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Distributed Control of Robotic Networks

1 intro to distributed algorithms (graph
theory, synchronous networks, and
averaging algos)

2 geometric models and geometric
optimization problems

3 model for robotic, relative sensing
networks, and complexity

4 algorithms for rendezvous,
deployment, boundary estimation

Manuscript by F. Bullo, J. Cortés, and

S. Mart́ınez. Princeton Univ Press, 2009,

ISBN 978-0-691-14195-4. Freely downloadable

at http://coordinationbook.info with

tutorial slides and (ongoing) software libraries.
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Cooperative multi-agent systems

What kind of systems?
Groups of agents with control, sensing, communication and computing

What kind of abilities?

each agent senses its immediate environment,

communicates with others,

processes information gathered, and

takes local action in response

AeroVironment Inc, “Raven”
unmanned aerial vehicle

iRobot Inc, “PackBot”
unmanned ground vehicle
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Cooperative systems: technologies and applications

What kind of tasks?

What scenarios?
Security systems, disaster recovery, environmental monitoring, study of
natural phenomena and biological species, science imaging

Security systems Building monitoring and evac Environmental monitoring
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Today’s outline

1 vehicle routing problems
via queueing theory and combinatorics

2 territory partitioning
via emerging behaviors and geometric optimization

3 peer-to-peer coordination
via invariance principle on metric space
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Queueing theory for robotic networks

Dynamic Vehicle Routing

customers appear randomly space/time

robotic network knows locations and provides service

Goal: distributed adaptive algos, delay vs throughput

M. Pavone, E. Frazzoli, and F. Bullo. Decentralized algorithms for stochastic and
dynamic vehicle routing with general target distribution. In IEEE Conf. on Decision
and Control, pages 4869–4874, New Orleans, LA, December 2007
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Algo #1: Receding-horizon shortest-path policy

Receding-horizon Shortest-Path (RH-SP)

For η ∈ (0, 1], single agent performs:

1: while no customers, move to center
2: while customers waiting

1 compute shortest path through current
customers

2 service η-fraction of path

shortest path is NP-hard, but effective
heuristics available

delay is optimal in light traffic

delay is constant-factor optimal in high traffic
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Algo #1: Sketch of RH-SP analysis
via combinatorics in Euclidean space

1 queue is stable if service time < interarrival time

2 service time =
length shortest path(n)

n
(n = # customers)

3 queue is stable if (length of shortest path) = sublinear f(n)

length shortest path(n) ∼
√

n

J. Beardwood, J. Halton, and J. Hammersly. The shortest
path through many points. In Proceedings of the Cambridge
Philosophy Society, volume 55, pages 299–327, 1959
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Algo #2: Load balancing via territory partitioning

RH-SP + Partitioning

For η ∈ (0, 1], agent i performs:

1: compute own cell vi in optimal partition
2: apply RH-SP policy on vi

Asymptotically constant-factor optimal in light and high traffic
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Outline

1 vehicle routing problems
via queueing theory and combinatorics

2 territory partitioning
via emerging behaviors and geometric optimization

3 peer-to-peer coordination
via invariance principle on metric space
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Territory partitioning akin to animal territory dynamics

Tilapia mossambica, “Hexagonal

Territories,” Barlow et al, ’74

Red harvester ants, “Optimization, Conflict, and

Nonoverlapping Foraging Ranges,” Adler et al, ’03

Sage sparrows, “Territory dynamics in a sage sparrows

population,” Petersen et al ’87
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Territory partitioning: behaviors and optimality

ANALYSIS of cooperative distributed behaviors

1 how do animals share territory?
how do they decide foraging
ranges?
how do they decide nest locations?

2 what if each robot goes to “center” of own dominance region?

3 what if each robot moves away from closest vehicle?

DESIGN of performance metrics

4 how to cover a region with n minimum-radius overlapping disks?

5 how to design a minimum-distortion (fixed-rate) vector quantizer?

6 where to place mailboxes in a city / cache servers on the internet?
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Multi-center functions

Expected wait time

H(p, v) =

∫
v1

‖q − p1‖dq + · · ·+
∫
vn

‖q − pn‖dq

n robots at p = {p1, . . . , pn}
environment is partitioned into v = {v1, . . . , vn}

H(p, v) =
n∑

i=1

∫
vi

f (‖q − pi‖)φ(q)dq

φ : R2 → R≥0 density

f : R≥0 → R penalty function
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Optimal partitioning by Georgy Fedoseevich Voronoy
(PhD from Saint Petersburg State University in 1896)

The Voronoi partition {V1, . . . ,Vn} generated by points (p1, . . . , pn)

