with constant real power demand: $0 = P_{\text{load},i} - \sum_{j} Y_{ij} \cdot (\theta_i - \theta_j)$	Y_{ik} V_{jk} Y_{jk} $P_{\text{load},k}$	3 pumps & valves: $h_j - h_i = +\Delta h_{ij}^{\text{pump/valves}} = \text{const.}$
\Rightarrow Linear differential-algebraic dynamics: $E\dot{x} = Ax$	Ţ	\Rightarrow Linear differential-algebraic dynamics: $E\dot{x} = Ax$

Prototypical Attacks

Models of Networks, Attackers and Monitors #1

Framework for Cyber-Physical Security

- a modeling framework for cyber-physical systems under attack generalizing broad range of previous results
- Indamental detection and identification limitations
- System- and graph-theoretic detection and identification conditions
- Gentralized attack detection and identification procedures
- I distributed attack detection and identification procedures

References

- F. Pasqualetti, F. Dorfler, and F. Bullo. "Cyber-physical security via geometric control: Distributed monitoring and malicious attacks" 2012 IEEE CDC. Submitted
- ---- "Attack Detection and Identification in Cyber-Physical Systems Part I: Models and Fundamental Limitations" IEEE Trans Automatic Control, Feb 2012. Submitted. Available at http://arxiv.org/abs/1202.6144v2
- ---- "Attack Detection and Identification in Cyber-Physical Systems Part II: Centralized and Distributed Monitor Design" IEEE Trans Automatic Control, Feb 2012. Submitted. Available at http://arxiv.org/abs/1202.6049

F. Bullo UCSB **Cyber-Physical Security** Result #2: Distributed Monitor Design IEEE 118 bus (Midwest, 54-m 118-b)

F. Bullo UCSB

• Detection via residual filter design

Centralized and distributed filters

Distributed iterative filters

Beijing 19may2012

Result #1: Vulnerabilities Analysis Western US (WECC 3-m, 6-b)

Outime	Technical Assumptions			
 Cyber-Physical Security Models of Cyber-Physical Systems and Attacks Analysis and Design Results Summary Some Technical Details Summary and Future Directions 	$E\dot{x}(t) = Ax(t) + B_{K}u_{K}(t)$ $y(t) = Cx(t) + D_{K}u_{K}(t)$ Technical assumptions guaranteeing existence, uniqueness, & smoothness: (i) (E, A) is regular: $ sE - A $ does not vanish for all $s \in \mathbb{C}$ (ii) the initial condition $x(0)$ is consistent (can be relaxed) (iii) the unknown input $u_{K}(t)$ is sufficiently smooth (can be relaxed)			
F. Bullo UCSB Cyber-Physical Security Beijing 19may2012 21 / 30 Undetectable Attack Definition	 Attack set K = sparsity pattern of attack input F. Bullo UCSB Cyber-Physical Security Beijing 19may2012 22 / 30 Undetectable Attack Condition 			
An attack remains undetected if its effect on measurements is undistinguishable from the effect of some nominal operating conditions $\underbrace{\text{Normal operating}}_{\substack{\text{condition}\\y(\cdot,0,t)}} \underbrace{\text{Undetectable}}_{\substack{\text{attacks}\\y(\cdot,u_K(t),t)}} \underbrace{\text{Detectable}}_{\substack{\text{attacks}\\y(\cdot,u_K(t),t)}}$	By linearity, an undetectable attack is such that $y(x_1 - x_2, u_K, t) = 0$ • zero dynamics Theorem For the attack set K, there exists an undetectable attack if and only if			
Definition (Undetectable attack set) The attack set <i>K</i> is <i>undetectable</i> if there exist initial conditions x_1, x_2 , and an attack mode $u_K(t)$ such that, for all times t $y(x_1, u_K, t) = y(x_2, 0, t).$	$\begin{bmatrix} sE - A & -B_K \\ C & D_K \end{bmatrix} \begin{bmatrix} x \\ g \end{bmatrix} = 0$ for some s, $x \neq 0$, and g.			

A....

