Distributed	Abstract	Optimization
via Con	straints (Consensus

via Constraints Consensus			
Francesco Bullo			
Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu Workshop on Network Induced Constraints in Control Stuttgart, Germany, September 29, 2009	simplest distributed algorithm = linear averaging each node contains a value x_i and repeatedly executes: $x_i^+ := average(x_i, \{x_j, \text{ for all in-neighbor nodes }j\})$ each node's value converges to common value (for strongly connected and aperiodic digraphs)		
Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE(S)(T)COC 2009 1/18 Preliminary #1: Distributed algorithms on networks	Bullo & Notaristefano (UCSB) Distributed Abstract Optimization NE(5/T)COC 2009 2 / 18 Preliminary #2: Optimization problems		
Distributed algorithm for a network of processors consists of W , the processor state set A , the communication alphabet S stf: $W \times \mathbb{A}^n \to W$, the state-transition map M msg : $W \to \mathbb{A}$, the message-generation map (often identity map)	Standard LP in d variables with n constraints minimize $c^T x$ subject to $a_i^T x \le b_i$ $i \in \{1,, n\}$ $\phi(x)$ h_i		

Bullo & Notarstefano (UCSB)

E[SIT]COC 2009

Preliminary #1: Consensus algorithms

Preliminary #3: Target localization in sensor networks	Preliminary #3: Target localization in sensor networks
 each sensor/camera <i>i</i> provides "convex set" measurement set-membership localization = intersection of <i>n</i> convex sets 	 intersection of n convex sets C axis-aligned bounding box axis-aligned bounding box := 4 LPs wrt cardinal directions unit of the set of t
Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE (S)T) COC 2009 5 / 18	Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE{S T}COC 2009 6 / 18
A distributed LP Assume • {direction, n halfspace constraints} is feasible LP in d variables • G is directed graph with n nodes, strongly connected • memory of node i contains {direction, ith halfspace constraint} Design distributed algorithm so each node computes global LP solution	d = 2, n = 6
Dimensionality assumption d ≪ n • network with many nodes (order n) and finite memory (order d) • network with bounded node degree, also • for d ~ n, see "Parallel Computation" by Bertsekas & Tsitsiklis	 each node knows some local constraints each node can solve "local LP" & compute "local active constraints" achieve consensus upon "global active constraints"

Solution: first attempt	But constraints need to be re-examined!		
processor state: a set of constraints C_i — initialized $C_i := \{(a_i, b_i)\}$ message generation: transmit the set of constraints C_i state update rule: • collect all constraints $C_{tmp} := C_i \cup (\cup \text{ for all in-neighbor } j C_j)$ • solve local LP minimize $c^T x$	$h_1 = h_3$ $\phi(x)$ h_4 h_4 h_2		
subject to $a_k^T \times \leq b_k$ for all $(a_k, b_k) \in C_{tmp}$ \bullet store $C_i :=$ active constraints in solution of local LP	 Note: h₂ is a global active constraints, but not local: {h₁, h₂} is a basis for {h₁, h₂, h₃, h₄}, but {h₃, h₄} is a basis for {h₂, h₃, h₄} 		
Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE(S)T)COC 2009 9 / 18 Solution: Constraints Consensus	Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE(S)T) COC 2009 10 / 1 Formal properties of constraints consensus		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 (Assume one node has bounded solution at initial time) Monotonicity: the LP value at each node is monotonically non-decreasing Finite time: the LP value at each node converges in finite time Consensus: the LP values at all node are equal in finite time LP solution: after convergence, the LP constraints set at each node is an active constraint set for global LP Uniqueness: if global LP has unique set of active constraints, then the LP constraint set at each node converges that unique set Time Complexity: unknown, conjectured to be O(n) 		

