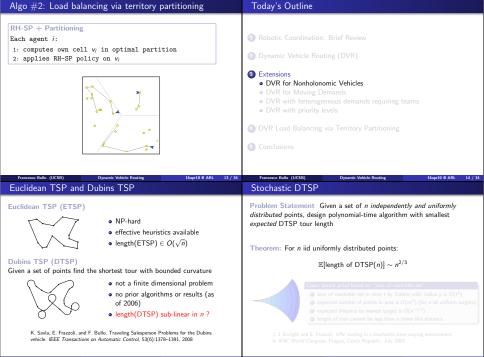
Dynamic Vehicle Routing for Robotic Networks: Models, Fundamental Limitations and AlgorithmsFancesco BulloOffice of Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.eduU.S. Army Research Laboratory Kelephi Laboratory Center, 16 April 2010	 Funded in large part by ARO MURI "Swarms" W911NF-05-1-0219 Funded in part by ONR award N00014-07-1-0721 Funded in part by Institute for Collaborative Biotechnologies, ARO award DAAD19-03-D-0004 Collaborators on Robotic Coordination Ruggero Carli (UCSB), Jorge Cortés (UCSD), Joey W. Durham (UCSB), Paolo Frasca (Roma), Anurag Ganguli (UtopiaCompression), Sonia Martínez (UCSD), Karl Obermeyer (UCSB), Stephen L. Smith (MIT), and Sara Susca (Honeywell) Collaborators on Dynamic Vehicle Routing Shaunak D. Bopardikar (UCSB), John J. Enright (MIT), Emilio Frazzoli (MIT), João P. Hespanha (UCSB) Marco Pavone (MIT/JPL), Ketan Savia (MIT), and Sephen L. Smith (MIT) 		
Francesco Bullo (UCSB) Dynamic Volicio Routing 16apr10 0 ABL 1/34 Today's Outline	Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 2 / 34 Robotic coordination		
 Robotic Coordination: Brief Review Dynamic Vehicle Routing (DVR) Extensions DVR for Nonholonomic Vehicles 			
 DVR for Moving Demands DVR with heterogeneous demands requiring teams DVR with priority levels DVR Load Balancing via Territory Partitioning Conclusions 			
Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 0 ARL 3/34	Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 Ø ARL 4 / 34		


Acknowledgements

"Distributed Control of Robotic Networks"	Today's Outline
<page-header> Opposite </page-header>	 Robotic Coordination: Brief Review Dynamic Vehicle Routing (DVR) Extensions DVR for Nonholonomic Vehicles DVR for Moving Demands DVR for Moving Demands DVR with hetrogeneous demands requiring teams DVR with hetrogeneous demands requiring teams DVR with hetrogeneous demands requiring teams DVR Load Balancing via Territory Partitioning Conclusions Provesse Nulls (UCM) Quarket Marking Model Rearing Verset Model Careful & Augustant Verset Model Careful & Augustant Verset Model Careful & Augustant
 a group of vehicles, and a set of service demands Objective: provide service in minimum time service = take a picture at location Vehicle routing (All info known ahead of time, Dantzig '59) Determine a set of paths that allow vehicles to service the demands Dynamic vehicle routing (New info in real time, Pearoftis '88) New demands arise in real-time Existing demands evolve over time 	 a group of vehicles, and a set of service demands Objective: provide service in minimum time service = take a picture at location Vehicle routing (All info known ahead of time, Dantzig '59) Determine a set of paths that allow vehicles to service the demands Dynamic vehicle routing (New info in real time, Parofits '88) New demands arise in real-time Existing demands evolve over time

Prototypical Dynamic Vehicle Routing Problem	Prototypical Dynamic Vehicle Routing Problem					
Given: • a group of vehicles, and • a set of service demands Objective: provide service in minimum time service = take a picture at location	Given: • a group of vehicles, and • a set of service demands Objective: provide service in minimum time service = take a picture at location					
Vehicle routing (All info known ahead of time, Dantzig '59) Determine a set of paths that allow vehicles to service the demands	Vehicle routing (All info known ahead of time, Dantzig '59) Determine a set of paths that allow vehicles to service the demands					
Dynamic vehicle routing (New info in real time, Psaraftis '88) • New demands arise in real-time • Existing demands evolve over time	Dynamic vehicle routing (New info in real time, Psaraftis '88) • New demands arise in real-time Existing demands evolve over time					
Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 0 ARL 7 / 34 Light and heavy load regimes	Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 7 / 34 Literature review on DVR					
	 Shortest path through randomly-generated and worst-case points (Beardwood, Halton and Hammersly, 1959 — Steele, 1990) Traveling salesman problem solvers (Lin, Kernighan, 1973) DVR formulation on a graph (Psaraftis, 1988) DVR on Euclidean plane (Bertsimas and Van Ryzin, 1990–1993) Unified receding-horizon policy (Papastavrou, 1996) Recent developments in DVR for robotic networks: Adaptation and decentralization (Pavone, Frazzoli, FB: TAC, in press) Nonholonomic / Dubins UAVs (Savla, Frazzoli, FB: TAC 2008) Pickup delivery tasks (Waisanen, Shah, and Dahleh: TAC 2008) Heterogeneous vehicles and team forming (Smith and Bullo: SCL 2009) Distinct-priority demands (Smith, Pavone, FB, Frazzoli: SICON, in press) 					
	 Moving demands (Bopardikar, Smith, Hespanha, FB: TAC, in press) 					