Unidentifiable Attack Definition	Unidentifiable Attack Condition		
The attack set K remains unidentified if its effect on measurements is undistinguishable from an attack generated by a distinct attack set $R \neq K$	By linearity, the attack set K is unidentifiable if and only if there exists a distinct set $R \neq K$ such that $y(x_K - x_R, u_K - u_R, t) = 0$.		
Attacks by K $y(\cdot, u_K(t), t)$ Unidentifiable attacksAttacks by R $y(\cdot, u_R(t), t)$ Definition (Unidentifiable attack set)The attack set K is unidentifiable if there exists an admissible attack set $R \neq K$ such that $y(x_K, u_K, t) = y(x_R, u_R, t).$	TheoremFor the attack set K, there exists an unidentifiable attack if and only if $\begin{bmatrix} sE - A & -B_K & -B_R \\ C & D_K & D_R \end{bmatrix} \begin{bmatrix} x \\ g_K \\ g_R \end{bmatrix} = 0$ for some s, $x \neq 0$, g_K , and g_R .So far we have shown:• fundamental detection/identification limitations• system-theoretic conditions for undetectable/unidentifiable attacks		
F. Bullo UCSB Cyber-Physical Security Beijing 19may2012 25 / 30	F. Bullo UCSB Cyber-Physical Security Beijing 19may2012 26 / 30		
From Algebraic to Graph-theoretical Conditions	Zero Dynamics and Connectivity		
From Algebraic to Graph-theoretical Conditions	Zero Dynamics and Connectivity A linking between two sets of vertices is a set of mutually-disjoint directed paths between nodes in the sets		
From Algebraic to Graph-theoretical Conditions $E\dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t) + Du(t)$ (t) $(t$	Zero Dynamics and Connectivity A linking between two sets of vertices is a set of mutually-disjoint directed paths between nodes in the sets Imput Imput<		
From Algebraic to Graph-theoretical Conditions $E\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) + Du(t) • the vertex set is the union of the state, input, and output variables	Zero Dynamics and ConnectivityA linking between two sets of vertices is a set of mutually-disjoint directed paths between nodes in the sets \overbracelinput \overbracelinput \sublinput \sublinput \sublinput \sublinput \emph{Output} $If the maximum size of an input-output linking is k:• there exists an undetectable attack set K_1, with K_1 \ge k, and$		
From Algebraic to Graph-theoretical Conditions $E\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) + Du(t) $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ \downarrow $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Zero Dynamics and ConnectivityA linking between two sets of vertices is a set of mutually-disjoint directed paths between nodes in the sets $\overbracelinking between nodes in the sets\overbracelinking between nodes in the sets\overbracelinking between nodes in the sets\overbracelinking between nodes in the sets\fboxlinking between nodes in the sets\fboxlinking between nodes in the sets\fboxlinking between nodes in the sets\rlinking between nodes in the sets$		
From Algebraic to Graph-theoretical Conditions $E\dot{x}(t) = Ax(t) + Bu(t)$ $y(t) = Cx(t) + Du(t)$ (1) (1) (1) (2) (1) (2) (2) (2) (3) (3) (4) (4) (4) (4) (5) (4) (5) $(5$	A linking between two sets of vertices is a set of mutually-disjoint directed paths between nodes in the sets $\underbrace{I_{\text{nput}}}_{\text{Input}} \underbrace{I_{\text{nput}}}_{\text{Output}} \underbrace{I_{\text{nput}}} \underbrace{I_{\text{nput}}}_{\text{Output}} \underbrace{I_{\text{nput}}}_{\text{Output}} I$		

Outline				Summary and Future Directions			
1 Cyber-Physical Sec	curity			 Cyber-Physical Security fundamental limit distributed monitor control theory + or 	r ity ations or design distributed algorithms		
 Models of Cyber-F Analysis and Desig Summary 	hysical Systems and At	tacks					
 Some Technical D Summary and Futu 	etails Ire Directions			Research Avenues Image: Optimal network of analysis of costs are analysis are analysis of costs are a	clustering for distributed pro- and effects of attacks with noise and faults cewise systems hypothesis testing and syster	cedures n optimization	
F. Bullo UCSB	Cyber-Physical Security	Beijing 19may2012	29 / 30	F. Bullo UCSB	Cyber-Physical Security	Beijing 19may2012	30 / 30