Coordination of Robotic Networks: On Task Allocation and Vehicle Routing

Francesco Bullo

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.mee.ucsb.edu

Electrical and Computer Engineering Department Carnegie Mellon University April 30, 2009

Allocation and Routing

Acknowledgements

Stephen L. Smith

SLS, FB: "Monotonic target assignment for robotic networks," *IEEE Trans Automatic Ctrl*, 54 (10), 2009SLS, SDB, FB: "Finite-time pursuit of translating targets in a dynamic and stochastic environment," *Proc CDC*, Shanghai, 2009, submitted

Shaunak D. Bopardikar

SDB, SLS, FB, JH: "Dynamic vehicle routing for translating demands," IEEE Trans Automatic Ctrl, 2009, submitted

CMU seminar on 30apr09 1 / 39 Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09

Applications of autonomous systems

Unmanned vehicles

Bullo, Smith and Bopardikar (UCSB)

- · Equipped with suite of sensors
- Inaccessible environments

Civilian applications:

- Environmental monitoring:
 - Measure weather systems
 - Observe animal species
 - Detect and assess wildfires
- Search and rescue missions
- Space exploration
- Monitoring infrastructure

Slocum glider

ASA - next generation Mars rover

Applications of autonomous systems

Military applications:

- Surveillance
- Reconnaissance missions
- · Perimeter defense and security
- Expenditures of \$60 billion over next 10 years

obalhawk

Bullo, Smith and Bopardikar (UCSB)

Allocation and Routin

U seminar on 30apr09 3 / 39

Bullo, Smith and Bopardikar (UCSB)

ation and Routing

MU seminar on 30apr09 4 / 39

The future of autonomy	Task allocation
Current missions (typical scenario): • single vehicle or few decoupled vehicles • pre-specified task • tightly coupled with human control Future missions • Fleets (swarms) of networked vehicles	Given: • a group of vehicles, and • a set of tasks Task example: take a picture at a location Task allocation
Omplex sets of tasks that evolve during execution	Decide which vehicles should perform which tasks.
 Increased autonomy, humans as supervisors 	
Requires real-time task allocation and vehicle routing	Centralized: operator assigns vehicles to tasks (requires vehicle positions, workloads, etc.) Distributed: vehicles divide tasks among themselves
Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09 5 / 39	Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09 6 / 39
Task allocation	Vehicle routing
Given: • a group of vehicles, and • a set of tasks Task example: take a picture at a location	Given: An allocation of tasks to vehicles

Vehicle routing

An allo

Vehicle ro Determine Task

cation of tasks to vehicles	Given: An allocation of tasks to vehicles
uting	Vehicle routing
a path that allows each vehicle to complete its tasks.	Determine a path that allows each vehicle to complete its tasks.
A is of higher priority than task B	Task A is of higher priority than task B

Vehicle routing

A task requires multiple vehicles: vehicles need to rendezvous

Allocation and Routing

Task locations are not stationary

An allocation of tasks to vehicles

Task A is of higher priority than task B

Task locations are not stationary

Bullo, Smith and Bopardikar (UCSB)

Vehicle routing

Bullo, Smith and Bopardikar (UCSB) Vehicle routing

An allocation of tasks to vehicles

Task locations are not stationary

CMU seminar on 30apr09

Vehicle routing

Determine a path that allows each vehicle to complete its tasks.

· A task requires multiple vehicles: vehicles need to rendezvous

Allocation and Routing

- Task A is of higher priority than task B
- · A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary

Vehicle routing

· A task requires multiple vehicles: vehicles need to rendezvous

Determine a path that allows each vehicle to complete its tasks.

CMU seminar on 30apr09

7 / 39

Dynamic and distributed aspects	Technical approach:
	structure, fundamental limits, efficient algorithms
Distributed:	
Vehicles have only local information	
Dynamic:	For a distributed/dynamic problem:
 Existing tasks evolve over time 	
New tasks arise in real-time O	e.g., adimensional analysis, intrinsic regimes.
 Number of vehicles changes 	phase transitions in parameter space
Complete solution cannot be computed off-line	Obtermine fundamental limits on performance
complete solution cannot be completed on-line.	Design provably efficient algorithms
As new information becomes available, vehicles must	
 re-allocate tasks 	
 re-plan paths 	
Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09 8 / 39	Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09 9 / 3
The remainder of the talk	
Illustrate	
problem structure, fundamental limits, efficient algorithms	
via two constinct	Distributed task allocation
via two scenarios.	
Distributed Task Allocation	
motivated by a surveillance application	
Oynamic Vehicle Routing	
motivated by a perimeter defense application	
Rullo Smith and Ronardikar (IICSR) Allocation and Routine CMU seminar on 30apr09 10 / 39	Rullo Smith and Reservitive (UCSD) Allocation and Routine CMII reminer on 30xx400 11 / 3