Algo $#1$: Receding-Horizon Shortest-Path policy	Algo $#1$: Receding-Horizon Shortest-Path policy				
<pre>Receding-Horizon Shortest-Path (RH-SP) For η ∈ (0, 1], single agent performs: 1: while no customers, move to center 2: while customers waiting</pre>	Receding-Horizon Shortest-Path (RH-SP) For η ∈ (0,1], single agent performs: while no customers, move to center <liwhile customers="" li="" no="" waiting<=""> compute shortest path through current targets service η-fraction of path </liwhile> M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing in a stochastic and dynamic environment. <i>IEEE Transactions on Automatic</i>				
Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 Ø ARL 10 / 34					
RH-SP analysis	RH-SP analysis				
Implementation: • NP-hard computation, but effective heuristics Stability: • queue is stable if service time < interarrival time • service time = length shortest path(n) (n = # customers) • queue is stable if (length of shortest path(n)) = sublinear f(n)	$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
Francesco Bullo (UCSB) Dynamic Valideis Routing 1854918 @ ARL 11/34	Francesco Bullo (UCSB) Dynamic Valicis Rousing 165april 8 ARI: 11 / 34				

RH-SP analysis	RH-SP analysis				
Implementation: • NP-hard computation, but effective heuristics Stability: • queue is stable if service time < interarrival time	Implementation: • NP-hard computation, but effective heuristics Stability: • queue is stable if service time < interarrival time				
Reserves Bullo (UCSB) Dynamic Vehicle Routing 16april 8 ARL 11/34 RH-SP analysis Implementation: • NP-hard computation, but effective heuristics	Francesco Bullo (UCSE) Oynamic Valicle Routing 16,9210 \oplus ARL 11/34 RH-SP analysis: continued Adaptation: the policy does not require knowledge of \bigcirc vehicle velocity v , environment Q				
Stability: • queue is stable if service time < interarrival time	 arrival rate λ and spatial density function f expected on-site service 3 Performance: in light load, delay is optimal in heavy load, delay is within a multiplicative factor from optimal multiplicative factor depends upon f and is conjectured to equal 2 				
Worst-case and expected bounds length shortest path(n) $\leq \beta_{worst}\sqrt{n}$ $\lim_{n \to +\infty}$ length shortest path(n) $= \beta_{expected}\sqrt{n}$ framewore Bulle (UCSB) Opening 16.901 (9.08L 11/34)	no known adaptive algo with better performance very little known outside of asymptotic regimes ramsee Duds (UCSB) Opumic Valids Reging 164ptB 0 ABL 12 / 31				

Stochastic DTSP

Problem Statement Given a set of *n* independently and uniformly distributed points, design polynomial-time algorithm with smallest expected DTSP tour length

Theorem: For n iid uniformly distributed points:

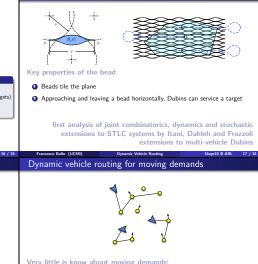
$$\mathbb{E}[\text{length of DTSP}(n)] \sim n^{2/3}$$

Francesco Bullo (UCSB)

Today's Outline

Lower bound proof based on "area of reachable set"

area of reachable set in time t by Dubins with radius p is O(t³) expected number of points in area is O(nt³) (for n iid uniform targets)


expected distance to nearest target is O(n^{-1/3})

length of tour cannot be less than n times this distance

J. J. Enright and E. Frazzoli. UAV routing in a stochastic time-varying environment. In IFAC World Congress, Prague, Czech Republic, July 2005 **Dynamic Vehicle Routing**

Constructive upper bound

based on environment tiling tuned to vehicle dynamics

DVR for Moving Demands

Robotic Coordination: Brief Review

3 Extensions

Very little is know about moving demands:

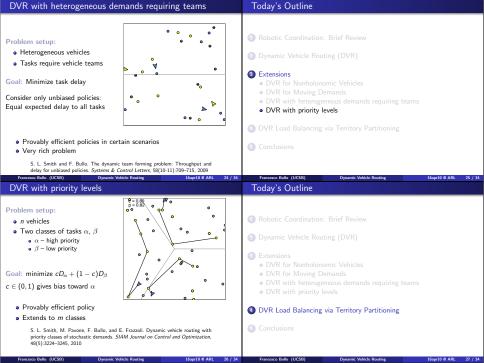
- no polynomial time algorithms for shortest path
- o length estimates
- no efficient DVR algorithms

