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Coordination in multi-agent systems

What kind of systems?

each agent senses its immediate environment,
communicates with others,
processes information gathered, and
takes local action in response

“Raven” by AeroVironment Inc “PackBot”by iRobot Inc

Wildebeest herd in the Serengeti Geese flying in formation Fish swarm in Atlantis aquarium
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Cooperative robotics: technologies and applications

What scenarios?
Security systems, disaster recovery, environmental monitoring, study of
natural phenomena and biological species, science imaging

Security systems Warehouse automation Environmental monitoring

What kind of tasks?

1 coordinated motion: rendezvous, flocking, formation

2 cooperative sensing: surveillance, exploration, search and rescue

3 cooperative material handling and transportation
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Coordination via task and territory partitioning

Model: customers appear randomly in space/time
robotic network knows locations and provides service

Goal: minimize customer delay

Approach: assign customers to robots by partioning the space

F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle routing for
robotic systems. IEEE Proceedings, May 2011. To appear
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Outline

1 robot coordination via territory partitioning

2 gossip algorithms: mathematical setup

3 gossip algorithms: technological advances
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Territory partitioning is ... art

abstract expressionism

“Ocean Park No. 27” and “Ocean Park No. 129”

by Richard Diebenkorn (1922-1993), inspired by aerial landscapes
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Territory partitioning ... centralized district design

California Voting Districts: 2008 Obama/McCain votes
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Territory partitioning is ... animal territory dynamics

Tilapia mossambica, “Hexagonal

Territories,” Barlow et al, ’74

Red harvester ants, “Optimization, Conflict, and

Nonoverlapping Foraging Ranges,” Adler et al, ’03

Sage sparrows, “Territory dynamics in a sage sparrows

population,” Petersen et al ’87
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Territory partitioning: behaviors and optimality

ANALYSIS of cooperative distributed behaviors

1 how do animals share territory?
how do they decide foraging
ranges?
how do they decide nest locations?

2 what if each robot goes to “center” of own dominance region?

3 what if each robot moves away from closest robot?

DESIGN of performance metrics

4 how to cover a region with n minimum-radius overlapping disks?

5 how to design a minimum-distortion (fixed-rate) vector quantizer?

6 where to place mailboxes in a city / cache servers on the internet?
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Multi-center functions

Expected wait time

H(p, v) =

∫
v1

‖q − p1‖dq + · · · +

∫
vn

‖q − pn‖dq

n robots at p = {p1, . . . , pn}
environment is partitioned into v = {v1, . . . , vn}

H(p, v) =
n∑

i=1

∫
vi

f (‖q − pi‖)φ(q)dq

φ : R2 → R≥0 density

f : R≥0 → R penalty function
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Optimal partitioning

The Voronoi partition {V1, . . . ,Vn} generated by points (p1, . . . , pn)

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}

= Q
⋂
j

(half plane between i and j , containing i)
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Optimal centering (for region v with density φ)

function of p minimizer = center

p 7→
∫

v
‖q − p‖2φ(q)dq centroid (or center of mass)

p 7→
∫

v
‖q − p‖φ(q)dq Fermat–Weber point (or median)

p 7→ area(v ∩ disk(p, r)) r-area center

p 7→ radius of largest disk centered
at p enclosed inside v

incenter

p 7→ radius of smallest disk cen-
tered at p enclosing v

circumcenter

From online
Encyclopedia of
Triangle Centers
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From optimality conditions to algorithms

H(p, v) =

∫
v1

f (‖q − p1‖)φ(q)dq + · · · +

∫
vn

f (‖q − pn‖)φ(q)dq

1 at fixed positions, optimal partition is Voronoi

2 at fixed partition, optimal positions are “generalized centers”

3

S. P. Lloyd. Least squares quantization in PCM. IEEE Trans Information Theory, 28(2):129–
137, 1982. Presented at the 1957 Institute for Mathematical Statistics Meeting

Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: Applications and
algorithms. SIAM Review, 41(4):637–676, 1999
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Voronoi+centering algorithm for robots

Voronoi+centering law

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region
3: move towards center of own

dominance region

Area-center Incenter Circumcenter

F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Net-
works. Applied Mathematics Series. Princeton Univ Press, 2009. Available at
http://www.coordinationbook.info
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Partitioning with minimal communication requirements

Voronoi+centering law requires:
1 synchronous communication
2 communication along edges of dual graph

G1

Minimalist coordination

is synchrony necessary?

what are minimal communication requirements?

is asynchronous peer-to-peer, gossip, sufficient?
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Gossip partitioning policy

At random comm instants,
between two random regions:

1 compute two centers

2 compute bisector of
centers

3 partition two regions by
bisector

F. Bullo, R. Carli, and P. Frasca.
Gossip coverage control for robotic
networks: Dynamical systems on the
space of partitions. SIAM JCO, Au-
gust 2010. Submitted

before meeting

after meeting
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Gossip convergence analysis (proof sketch 1/4)

Lyapunov function for gossip territory partitioning

H(v) =
n∑

i=1

∫
vi

f (‖ center(vi )− q‖)φ(q)dq

1 state space is not finite-dimensional

non-convex disconnected polygons

arbitrary number of vertices

2 gossip map is not deterministic, ill-defined and discontinuous

two regions could have same centers
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Convergence with persistent switches (proof sketch 2/4)

X is metric space

finite collection of maps Ti : X → X for i ∈ I

consider sequences {x`}`≥0 ⊂ X with

x`+1 = Ti(`)(x`)

Assume:

1

2

3

4

If x0 ∈W , then almost surely

x` → (intersection of sets of fixed points of all Ti )

Francesco Bullo (UCSB) Robotic Coordination SIAM CT 2011 20 / 42

Convergence with persistent switches (proof sketch 2/4)

X is metric space

finite collection of maps Ti : X → X for i ∈ I

consider sequences {x`}`≥0 ⊂ X with

x`+1 = Ti(`)(x`)

Assume:

1 W ⊂ X compact and positively invariant for each Ti

2 U : W → R decreasing along each Ti

3 U and Ti are continuous on W

4 there exists probability p ∈ ]0, 1[ such that, for all indices i ∈ I and
times `, we have Prob

[
x`+1 = Ti (x`) | past

]
≥ p

If x0 ∈W , then almost surely

x` → (intersection of sets of fixed points of all Ti )
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The space of partitions (proof sketch 3/4)

Let C be set of closed subsets of Q — is it compact?

Hausdorff metric

dH(A,B) = max

{
max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)

}
1

2

3

A
B
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The space of partitions (proof sketch 3/4)

Let C be set of closed subsets of Q — is it compact?

Hausdorff metric

dH(A,B) = max

{
max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)

}
1 (C, dH) is compact metric space

2 dynamical system and Lyapunov function are not continuous wrt dH!

3 Hausdorff metric sensitive to sets of measure zero

A
B
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The space of partitions (proof sketch 4/4)

Let C be set of closed subsets of Q — is it compact?

Symmetric difference metric

dsymm(A,B) = measure(A \ B) + measure(B \ A)

1

2

3

A \ B
B \ A
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The space of partitions (proof sketch 4/4)

Let C be set of closed subsets of Q — is it compact?

Symmetric difference metric

dsymm(A,B) = measure(A \ B) + measure(B \ A)

1 redefine C ← C/∼ where A ∼ B whenever dsymm(A,B) = 0

2 dynamical system and Lyapunov function are continuous in (C, dsymm)

3 no compactness result is available for (C, dsymm)!
Theorem: for any k, (C(k), dsymm) is compact.

C(k) is set of k-convex subsets (union of k convex sets)

A \ B
B \ A
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Gossip algorithms: technological advances

1 non-convex environments

2 motion protocols (for communication persistency)

3 hardware and large-scale implementations
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Nonconvex environments as graphs

Revised setup

environment: weighted graph partitioned in connected subgraphs

multi-center cost function: H(p, v) = H1(p1, v1) + · · ·+ H1(pn, vn)

single-region cost function: H1(p, v) =
∑

q∈v dist (p, q) φ(q)

center of subgraph v : minimizer of p 7→ H1(p, v)

Range-dependent stochastic comm

Two robots communicate at the sample
times of a Poisson process with
distance-dependent intensity
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Discretized gossip algorithm

1 Ensure that neighbors meet frequently enough:
⇒ Random Destination & Wait Motion Protocol

2 Update partition when two robots meet:
⇒ Pairwise Partitioning Rule

Random Destination & Wait
Motion Protocol

Each robot continuously executes:

1: select sample destination qi ∈ vi

2: move to qi

3: wait at qi for time τ > 0
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Discretized gossip algorithm

Pairwise Partitioning Rule

Whenever robots i and j communicate:

1: w ← vi ∪ vj

2: while (computation time is available) do
3: (qi , qj)← sample vertices in w
4: (wi ,wj)← Voronoi of w by (qi , qj)
5: if (H1(qi ,wi ) + H1(qj ,wj) improves)

then
6: centroids ← (qi , qj)
7: (vi , vj)← (wi ,wj)
8: end if
9: end while

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control
for gossiping robots. IEEE Trans Robotics, November 2010. Submitted
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Discretized gossip algorithm
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Whenever robots i and j communicate:

1: w ← vi ∪ vj

2: while (computation time is available) do
3: (qi , qj)← sample vertices in w
4: (wi ,wj)← Voronoi of w by (qi , qj)
5: if (H1(qi ,wi ) + H1(qj ,wj) improves)

then
6: centroids ← (qi , qj)
7: (vi , vj)← (wi ,wj)
8: end if
9: end while

(combinatorial optimization) – interruptible anytime algorithm

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control
for gossiping robots. IEEE Trans Robotics, November 2010. Submitted
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Harware-in-the-loop experiment

Player/Stage robot simulation & control system: realistic robot models
with integrated wireless network model & obstacle-avoidance planner.

