	Coordination in multi-agent systems		
Geometry, Optimization and Control in Robot Coordination	What kind of systems? • each agent senses its immediate environment, • communicates with others,		
Francesco Bullo Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu Ilth SIAM Conference on Control & Its Applications Baltimore, Maryland USA, July 27, 2011	 Processes information gathered, and takes local action in response Facer' by AntoYoummet Ix Facer' by Ant		
Francesco Bullo (UCSB) Robotic Coordination SIAM CT 2011 1/42	Francesco Bullio (UCSB) Robotic Coordination SIAM CT 2011 2 / 42		
What scenarios? Security systems, disaster recovery, environmental monitoring, study of natural phenomena and biological species, science imaging Image: Security systems Security systems Vertex extension Vertex extension Extraction of the systems	Model: customers appear randomly in space/time robotic network knows locations and provides service Goal: minimize customer delay Approach: assign customers to robots by partitioning the space		
What kind of tasks?			
Coordinated motion: rendezvous, flocking, formation			

Outline

Territory partitioning is ... art

- gossip algorithms: mathematical setup
- gossip algorithms: technological advances

abstract expressionism "Ocean Park No. 27" and "Ocean Park No. 129" by Richard Diebenkorn (1922-1993), inspired by aerial landscapes

Francesco Bullo (UCSB) Robotic Coordination	SIAM CT 2011	5 / 42	Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011 6 / 42
Territory partitioning centralized dist	rict design		Territory partitionir	ng is animal territo	ory dynamics
			Tilapia mossambica, "Hecago Territories," Barlow et al. 7	anal Red harvester ants, "C Nonoverlapping Foragin	primization, Conflict, and g Ranges," Adler et al, '03
			Sam control		
			Sage sparre	ows, Territory dynamics in a sage	sparrows
California Voting Districts: 2008 Obama/McC	ain votes			population," Petersen et al '87	
Francesco Rullo (IICSR) Robotic Coordination	SIAM CT 2011	7 / 42	Economico Bullo (UCSB)	Pohotic Coordination	SIAM CT 2011 8 / 42

Multi-center functions

ANALYSIS of cooperative distributed behaviors

how do animals share territory? how do they decide foraging ranges?

how do they decide nest locations?

- What if each robot goes to "center" of own dominance region?
- What if each robot moves away from closest robot?

DESIGN of performance metrics

- I how to cover a region with n minimum-radius overlapping disks?
- I how to design a minimum-distortion (fixed-rate) vector quantizer?
- 9 where to place mailboxes in a city / cache servers on the internet?

Expected wait time

$$H(p,v) = \int_{V_1} ||q - p_1|| dq + \cdots + \int_{V_n} ||q - p_n|| dq$$

n robots at p = {p₁,..., p_n}
environment is partitioned into v = {v₁,..., v_n}

$$H(p, v) = \sum_{i=1}^{n} \int_{V_i} f(\|q - p_i\|)\phi(q) dq$$

•
$$\phi : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$$
 density

• $f : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ penalty function

Francesco Bullo (UCSB) Robotic Coordination SIAM CT 2011 9 / 42	Francesco Bullo (UCSB) Robotic Coordination SIAM CT 2011 10 / 42
Optimal partitioning	Optimal centering (for region v with density ϕ)
The Voronoi partition $\{V_1, \ldots, V_n\}$ generated by points (p_1, \ldots, p_n) $V_i = \{q \in Q \mid q - p_i \le q - p_j , \forall j \ne i\}$ $= Q \bigcap_j (\text{half plane between } i \text{ and } j, \text{ containing } i)$	function of pminimizer = center $p \mapsto \int_{v} q - p ^2 \phi(q) dq$ centroid (or center of mass) $p \mapsto \int_{v} q - p \phi(q) dq$ Fermat-Weber point (or median) $p \mapsto area(v \cap disk(p, r))$ r-area center
	$\begin{array}{c} p \mapsto \text{radius of largest disk centered} & \text{incenter} \\ \text{at p enclosed inside v} \\ p \mapsto \text{radius of smallest disk centerd} & \text{circumcenter} \\ \text{tered at p enclosing v} \\ \end{array}$