Encar time complexity via wonte carlo analysis	End of story almost		
Nominal problem: $d = 4$, graph = line graph, random LP = hyperplanes with normal vectors uniformly distributed on the unit sphere, and at unit distance from the origin. Monte Carlo probability estimation: With 99% confidence, there is 99% probability that a nominal problem with $n \in \{40, 60, 80\}$ is solved via constraints consensus in time bounded by $4(n - 1)$.	 we only considered distributed LPs! what about more general optimization problems? how to generalize constraints consensus? what about formation control? 		
Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE {S T} COC 2009 13 / 18	Bullo & Notarstefano (UCSB) Distributed Abstract Optimization NE(S T)COC 2009 14 / 18		
Abstract Optimization	Ex #1. Distributed training of Support vector Machines		
 Abstract optimization problem is (H, ω) H is a finite set of constraints, ω(G) is the value function (minimum value attainable by cost function subject to G ⊂ H) Axioms 	Max Margin Problem Separable training set = a separable set $\{(x_i, \ell_i)\}$ of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$ minimize $\frac{1}{2} w ^2 - (t_+ - t)$		
Abstract optimization problem is (H, ω) • H is a finite set of constraints, • $\omega(G)$ is the value function (minimum value attainable by cost function subject to $G \subset H$) Axioms Monotonicity: For any F , G , with $F \subset G \subset H$	Max Margin Problem Separable training set = a separable set $\{(x_i, \ell_i)\}$ of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$ minimize $\frac{1}{2} w ^2 - (t_+ - t)$ subject to $w \cdot x_i \ge t_+$ if $\ell_i = +1$ $w \cdot w \le t$ if $\ell_i = -1$		
Abstract optimization problem is (H, ω) • H is a finite set of constraints, • $\omega(G)$ is the value function (minimum value attainable by cost function subject to $G \subset H$) Axioms Monotonicity: For any F , G , with $F \subset G \subset H$ $\omega(F) \leq \omega(G)$	Max Margin Problem Separable training set = a separable set $\{(x_i, \ell_i)\}$ of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$ minimize $\frac{1}{2} w ^2 - (t_+ - t)$ subject to $w \cdot x_i \ge t_+$ if $\ell_i = +1$ $w \cdot x_i \le t$ if $\ell_i = -1$		
Abstract optimization problem is (H, ω) • H is a finite set of constraints, • $\omega(G)$ is the value function (minimum value attainable by cost function subject to $G \subset H$) Axioms Monotonicity: For any F , G , with $F \subset G \subset H$ $\omega(F) \leq \omega(G)$ Locality: For any $F \subset G \subset H$ with $\omega(F) = \omega(G)$ and any $h \in H$, then	Max Margin Problem Separable training set = a separable set { (x_i, ℓ_i) } of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$ minimize $\frac{1}{2} w ^2 - (t_+ - t)$ subject to $w \cdot x_i \ge t_+$ if $\ell_i = +1$ $w \cdot x_i \le t$ if $\ell_i = -1$ Balcázar et al, TCS '08: Max Margin satisfies axioms		
Abstract optimization problem is (H, ω) • H is a finite set of constraints, • $\omega(G)$ is the value function (minimum value attainable by cost function subject to $G \subset H$) Axioms Monotonicity: For any F , G , with $F \subset G \subset H$ $\omega(F) \leq \omega(G)$ Locality: For any $F \subset G \subset H$ with $\omega(F) = \omega(G)$ and any $h \in H$, then $\omega(G) \leq \omega(G \cup \{h\}) \implies \omega(F) \leq \omega(F \cup \{h\})$	Max Margin Problem Separable training set = a separable set $\{(x_i, \ell_i)\}$ of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$ minimize $\frac{1}{2} w ^2 - (t_+ - t)$ subject to $w \cdot x_i \ge t_+$ if $\ell_i = +1$ $w \cdot x_i \le t$ if $\ell_i = -1$ Balcázar et al, TCS '08: Max Margin satisfies axioms Distributed Max Margin Problem		
Abstract optimization problem is (H, ω) • H is a finite set of constraints, • $\omega(G)$ is the value function (minimum value attainable by cost function subject to $G \subset H$) Axioms Monotonicity: For any F , G , with $F \subset G \subset H$ $\omega(F) \leq \omega(G)$ Locality: For any $F \subset G \subset H$ with $\omega(F) = \omega(G)$ and any $h \in H$, then $\omega(G) < \omega(G \cup \{h\}) \implies \omega(F) < \omega(F \cup \{h\})$	Max Margin Problem Separable training set = a separable set { (x_i, ℓ_i) } of n examples $x_i \in \mathbb{R}^k$ and labels $\ell_i \in \{-1, +1\}$. Find $(t_+, t) \in \mathbb{R}^2$ and $w \in \mathbb{R}^k$ minimize $\frac{1}{2} \ w\ ^2 - (t_+ - t)$ subject to $w \cdot x_i \ge t_+$ if $\ell_i = +1$ $w \cdot x_i \le t$ if $\ell_i = -1$ Balcázar et al, TCS '08: Max Margin satisfies axioms Distributed Max Margin Problem • a separable training set { (x_i, ℓ_i) } • a is directed granble training set { (x_i, ℓ_i) }		

Ex $#2$: Distributed geometric optim & for	mation control	End of story			
• Smallest enclosing ball, ellipsoid and axis-aligned bounding box) \bigcirc	 distributed abstract consensus constrain applications to target 	optimization ts: correctness and time co et tracking & formation cor	mplexity ntrol	
Smallest enclosing stripe (generic points)	· · ·	References: • B. Gärtner. A subexpor J Computing, 24(5):10: • P. K. Agarwal and M. S. Computing, Surgers, 30:	nential algorithm for abstract op 18–1035, 1995 Sharir. Efficient algorithms for ge (4)-412–458, 1998	timization problems. S cometric optimization.	SIAM ACM
 Smallest enclosing annulus 		 G. Notarstefano and F. application to minimum New Orleans, LA, Dece 	Bullo. Network abstract linear p n-time formation control. In Proc	programming with c CDC, pages 927–932	2,
Application to motion coordination in robotic netw	orks	 G. Notarstefano and F. 	Bullo. Distributed abstract opti	mization via constrain	its
computing optimal shapes in distributed fashion		consensus: theory and a	applications, October 2009. Avai	ilable at	
If from distributed shape consensus, easy to design for a standard sh	ormation control	nttp://arxiv.org/ab	5/0310.5810		
Bullo & Notarstefano (UCSB) Distributed Abstract Optimization	NE{S T}COC 2009 17 / 18	Bullo & Notarstefano (UCSB)	Distributed Abstract Optimization	NE{S T}COC 2009	18 / 18

NE{S|T}COC 2009 18 / 18