Geometry, Optimization and Control in Robot Coordination

Francesco Bullo

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

3rd IEEE Multi-conference on Systems and Control Saint Petersburg, Russia, July 10, 2009

Acknowledgements

- Jorge Cortés (UCSD): robotic networks, multi-center optimization, nonconvex deployment and rendezvous
- Sonia Martínez (UCSD): robotic networks, multi-center optimization, boundary estimation
- Emilio Frazzoli (MIT): robotic networks, dynamic vehicle routing
- Marco Pavone (MIT) and Stephen Smith (UCSB): dynamic vehicle routing
- Ruggero Carli (UCSB), Joey W. Durham (UCSB), and Paolo Frasca (Universitá di Roma): peer-to-peer coordination
- Karl J. Obermeyer (UCSB): nonconvex deployment

Francesco Bullo (UCSB)	Robotic Coordination	MSC 2009 1 /	8 Francesco Bullo (UCSB) Rob	botic Coordination	MSC 2009	2 / 28
Distributed Control of	Robotic Network	s	Cooperativ	e multi-agent s	systems		
Distributed Control of Robotic Networks A Metric Indiana Agrand Metric Indiana Agrand Me	 intro to distributery, synchroaveraging algos geometric modoptimization pr model for robonetworks, and algorithms for redeployment, bc Manuscript by F. Bull 	uted algorithms (graph nous networks, and) els and geometric oblems tic, relative sensing complexity rendezvous, undary estimation o, J. Cortés, and	What kind of Groups of ager What kind of each ager communi processes takes loc	systems? nts with control, se abilities? it senses its immedicates with others, s information gathe al action in respon	ensing, communicat diate environment, ered, and nse	ion and computing	5
Francesco Bullo Jorge Cortés Sonia Martínez	S. Martínez. Princeto ISBN 978-0-691-1419 at http://coordina tutorial slides and (on	n Univ Press, 2009, 5-4. Freely downloadable tionbook.info with going) software libraries.	AeroVironm unmanned a	ent Inc, "Raven" erial vehicle	iRobot Inc	c, "PackBot" ground vehicle	

MSC 2009 3 / 28

Cooperative systems: technologies and applications	Today's outline
What kind of tasks?Image: State in the state in	 vehicle routing problems Via queueing theory and combinatorics territory partitioning Via emerging behaviors and geometric optimization peer-to-peer coordination Via invariance principle on metric space
Francesco Bullo (UCSB) Robotic Coordination MSC 2009 5 / 28	Francesco Bullio (UCSB) Robotic Coordination MSC 2009 6 / 28
Queueing theory for robotic networks	Algo #1: Receding-horizon shortest-path policy
Dynamic Vehicle Routing • customers appear randomly space/time • robotic network knows locations and provides service • Goal: distributed adaptive algos, delay vs throughput • Goal: distributed adaptive algos, delay vs	 Receding-horizon Shortest-Path (RH-SP) For η ∈ (0, 1], single agent performs: single agent performs: while on customers, move to center while customers waiting Compute shortest path through current customers service η-fraction of path eshortest path is NP-hard, but effective heuristics available delay is constant-factor optimal in high traffic

Francesco Bullo (UCSB)

Territory partitioning: benaviors and optimal	Territ	itory partitio	ning: be	haviors	and o	ptimality	1
---	--------	----------------	----------	---------	-------	-----------	---

Multi-center functions

Expected wait time

$$H(p, v) = \int_{V_1} ||q - p_1|| dq + \cdots + \int_{V_n} ||q - p_n|| dq$$

n robots at p = {p₁,..., p_n}
environment is partitioned into v = {v₁,..., v_n}

$$H(p, v) = \sum_{i=1}^{n} \int_{V_i} f(||q - p_i||) \phi(q) dq$$

• $\phi : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ density

• $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ penalty function

Francesco Bullo (UCSB)	Robotic Coordination	MSC 2009	13 / 28	Francesco Bullo (UCSB)	Robotic Coo	rdination	MSC 2009	14 / 28
Optimal partitionin	ng by Georgy Fedosee	evich Voronoy		Optimal centering	(for region	v with densit	zy φ)	
(PhD from Sa	aint Petersburg State	University in 1	896)	function of p		minimizer = cen	ter	
The Voronoi partition	$\{V_1, \ldots, V_n\}$ generated by	points (p_1, \ldots, p_n)		$\frac{p \mapsto \int_{V} \ q - p\ ^2 \phi(q) dq}{p \mapsto \int_{V} \ q - p\ ^2 \phi(q) dq}$	lq	centroid (or cer	iter of mass)	
$V_i = \{q \in Q \ = Q igcap_i$ hi	$\ \ q - p_i \ \le \ q - p_j \ , \forall j$ alf plane between <i>i</i> and <i>j</i> ,	$i \neq i$ containing i)		$p\mapsto \int_V \ q-p\ \phi(q)dq$	7	Fermat–Weber	point (or me	dian)
i r j				$p\mapsto \operatorname{area}(v\cap\operatorname{disk}(p,r$))	r-area center		
				$p \mapsto radius of largest of at p enclosed insi$	disk centered de <i>v</i>	incenter		
$\left\langle \cdot \right\rangle$	$\langle \cdot \cdot \rangle$		\rangle	$p \mapsto \text{radius of smaller}$ tered at p enclosi	st disk cen- ng v	circumcenter		
<u> </u>				F E T	rom online incyclopedia of riangle Centers		A	Ì
Francesco Bullo (UCSB)	Robotic Coordination	MSC 2009	15 / 28	Francesco Bullo (UCSB)	Robotic Coo	rdination	MSC 2009	16 / 28

ANALYSIS of cooperative distributed behaviors

how do animals share territory? how do they decide foraging ranges?

how do they decide nest locations?