From optimality conditions to algorithms	From optimality conditions to algorithms
$H(p, v) = \int_{v_1} f(q - p_1)\phi(q)dq + \cdots + \int_{v_n} f(q - p_n)\phi(q)dq$	$H(p, v) = \int_{v_1} f(q - p_1)\phi(q)dq + \cdots + \int_{v_n} f(q - p_n)\phi(q)dq$
at fixed positions, optimal partition is Voronoi	at fixed positions, optimal partition is Voronoi
at fixed partition, optimal positions are "generalized centers"	at fixed partition, optimal positions are "generalized centers"
0	(a) alternate v-p optimization \implies local opt = center Voronoi partition
S. P. Lind. Lost course auxiliariae in PCM. (EEE Trace Information Theory, 28/2):120-	S P land Lost concentration in PCM /EEE Lost // Committie Theory / PC/2) 20-
 P. Lloyd. Least squares quantization in PCM. IEEE Trans Information Theory, 28(2):129– 137, 1982. Presented at the 1957 Institute for Mathematical Statistics Meeting 	 P. Lloyd. Least squares quantization in PCM. IEEE Trans Information Theory, 28(2):129– 137, 1982. Presented at the 1957 Institute for Mathematical Statistics Meeting
Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review, 41(4):637–676, 1999	Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review, 41(4):637–676, 1999

algorithms. SIAM Review, 41(4):637-676, 1999

		51AIN CT 2011 15/42
Voronoi+centering algorithm for robots Inc	omplete literature	
Voronoi+centering law At each comm round: 1: acquire neighbors' positions 2: compute own dominance region 3: move towards center of own dominance region 0: move towards center of own dominance region Area-center Area-center Incenter Circumcenter F. Bullo, J. Cortés, and S. Martínez. Distributed Control of Robotic Networks: Applied Mathematics Series. Princeton Univ Press, 2009. Available at http://www.coordinationbook.info	S. P. Lloyd. Least squares quantization in PCM. IEEE Tr. 28(2):129–137, 1982. Presented at the 1957 Institute for Meeting J. MacQueen. Some methods for the classification and ar observations. In L. M. Le Cam and J. Neyman, editors, P. Berkeley Symposium on Mathematics, Statistics and Prol 281–297. University of California Press, 1065-1966 A. Gersho. Asymptotically optimal block quantization. IEE Traony. 25(7):373–380, 1979 R. M. Gray and D. L. Neuhoff. Quantization. IEEE Trans 4(6):3225–3233, 1998. Commerorative Issue 1948-1998 Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Applications and algorithms. SIAM Review, 41(4):637–67 J. Cortés, S. Martínez, T. Karatas, and F. Bullo. Coverag sensing networks. IEEE Trans Robotics & Automation, 2 J. Cortés and F. Bullo. Coordination and geometric optim dynamical systems. SIAM JCO, 44(5):1543–1574, 2005 F. Bullo, J. Cortés, and S. Martínez. Distributed Control	rans Information Theory, Mathematical Statistics nalysis of multivariate Proceedings of the Fifth bability, volume I, pages EEE Trans Information Is Information Theory, 8 intessellations: 76, 1999 ge control for mobile 0(2):243-255, 2004 mization via distributed I of Robotic Networks.

Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011 14 / 42	Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011 15 / 42

0	
	utline
\sim	uunne

Partitioning with minimal communication requirements

Voronoi+centering law requires:

- synchronous communication
- communication along edges of dual graph

ological	advances		Minimalist coordination • is synchrony necessary? • what are minimal communication requirements?						
ation	SIAM CT 2011	16 / 42	 is asynchronous pe Francesco Bullo (UCSB) 	is asynchronous peer-to-peer, gossip, sufficient? Emerson Bullo, (IICSB) Robotic Condition Statu CT-2011 17 / 42					
			Gossip convergence	e analysis (proof sketch	n 1/4)				