S. D. Bopardikar, S. L. Smith, F. Bullo, and J. P. Hespanha. Dynamic vehicle routing for translating demands: Stability analysis and receding-horizon policies. IEEE Transactions on Automatic Control, 55(11), 2010. (Submitted, Mar 2009) to appear

16apr10 @ ARL

Translating demands: problem setup

Translating demands: policies


Problem parameters: • speed ratio v: $v = \frac{\text{demand speed}}{\text{vehicle speed}}$ • arrival rate λ • segment width W • deadline distance L	$L = +\infty$ L is finite Stabilize queue Maximize capture fraction $v < 1$ $v < 1$
$L = +\infty$ L is finite Stabilize queue Maximize capture fraction $v < 1$	$v \ge 1 \text{Not possible for any } \lambda > 0$
<section-header> Relaxed assumptions: Non-Poisson Non-uniform Different speeds Different speeds Different directions Brinte capture radius More general setup: Advance information Advance information </section-header>	 Robotic Coordination: Brief Review Dynamic Vehicle Routing (DVR) Extensions DVR for Monholonomic Vehicles DVR for Moning Demands DVR with heterogeneous demands requiring teams DVR with priority levels DVR Load Balancing via Territory Partitioning Conclusions

16apr10 @ ARL 22 / 34

Francesco Bullo (UCSB)

SB) Dynam

16apr10 @ ARL 23 / 34

Tilapia mossambica, "Hexagonal Territories," Barlow et al, '74

Red harvester ants, "Optimization, Conflict, and Nonoverlapping Foraging Ranges," Adler et al. '03

Sage sparrows, "Territory dynamics in a sage sparrows population," Petersen et al '87

Optimal partitioning cost functions

Expected wait time (light load problem)

$$H(p, v) = \int_{V_1} ||q - p_1|| dq + \cdots + \int_{V_n} ||q - p_n|| dq$$

environment is partitioned into v = {v₁,..., v_n}

$$H(p, v) = \sum_{i=1}^{n} \int_{V_i} f(\|q - p_i\|)\phi(q) dq$$

Francesco Bullo (UCSB)	Dynamic Vehicle Routing	16apr10 @ ARL	28 / 34	Francesco Bullo (UCSB)	Dynamic Vehicle Routing	16apr10 @ ARL	29 / 34
Pracesso Bulls (UCSB) Dynamic Validic Reacting 16opt10 @ AR From optimality conditions to algorithms $H(p, v) = \sum_{i=1}^{n} \int_{V_i} f(q - p_i)\phi(q)dq$		s		Gossip partitioning	g policy		
H(р,	$f(u) = \sum_{i=1}^{n} \int_{v_i} f(q - p_i) \phi(q)$	q)dq		 Random communic Compute two cent Compute bisector of 			
				Partition two regio	ns by bisector		

Theorem (Alternating Algorithm, Lloyd '57)

- at fixed positions, optimal partition is Voronoi
- at fixed partition, optimal positions are "generalized centers"
- alternate v-p optimization

Francesco Bullo (UCSB) Dynamic Vehicle Routing

16apr10 @ ARL 30 / 34

Francesco Bullo (UCSB)

F. Bullo, R. Carli, and P. Frasca, Gossip coverage control for robotic networks: Dynam-

ical systems on the the space of partitions. SIAM Review, January 2010. Submitted

Gossip partitioning policy: sample implementation

- Player/Stage platform
- · realistic robot models in discretized environments
- integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control with gossip communication. In ASME Dynamic Systems and Control Conference, Hollywood, CA, October 2009

Gossip partitioning policy: analysis results

- class of dynamical systems on space of partitions

 study evolution of the regions rather of the agents
- Onvergence to centroidal Voronoi partitions (under mild conditions)
- ovel results in topology, analysis and geometry:
 - compactness of space of finitely-convex partitions with respect to the symmetric difference metric
 - continuity of various geometric maps (Voronoi as function of generators, centroid location as function of set, multicenter functions)
 - LaSalle convergence theorems for dynamical systems on metric spaces with deterministic and stochastic switches

conjectures about topology of space of partitions asymmetric gossip algorithms, akin to stigmergy tolerance to failures, arrivals, and dynamic environments

					ļ				
	Francesco Bullo (UCSB)	Dynamic Vehicle Routing	16apr10 @ ARL	32 / 34		Francesco Bullo (UCSB)	Francesco Bullo (UCSB) Dynamic Vehicle Routing	Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL	Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 3
Tc	oday's Outline								
						1			
						1			
1	Robotic Coordination	: Brief Review							
					l				
	Dynamic Vehicle Rou	ting (DVR)							
•	Synamic Venicie Hou	cing (D TH)			l				
~					l				
	Extensions								
	 DVR for Nonholon 								
	 DVR for Moving D 	emands							
4	 DVR with heteroge 	neous demands requiring tea	ms						
	DVR with priority I	evels							
	DV/D Load Palansing	uia Tamitany Partitioning							
	DVR LOad balancing	via Territory Partitioning							
-									
5	Conclusions								
						J			
	Francesco Bullo (UCSB)	Dynamic Vehicle Routing	16apr10 @ ARL	34 / 34					