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Preliminary #1: Consensus algorithms

simplest distributed algorithm = linear averaging

each node contains a value xi and repeatedly executes:

x+
i := average(xi , {xj , for all in-neighbor nodes j})

each node’s value converges to common value
(for strongly connected and aperiodic digraphs)
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Preliminary #1: Distributed algorithms on networks
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Distributed algorithm for a network of processors consists of

1 W , the processor state set

2 A, the communication alphabet

3 stf : W × An → W , the state-transition map

4 msg : W → A, the message-generation map (often identity map)
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Preliminary #2: Optimization problems

Standard LP in d variables with n constraints

minimize cT x

subject to aT
i x ≤ bi i ∈ {1, . . . , n}

cost function = direction
linear inequalities = halfspace constraints

solution uniquely determined by precisely d
constraints
(For special cases, use lexicographic
minimum solution)

Howto setup a “distributed optimization problem” from this LP?
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Preliminary #3: Target localization in sensor networks

1 each sensor/camera i provides “convex set” measurement

2 set-membership localization = intersection of n convex sets
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Preliminary #3: Target localization in sensor networks

1 intersection of n convex sets ⊂ axis-aligned bounding box

2 axis-aligned bounding box := 4 LPs wrt cardinal directions

Each LP has 2 variables and
(# constraints) = (# sensors) × (# edges of each measurement)
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Problem statement: Distributed optimization

A distributed LP

Assume

1 {direction, n halfspace constraints} is feasible LP in d variables

2 G is directed graph with n nodes, strongly connected

3 memory of node i contains {direction, ith halfspace constraint}

Design distributed algorithm so each node computes global LP solution

Dimensionality assumption

d � n

network with many nodes (order n) and finite memory (order d)

network with bounded node degree, also

for d ∼ n, see ”Parallel Computation” by Bertsekas & Tsitsiklis
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Simple observations

each node knows some local constraints

each node can solve “local LP” & compute “local active constraints”

achieve consensus upon “global active constraints”
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Solution: first attempt

processor state: a set of constraints Ci — initialized Ci := {(ai , bi )}

message generation: transmit the set of constraints Ci

state update rule:

1 collect all constraints

Ctmp := Ci ∪
(
∪ for all in-neighbor j Cj

)
2 solve local LP

minimize cT x

subject to aT
k x ≤ bk for all (ak , bk) ∈ Ctmp

3 store Ci := active constraints in solution of local LP
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But constraints need to be re-examined!

Note: h2 is a global active constraints, but not local:

1 {h1, h2} is a basis for {h1, h2, h3, h4}, but

2 {h3, h4} is a basis for {h2, h3, h4}
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Solution: Constraints Consensus

processor state: a set of constraints Ci — initialized Ci := ∅

message generation: transmit the set of constraints Ci

state update rule:
1 collect all constraints

Ctmp := Ci ∪
(
∪ for all in-neighbor j Cj

)
∪{(ai , bi )}

2 solve local LP

minimize cT x

subject to aT
k x ≤ bk for all (ak , bk) ∈ Ctmp

3 store

Ci :=

{
active constraints if local LP is bounded

∅ if local LP is unbounded
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Formal properties of constraints consensus

(Assume one node has bounded solution at initial time)

Monotonicity: the LP value at each node is monotonically non-decreasing

Finite time: the LP value at each node converges in finite time

Consensus: the LP values at all node are equal in finite time

LP solution: after convergence, the LP constraints set at each node is
an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP
constraint set at each node converges that unique set

Time Complexity: unknown, conjectured to be O(n)

Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE{S|T}COC 2009 12 / 18



Linear time complexity via Monte Carlo analysis

Nominal problem: d = 4, graph = line graph, random LP = hyperplanes
with normal vectors uniformly distributed on the unit sphere,
and at unit distance from the origin.

Monte Carlo probability estimation: With 99% confidence, there is 99%
probability that a nominal problem with n ∈ {40, 60, 80} is
solved via constraints consensus in time bounded by 4(n− 1).
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End of story ... almost

1 we only considered distributed LPs!

2 what about more general optimization problems?

3 how to generalize constraints consensus?

4 what about formation control?
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Abstract Optimization

Abstract optimization problem is (H, ω)

H is a finite set of constraints,

ω(G ) is the value function
(minimum value attainable by cost function subject to G ⊂ H)

Axioms

Monotonicity: For any F , G , with F ⊂ G ⊂ H

ω(F ) ≤ ω(G )

Locality: For any F ⊂ G ⊂ H with ω(F ) = ω(G ) and any h ∈ H, then

ω(G ) < ω(G ∪{h}) =⇒ ω(F ) < ω(F ∪{h})

abstract framework that captures the main features of LP
rich lit: Matousek, Sharir, Welzl, Gärtner, Agarwal, ...
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Ex #1: Distributed training of Support Vector Machines

Max Margin Problem

Separable training set = a separable set {(xi , `i )} of n examples xi ∈ Rk

and labels `i ∈ {−1,+1}. Find (t+, t−) ∈ R2 and w ∈ Rk

minimize
1

2
‖w‖2 − (t+ − t−)

subject to w · xi ≥ t+ if `i = +1

w · xi ≤ t− if `i = −1

Balcázar et al, TCS ’08: Max Margin satisfies axioms

Distributed Max Margin Problem

1 a separable training set {(xi , `i )}
2 G is directed graph with n nodes, strongly connected

3 memory of node i contains the example-label pair (xi , `i )

Constraints Consensus solves the Distributed Max Margin
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Ex #2: Distributed geometric optim & formation control

Smallest enclosing ball, ellipsoid
and axis-aligned bounding box

Smallest enclosing stripe
(generic points)

Smallest enclosing annulus

Application to motion coordination in robotic networks

1 computing optimal shapes in distributed fashion

2 from distributed shape consensus, easy to design formation control
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End of story

1 distributed abstract optimization

2 consensus constraints: correctness and time complexity

3 applications to target tracking & formation control
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