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}

= Q
⋂
j

(half plane between i and j , containing i)
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Optimal centering (for region v with density φ)

function of p minimizer = center

p 7→
∫

v
‖q − p‖2φ(q)dq centroid (or center of mass)

p 7→
∫

v
‖q − p‖φ(q)dq Fermat–Weber point (or median)

p 7→ area(v ∩ disk(p, r)) r-area center

p 7→ radius of largest disk centered
at p enclosed inside v

incenter

p 7→ radius of smallest disk cen-
tered at p enclosing v

circumcenter

From online
Encyclopedia of
Triangle Centers
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From optimality conditions to algorithms

H(p, v) =
n∑

i=1

∫
vi

f (‖q − pi‖)φ(q)dq

Theorem (Alternating Algorithm, Lloyd ’57)

1 at fixed positions, optimal partition is Voronoi

2 at fixed partition, optimal positions are “generalized centers”

3 alternate v-p optimization
=⇒ local optimum = center Voronoi partition
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Voronoi+centering algorithm

Voronoi+centering law

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region
3: move towards center of own

dominance region

Area-center Incenter Circumcenter

J. Cortés, S. Mart́ınez, and F. Bullo. Spatially-distributed coverage optimization and
control with limited-range interactions. ESAIM: Control, Optimisation & Calculus
of Variations, 11:691–719, 2005
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Experimental Territory Partitioning

Takahide Goto, Takeshi Hatanaka, Masayuki Fujita

Tokyo Institute of Technology
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Experimental Territory Partitioning

Mac Schwager, Brian Julian, Daniela Rus

Distributed Robots Laboratory, MIT
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Outline

1 vehicle routing problems
via queueing theory and combinatorics

2 territory partitioning
via emerging behaviors and geometric optimization

3 peer-to-peer coordination
via invariance principle on metric space
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Partitioning with minimal communication requirements

Voronoi+centering law requires:
1 synchronous communication
2 communication along edges of dual graph

G1

Minimalist coordination

is synchrony necessary?

is it sufficient to communicate peer-to-peer (gossip)?

what are minimal requirements?
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Peer-to-peer partitioning policy

1 Random communication between two regions

2 Compute two centers

3 Compute bisector of centers

4 Partition two regions by bisector

P. Frasca, R. Carli, and F. Bullo. Multiagent coverage algorithms with gossip com-
munication: control systems on the space of partitions. In American Control Con-
ference, pages 2228–2235, St. Louis, MO, June 2009
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Indoor example implementation

Player/Stage platform

realistic robot models in discretized environments

integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and cover-
age control with gossip communication. In ASME Dynamic Systems and Control
Conference, Hollywood, CA, October 2009. to appear
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Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

H(v) =
n∑

i=1

∫
vi

f (‖ center(vi )− q‖)φ(q)dq

1 state space is not finite-dimensional

non-convex disconnected polygons

arbitrary number of vertices

2 peer-to-peer map is not deterministic, ill-defined and discontinuous

two regions could have same centers
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The space of partitions (proof sketch 2/3)

Definition (space of n-partitions)

v is collections of n subsets of Q, {v1, . . . , vn}, such that

1 v1 ∪ · · · ∪ vn = Q,

2 interior(vi ) ∩ interior(vj) = ∅ if i 6= j , and

3 each vi is closed, has non-empty interior and zero-measure boundary

Given sets A, B, symmetric difference and distance are:

d∆(A,B) = area
(
(points in A that are not in B)∪ (vice versa)

)

Theorem (topological properties of the space of partitions)

Partition space with (u, v) 7→
∑n

i=1 d∆(ui , vi ) is metric and precompact
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Convergence with persistent switches (proof sketch 3/3)

X is metric space

finite collection of maps Ti : X → X for i ∈ I

consider sequences {x`}`≥0 ⊂ X with

x`+1 = Ti(`)(x`)

Assume:

1 W ⊂ X compact and positively invariant for each Ti

2 U : W → R decreasing along each Ti

3 U and Ti are continuous on W

4 there exists probability p ∈ ]0, 1[ such that, for all indices i ∈ I and
times `, we have Prob

[
x`+1 = Ti (x`) | past

]
≥ p

If x0 ∈ W , then almost surely

x` → (intersection of sets of fixed points of all Ti ) ∩ U−1(c)
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Emerging discipline: robotic networks

Robotic Network Theory

1 network modeling
network, ctrl+comm algorithm, task, complexity

2 coordination algorithm
partitioning, vehicle routing, task allocation

Open problems

1 algorithmic design for minimalist robotic networks

scalable, adaptive, asynchronous, agent arrival/departure

rich task set, e.g., cooperative estimation

2 mixed robotic-human networks

3 high-fidelity sensing/actuation scenarios
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