Hardware-in-the-loop experiment: 3 physical and 6 simulated robots
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Larger-scale simulation experiment

Player/Stage robot simulation & control system: realistic robot models
with integrated wireless network model & obstacle-avoidance planner.

Simulation experiment: 30 robots; UCSB campus.
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Conclusions

Summary

1 gossip algorithms: mathematical setup

2 gossip algorithms: technological advances

Open problems

1 topology and comp geometry of power sets

2 coordination: resource allocation, weak comm protocols

3 ecology of territory partioning
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Robot hardware

Rear caster

ComputerRangefinder

Drive wheel

Localization:
Adaptive Monte Carlo Localization
particle filter method for matching
scans to a map

(Thrun et al., 2001)

Navigation:
Smooth Nearness Diagram
navigation for local obstacle
avoidance using sensor data

(Durham et al., 2008)
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Convergence Result

Theorem

Convergence almost surely to a pairwise-optimal partition in finite time.

Proof sketch

1 Algorithm maintains a connected
n-partition

2 Probability neighbors communicate in
any interval

3 H decreases with every pairwise
update

4 Pairwise-optimal partitions are
equilibrium set

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control
for gossiping robots. IEEE Trans Robotics, November 2010. Submitted
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Pairwise Optimal Partitions

Definition

A partition is pairwise-optimal if every pair of neighboring robots (i , j) has
reached lowest possible coverage cost of vi ∪ vj , i.e. that

H1(ci ; vi ) + H1(cj ; vj) = min
a,b∈w

{∑
k∈w

min

{
dw (a, k), dw (b, k)

}}

where w = vi ∪ vj and (ci , cj) are the centers of (vi , vj)

⇒ Every pairwise-optimal partition is also centroidal Voronoi
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Subset Example

Cost: 12 hops Cost: 11 hops Cost: 10 hops

All are centroidal Voronoi partitions

Only lowest cost is pairwise-optimal
(by definition)

⇒ Avoid all pairwise local minima
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Monte Carlo Results I

Initial cost: 5.48 m
Optimum cost: 2.17 m

116 sequences of random
pairwise exchanges

Black - Pairwise-optimal Algorithm
Gray - Gossip Lloyd Algorithm
Red - Lloyd Algorithm

⇒ 99% confidence that with at least 80% probability the Pairwise-
optimal algorithm gets within 4% of the global optimum
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Monte Carlo Results II

Tests shown:

8 random initial conditions

116 sequences of pairwise
exchanges

Black - Pairwise-optimal Algorithm
Gray - Gossip Lloyd Algorithm
Red - Lloyd Algorithm
Green - Starting cost
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Motivational Scenario

One-to-Base Communication Model

For each robot, there exists a finite upper bound ∆ on the time
between its communications with the base station.
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Changes from Gossip Case

New Approach:

One-sided territory &
centroid updates

Evolve overlapping
territories

New cost function

Hmax(c , v) =
∑
q∈Q

max
i∈{1,...,n}

{dist(ci , a) | q ∈ vi}φ(q)
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One-to-Base Partitioning

One-to-Base Partitioning

Base station holds local copy of robot ter-
ritories

When robot i talks to base:

1: Update robot i ’s centroid
2: Transmit local copy of vi to robot i
3: for every other robot j do
4: Add vertices to vj which are in vi

but closer to j
5: Remove vertices from vj which are

in both but closer to i
6: end for

⇒ Split centering and partitioning
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Convergence Results

Theorem (Durham et al., 2011)

Convergence to a centroidal Voronoi partition in finite time.

Let M(P) be set of vertices owned by multiple robots and

Hmin(c , v) =
∑
q∈Q

min
i∈{1,...,n}

{dist(ci , q) | q ∈ vi}φ(q)

Proof of Decreasing Cost: One of these conditions holds

1 Hmax(c
+, v+) < Hmax(c , v)

2 Hmax(c
+, v+) = Hmax(c , v) and Hmin(c

+, v+) < Hmin(c ,P)

3 Hmax(c
+, v+) = Hmax(c , v), Hmin(c

+, v+) = Hmin(c , v), and
|M(v+)| < |M(v)|
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Simulation Movie

Four robots each initially own the entire environment, but then
settle on a centroidal Voronoi partition
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