What if each robot goes to "center" of own dominance region?

What if each robot moves away from closest vehicle?

DESIGN of performance metrics

I how to cover a region with n minimum-radius overlapping disks?

I how to design a minimum-distortion (fixed-rate) vector quantizer?

9 where to place mailboxes in a city / cache servers on the internet?

$$H(p, v) = \sum_{i=1}^n \int_{v_i} f(\|q - p_i\|)\phi(q)dq$$

Theorem (Alternating Algorithm, Lloyd '57)

- at fixed positions, optimal partition is Voronoi
- at fixed partition, optimal positions are "generalized centers"
- alternate v-p optimization

⇒ local optimum = center Voronoi partition

Experiment

Takahide Goto, Takeshi Hatanaka, Masayuki Fujita Tokyo Institute of Technology

Voronoi+centering algorithm

Voronoi+centering law

- At each comm round:
- 1: acquire neighbors' positions
- 2: compute own dominance region
- 3: move towards center of own dominance region

Area-center

Circumcenter

J. Cortés, S. Martínez, and F. Bullo. Spatially-distributed coverage optimization and control with limited-range interactions. ESAIM: Control. Optimisation & Calculus of Variations, 11:691-719, 2005

UCSB)	Robotic Coordination	MSC 2009	17 / 28	Francesco Bullo (UCSB)	Robotic Coordination	MSC 2009	18 / 28
tal Terri	tory Partitioning			Experimental Terri	itory Partitioning		

Optimal Distributed Coverage Control for Multiple Hovering Robots with Downward Facing Cameras

> Mac Schwager Brian Iulian Daniela Rus

Distributed Robots Laboratory, CSAIL

Mac Schwager, Brian Julian, Daniela Rus Distributed Robots Laboratory, MIT

Outline	Partitioning with minimal communication requirements
• vehicle routing problems via queueing theory and combinatorics • territory partitioning via emerging behaviors and geometric optimization	Voronoi+centering law requires: • synchronous communication • communication along edges of dual graph • • • • • • • • • • • • • • • • • • •
• peer-to-peer coordination	
via invariance principie on metric space	Minimalist coordination • is synchrony necessary? • is it sufficient to communicate peer-to-peer (gossip)? • what are minimal requirements?
Francesco Bullo (UCSB) Robotic Coordination MSC 2009 21 / 28	Francesco Bullo (UCSB) Robotic Coordination MSC 2009 22
Peer-to-peer partitioning policy	Indoor example implementation
 Random communication between two regions Compute two centers Compute bisector of centers Partition two regions by bisector 	
	Player/Stage platform

28

Peer-to-peer convergence analysis (proof sketch $1/3$)	The space of partitions (proof sketch 2/3)
Lyapunov function for peer-to-peer territory partitioning $H(v) = \sum_{i=1}^{n} \int_{v_i} f(\operatorname{center}(v_i) - q)\phi(q)dq$ Istate space is not finite-dimensional non-convex disconnected polygons arbitrary number of vertices Image: peer-to-peer map is not deterministic, ill-defined and discontinuous two regions could have same centers	Definition (space of n-partitions) v is collections of n subsets of Q, {v ₁ ,, v _n }, such that • v ₁ ∪ · · ∪ v _n = Q, • interior(v _i) ∩ interior(v _j) = Ø if $i \neq j$, and • each v _i is closed, has non-empty interior and zero-measure boundary Given sets A, B, symmetric difference and distance are: $d_{\Delta}(A, B) = area ((points in A that are not in B) ∪ (vice versa)) Theorem (topological properties of the space of partitions) Partition space with (u, v) ↦ \sum_{i=1}^{n} d_{\Delta}(u_i, v_i) is metric and precompact $
Francesco Bullo (UCSB) Robotic Coordination MSC 2009 25 / 28	Francesco Bullo (UCSB) Robotic Coordination MSC 2009 26 / 28
	E I PIP LIT I
Convergence with persistent switches (proof sketch 3/3)	Emerging discipline: robotic networks
Convergence with persistent switches (proof sketch 3/3) • X is metric space • finite collection of maps $T_i : X \to X$ for $i \in I$ • consider sequences $\{x_\ell\}_{\ell \ge 0} \subset X$ with	Emerging discipline: robotic networks Robotic Network Theory network modeling network ctrl-comm algorithm task complexity
Convergence with persistent switches (proof sketch 3/3) • X is metric space • finite collection of maps $T_i : X \to X$ for $i \in I$ • consider sequences $\{x_\ell\}_{\ell \ge 0} \subset X$ with $x_{\ell+1} = T_{i(\ell)}(x_\ell)$ Assume:	Emerging discipline: robotic networks Robotic Network Theory network modeling network, ctrl+comm algorithm, task, complexity coordination algorithm partitioning, vehicle routing, task allocation