robot coordination via territory partitior	ing
--	-----

- e gossip algorithms: mathematical setup
- gossip algorithms: techno

Francesco Bullo (UCSB) Robotic Co Gossip partitioning policy At random comm instants. between two random regions: compute two centers before meeting compute bisector of centers partition two regions by hisector after meeting F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynamical systems on the space of partitions. SIAM JCO, August 2010. Submitted

incomplete literature	Outline
 R. W. Brockett. System theory on group manifolds and coset spaces. SIAM J Control, 10(2):265-284, 1972 S. B. Nadler. Hyperspaces of sets, volume 49 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, 1978 	
 S. G. Krantz and H. R. Parks. Geometric Integration Theory. Birkhauser, 2008 H. Grömer. On the symmetric difference metric for convex bodies. Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), 41(1):107–114, 2000 R. G. Sanfelice, R. Goebel, and A. R. Teel. Invariance principles for hybrid systems with connections to detectability and asymptotic stability. <i>IEEE Trans Automatic Crtr</i>, 52(12):2282–2297, 2007 F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynamical systems on the space of partitions. <i>SIAM JCO</i>, August 2010. Submitted J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control for gossiping robots. <i>IEEE Trans Robotics</i>, November 2010. Submitted 	 orbot coordination via territory partitioning gossip algorithms: mathematical setup gossip algorithms: technological advances
Francesco Bullo (UCSB) Robotic Coordination SIAM CT 2011 23 / 42	Francesco Bullo (UCSB) Robotic Coordination SIAM CT 2011 24 / 42
Gossin algorithms: technological advances	Nonconvex environments as graphs
	Revised setup environment: weighted graph partitioned in connected subgraphs multi-center cost function: $H(p, v) = H_1(p_1, v_1) + \dots + H_1(p_n, v_n)$ single-region cost function: $H_1(p, v) = \sum_{q \in v} \text{dist}(p, q) \phi(q)$ center of subgraph v: minimizer of $p \mapsto H_1(p, v)$ Range-dependent stochastic comm The employee
non-convex environments motion protocols (for communication persistency) hardware and large-scale implementations	I wo robots communicate at the sample times of a Poisson process with distance-dependent intensity

Nonconvex environments as graphs

Revised setup environment:

multi-center cost function:

single-region cost function:

Range-dependent stochastic comm Two robots communicate at the sample times of a Poisson process with distance-dependent intensity

center of subgraph v:

Discretized gossip algorithm

weighted graph partitioned in connected subgraphs

 $H(p, v) = H_1(p_1, v_1) + \cdots + H_1(p_n, v_n)$

 $H_1(p, v) = \sum_{q \in v} \operatorname{dist}(p, q) \phi(q)$

minimizer of $p \mapsto H_1(p, v)$

♦ Ensure that neighbors meet frequently enough: ⇒ Random Destination & Wait Motion Protocol

Opdate partition when two robots meet: ⇒ Pairwise Partitioning Rule

Random Destination & Wait Motion Protocol

Each robot continuously executes:

- 1: select sample destination $q_i \in v_i$
- 2: move to qi
- 3: wait at q_i for time $\tau > 0$

Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	26 / 42	Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011 27 / 42
Discretized gossip	algorithm			Discretized gossip	algorithm	
 ● Ensure that neight ⇒ Random D ● Update partition w ⇒ Pairwise P Random Destination Motion Protocol Each robot continuous! select sample destire select sample destire wait at q_i for time 	bors meet frequently enough: estination & Wait Motion Pro- when two robots meet: artitioning Rule & Wait y executes: nation $q_i \in v_i$ $\tau > 0$			Pairwise Partitioning Whenever robots i and 1: $w \leftarrow v_i \cup v_j$ 2: while (computation 3: $(q_i, q_j) \leftarrow \text{sample}$ 4: $(w_i, w_j) \leftarrow \text{Voron}$ 5: if $(H_1(q_i, w_j) \leftarrow \text{then}$ 6: centroids $\leftarrow (q$ 7: $(v_i, v_j) \leftarrow (w_i, w_i)$ 8: end if 9: end while J. W. Durham, R. Carli, P. for goasiping robots. <i>IEEE</i>	Rule j communicate: time is available) do e vertices in we vertices in $wh(q_i, q_j)h_1(q_j, w_j) improves)h_i, q_j)w_j)Frasca, and F. Bullo. Discrete paTrans Robotics, November 2010$	artitioning and coverage control

