Preliminary #1: Consensus algorithms
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University of California at Santa Barbara simplest distributed algorithm = linear averaging

http://motion.me.ucsb.edu each node contains a value x; and repeatedly executes:

X" := average(x;, {xj, for all in-neighbor nodes j})
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Preliminary #2: Optimization problems

Standard LP in d variables with n constraints
minimize ¢’ x
Transmit Update

and processor subject to a,-Tx < b; i€{l,...,n}

receive state

cost function = direction
linear inequalities = halfspace constraints

for a network of processors consists of \ solution uniquely determined by precisely d
Q W, the / constraints
Q A, the (For special cases, use lexicographic
O stf: W x A" — W, the minimum solution)
Q@ msg: W — A, the (often identity map)
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Preliminary #3: Target localization in sensor networks

@ each sensor/camera i provides “convex set’ measurement
o = intersection of n convex sets
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Problem statement: Distributed optimization

A distributed LP

Assume
© ({direction, n halfspace constraints} is feasible LP in d variables

@ G is directed graph with n nodes, strongly connected
© memory of node i contains {direction, ith halfspace constraint}

Design distributed algorithm so each node computes global LP solution

Dimensionality assumption

d<n
o network with many nodes (order n) and finite memory (order d)

o network with bounded node degree, also

Preliminary #3: Target localization in sensor networks

@ intersection of n convex sets

o
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Simple observations

@ each node knows some local constraints
@ each node can solve “local LP" & compute “local active constraints”
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o for d ~ n, see "Parallel Computation” by Bertsekas & Tsitsiklis
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Solution: first attempt

processor state: a set of constraints C; — initialized C; := {(a;, b;)}

message generation: transmit the set of constraints C;

state update rule
@ collect all constraints

Cemp :=CiU (U for all in-neighbor j Cj)

@ solve local LP

minimize ¢’ x
subject to a/ x < by for all (ax, bi) € Ctmp
@ store C; := active constraints in solution of local LP
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Solution: Constraints Consensus
— initialized C; := ()

processor state: a set of constraints C;

message generation: transmit the set of constraints C;

state update rule:
@ collect all constraints

Ctmp = Ci U (U for all in-neighbor j Cj) U{ (a7, bi) }

@ solve local LP

minimize ¢’ x

subject to a] x < by for all (ak, bi) € Cemp
Q store
if local LP is bounded

Ci:
! if local LP is unbounded

But constraints need to be re-examined!

@ {h1, hp} is a basis for {hy, ha, h3, ha}, but
@ {h3, hs} is a basis for {ho, h3, hs}
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Formal properties of constraints consensus

(Assume one node has bounded solution at initial time)

Monotonicity: the at each node is monotonically non-decreasing

Finite time: the at each node converges in finite time

Consensus: the at all node are equal in finite time

at each node is

LP solution: after convergence, the
an active constraint set for global LP

Uniqueness: if global LP has unique set of active constraints, then the LP
constraint set at each node converges that unique set

Time Complexity: unknown, conjectured to be O(n)
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{active constraints
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Linear time complexity via Monte Carlo analysis

Nominal problem: d = 4, graph = line graph, random LP = hyperplanes
with normal vectors uniformly distributed on the unit sphere,
and at unit distance from the origin.

Monte Carlo probability estimation: With 99% confidence, there is 99%
probability that a nominal problem with n € {40, 60, 80} is
solved via constraints consensus in time bounded by 4(n — 1).
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for increasing d)
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Abstract Optimization
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is (H,w)
o H is a finite set of constraints,
o w(G) is the value function
(minimum value attainable by cost function subject to G C H)

Monotonicity: For any F, G, with F C G C H
W(F) < (6)
Locality: For any F C G C H with w(F) = w(G) and any h € H, then
w(G) < w(GU{h})

= w(F) <w(FU{h})
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End of story ... almost

@ we only considered distributed LPs!

@ what about more general optimization problems?
© how to generalize constraints consensus?

Q@ what about formation control?
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Ex #1: Distributed training of Support Vector Machines

Max Margin Problem
= a separable set {(x;,£;)} of n examples x; € R¥
and labels ¢; € {~1,+1}. Find (t;,t_) € R? and w € R¥
minimize ;HWHZ —(t—t)
subject to w - x;

>
WX <

© a separable training set {(x;,(;)}
@ G is directed graph with n nodes, strongly connected
© memory of node i contains the example-label pair (x;, ¢;)
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Ex #2: Distributed geometric optim & formation control

o Smallest enclosing ball, ellipsoid
and axis-aligned bounding box

o Smallest enclosing stripe
(generic points)

@ Smallest enclosing annulus

© computing optimal shapes in distributed fashion
@ from distributed shape consensus, easy to design formation control
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End of story

@ distributed abstract optimization
@ consensus constraints: correctness and time complexity
@ applications to target tracking & formation control
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