Francesco Bullo (UCSB)

SIAM CT 2011 27 / 42

Discretized gossip algorithm

Pairwise Partitioning Rule

Whenever robots i and j communicate:

- 1: $w \leftarrow v_i \cup v_j$
- 2: while (computation time is available) do
- 3: $(q_i, q_j) \leftarrow \text{sample vertices in } w$
- 4: $(w_i, w_j) \leftarrow \text{Voronoi of } w \text{ by } (q_i, q_j)$
- 5: if $(H_1(q_i, w_i) + H_1(q_j, w_j) \text{ improves})$ then
- 6: centroids $\leftarrow (q_i, q_j)$
- 7: $(v_i, v_j) \leftarrow (w_i, w_j)$
- 8: end if
- 9: end while
 - J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control for gossiping robots. *IEEE Trans Robotics*, November 2010. Submitted

Discretized gossip algorithm

Pairwise Partitioning Rule

Whenever robots i and j communicate:

- 1: $w \leftarrow v_i \cup v_j$
- 2: while (computation time is available) do
- (q_i, q_i) ← sample vertices in w
- 4: $(w_i, w_j) \leftarrow \text{Voronoi of } w \text{ by } (q_i, q_j)$
- 5: if $(H_1(q_i, w_i) + H_1(q_j, w_j) \text{ improves})$ then
- 6: centroids $\leftarrow (q_i, q_j)$

7:
$$(v_i, v_j) \leftarrow (w_i, w_j)$$

- 8: end if
- 9: end while

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control for gossiping robots. *IEEE Trans Robotics*, November 2010. Submitted

Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	28 / 42	Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	28 / 42
Discretized gossip a	algorithm			Discretized gossip	algorithm		
Pairwise Partitioning R Whenever robots i and j 1: $w \leftarrow v_i \cup v_j$ 2: while (computation t 3: $(q_i, q_j) \leftarrow \text{sample}$ 4: $(w_i, w_j) \leftarrow \text{vorono}$ 5: if $(H_1(q_i, w_i) + H$ then 6: centroids $\leftarrow (q_i, T) \leftarrow (w_i, w_i)$ 8: end if 9: end while	ule communicate: ime is available) do vertices in w i of w by (q_i, q_j) $d_1(q_j, w_j)$ improves) q_j j			Pairwise Partitioning I Whenever robots i and J 1: $w \leftarrow v_i \cup v_j$ 2: while (computation 3: $(q_i, q_j) \leftarrow \text{sample}$ 4: $(w_i, w_j) \leftarrow \text{Voron}$ 5: if $(H_1(q_i, w_i) + \text{then}$ 6: centroids $\leftarrow (q_i, v_j) \leftarrow (w_i, v_j)$ 8: end if 9: end while	Rule i communicate: time is available) do vertices in w oi of w by (q_i, q_j) $H_1(q_j, w_j)$ improves) $i; q_j)$ w_j		
J. W. Durham, R. Carli, P. F for gossiping robots. <i>IEEE T</i>	rasca, and F. Bullo. Discrete part <i>rans Robotics</i> , November 2010. S	itioning and coverage contr Submitted	ol	(combinatorial op J. W. Durham, R. Carli, P. for gossiping robots. <i>IEEE</i>	timization) — interrupti Frasca, and F. Bullo. Discrete <i>Trans Robotics</i> , November 20:	ible anytime algorithm partitioning and coverage cont 10. Submitted	rol

Player/Stage robot simulation & control system: realistic robot models with integrated wireless network model & obstacle-avoidance planner. Hardware-in-the-loop experiment: 3 physical and 6 simulated robots

Larger-scale simulation experiment

Player/Stage robot simulation & control system: realistic robot models with integrated wireless network model & obstacle-avoidance planner. Simulation experiment: 30 robots; UCSB campus.

Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	29 / 42	Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	30 / 42
Conclusions				Robot hardware			
Summary a gossip algorithms: mathematical setup gossip algorithms: technological advances Open problems topology and comp geometry of power sets coordination: resource allocation, weak comm protocols ecology of territory partioning			Rangefinder Computer Drive wheel Concerned Rear caster				
Acknowledgements • Ruggero Carli, Ass • Paolo Frasca, Post • Joey W. Durham, • generous support f	istant Professor @ Universita doc @ Politecnico di Torino Senior Engineer @ Kiva Syst rom NSF, ARO, ONR, AFO	a di Padova eems SR		Localization: Adaptive Monte Carlo Lo particle filter method for scans to a map (Thrun et al., 2001)	calization Smooth M matching navigation avoidance (Durham et	on: Vearness Diagram n for local obstacle e using sensor data t al., 2008)	
Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	31 / 42	Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	32 / 42

Convergence Result

Theorem

Convergence almost surely to a pairwise-optimal partition in finite time.

Proof sketch

- Algorithm maintains a connected n-partition
- Probability neighbors communicate in any interval
- H decreases with every pairwise update
- Pairwise-optimal partitions are equilibrium set

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control for gossiping robots. *IEEE Trans Robotics*, November 2010. Submitted

Pairwise Optimal Partitions

Definition

A partition is pairwise-optimal if every pair of neighboring robots (i, j) has reached lowest possible coverage cost of $v_i \cup v_j$, i.e. that

$$H_1(c_i; v_i) + H_1(c_j; v_j) = \min_{a,b \in w} \left\{ \sum_{k \in w} \min \left\{ d_w(a,k), d_w(b,k) \right\} \right\}$$

where $w = v_i \cup v_j$ and (c_i, c_j) are the centers of (v_i, v_j)

 \Rightarrow Every pairwise-optimal partition is also centroidal Voronoi

Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011 33 / 42	Francesco Bullo (UCSB)	Robotic Coordination	SIAM CT 2011	34 / 42
Subset Example			Monte Carlo Results I			
Cost: 12 hops	Cost: 11 hops	Cost: 10 hops	Initial cost: 5.48 m	120 100 000 000 000 000 000 000 000 000	2.8 3 et (m)	
(by definition)			Optimum cost: 2.17 m 116 sequences of random pairwise exchanges	Black - Parwise-optimal Algorithm Gray - Gossip Lloyd Algorithm Red - Lloyd Algorithm		
\Rightarrow Avoid all pairwise local minima			\Rightarrow 99% confidence that with at least 80% probability the Pairwise- optimal algorithm gets within 4% of the global optimum			

Monte Carlo Results II

Motivational Scenario

One-to-Base Partitioning

One-to-Base Partitioning

Base station holds local copy of robot territories

When robot *i* talks to base:

- 1: Update robot i's centroid
- 2: Transmit local copy of vi to robot i
- 3: for every other robot j do
- Add vertices to v_j which are in v_i but closer to j
- Remove vertices from v_j which are in both but closer to i

6: end for

⇒ Split centering and partitioning

Convergence Results

Theorem (Durham et al., 2011)

Convergence to a centroidal Voronoi partition in finite time.

Let M(P) be set of vertices owned by multiple robots and

$$H_{\min}(c,v) = \sum_{q \in Q} \min_{i \in \{1,...,n\}} \left\{ \operatorname{dist}(c_i,q) \mid q \in v_i \right\} \phi(q)$$

Proof of Decreasing Cost: One of these conditions holds

- $H_{\max}(c^+, v^+) < H_{\max}(c, v)$
- (a) $H_{\max}(c^+, v^+) = H_{\max}(c, v)$ and $H_{\min}(c^+, v^+) < H_{\min}(c, P)$
- $H_{\max}(c^+, v^+) = H_{\max}(c, v)$, $H_{\min}(c^+, v^+) = H_{\min}(c, v)$, and $|M(v^+)| < |M(v)|$

Trancesco Dano (OCDD)	Robotic Coordination	31601 01 2011 40 / 42	(ocab)	Nobolic Cooldination	514111 CT 2011	
Simulation Movie						
Four robots each in settle on a centroid	itially own the entire entire and l Voronoi partition	vironment, but then				

SIAM CT 2011 42 / 42