	prositent
 n omnidirectional vehicles limited comm. range and bandwidth m ≤ n task locations once task is reached by a vehicle, vehicle is forever engaged 	 n omnidirectional vehicles limited comm. range and bandwidth m ≤ n task locations once task is reached by a vehicle, vehicle is forever engaged
Two problem scenarios: Supervisor broadcasts all task locations to each vehicle Vehicles search for task locations with limited range sensor	Two problem scenarios: Supervisor broadcasts all task locations to each vehicle Vehicles search for task locations with limited range sensor
Problem: distributed algorithm to allow group of vehicles to divide tasks among themselves minimize time until last task location is reached Mini Smith and Reserver (USD) Attractave Reserver 22/39	Problem: distributed algorithm to allow group of vehicles to divide tasks among themselves minimize time until last task location is reached this juming and logorithm (2011) Allocation and Reading CMU unalians on 348m/0 12 / 33
A distributed task allocation problem	Centralized solution
 n omnidirectional vehicles limited comm. range and bandwidth m ≤ n task locations once task is reached by a vehicle, vehicle is forever engaged A 	In the centralized setting, problem is matching in a bipartite graph Specifically, bottleneck matching: find a matching M which minimizes
 n omnidirectional vehicles limited comm. range and bandwidth m ≤ n task locations once task is reached by a vehicle, vehicle is forever engaged Two problem scenarios: Supervisor broadcasts all task locations to each vehicle Vehicles search for task locations with limited range sensor 	In the centralized setting, problem is matching in a bipartite graph Specifically, bottleneck matching: find a matching M which minimizes max d_{ij} Solvable in polynomial time
 n omnidirectional vehicles limited comm. range and bandwidth m ≤ n task locations once task is reached by a vehicle, wehicle is forever engaged Two problem scenarios: Supervisor broadcasts all task locations to each vehicle Vehicles search for task locations with limited range sensor Problem: distributed algorithm to allow group of vehicles to divide tasks among themselves minimize time until last task location is reached 	In the centralized setting, problem is matching in a bipartite graph Specifically, bottleneck matching: find a matching M which minimizes $\max_{M} d_{i,j}$ Solvable in polynomial time

Distributed challenges

Multi-vehicle task allocation work:

- Auction based (Moore and Passino, 2007)
- Game theoretic (Arslan et al., 2007)
- Auction and consensus (Brunet, Choi and How, 2008)

Today, combination of key challenges:

- I range constraint and lack of connectivity
- (a) tight bandwidth constraint

and novel goals:

- determine fundamental limits on scalability
- O develop provably efficient algorithms

Underlying structure: environment size regimes

If # of vehicles increases $(n \to +\infty)$ Then area A(n) must increase to "make room"

Dense: $A(n)/n \rightarrow 0^+$

Sparse: $A(n)/n \to +\infty$

Critical: $A(n)/n \rightarrow \text{constant}$

Bullo, Smi	th and Bopardikar (UCSB)	Allocation and Routing	CMU seminar on 30apr09	14 / 39	Bullo, Smith and Bopardikar (UCSB)	Allocation and Routing	CMU seminar on 30apr09	15 / 39	
Fundamental limits on completion time					Two allocation algorithms				
Worst ● # ● E	-case completion tim \oint of tasks = $\#$ of vel broadcast or search so Fundamental limit ptotic notation: $T \in T$	e hicles $(m = n)$ renario $\begin{array}{c c} Sparse & Critic(A(n) \gg n) & (A(n) \approx n) \\ \hline \Omega(\sqrt{nA(n)}) & \Omega(n) \\ \hline \Omega(n) \text{ implies there is } C \\ \text{lower bounded by } Cn \end{array}$	Cal Dense $(A(n) \ll n)$ $)$ $\Omega(A(n))$ $C > 0$ such that		The Ring algorithm	g			
					A Droadcast cooperio				

Bullo, Smith and Bopardikar (UCSB)

Allocation and Routing

CMU seminar on 30apr09 16 / 39

16 / 39 Bullo, Smith and Bopardikar

Allocation and Routing

CMU seminar on 30apr09 17 / 3

Two allocation algorithms

Bullo, Smith and Bopardikar (UCSB)

Allocation and Routing

CMU seminar on 30apr05

Bullo, Smith and Bopardikar (UCSB) 19 / 39

Allocation and Routing

Algorithms match fundamental limit

CMU seminar on 30

18 / 3

Dynamic vehicle routing Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr05 21 / 39 Bullo, Smith and Bopardikar (UCSB) Allocation and Routin 22 / 3 Key references A perimeter defense / boundary guarding problem Single vehicle with unit speed Task locations (targets): Shortest path (Beardwood, Halton and Hammersly, 1959) · arrive sequentially on a segment Formulation on a graph (Psaraftis, 1988) move vertically with speed v Euclidean plane (Bertsimas and Van Ryzin, 1990-1993) Task completed if target captured before reaching deadline Nonholonomic LIAVs (Savla, Frazzoli, FB: TAC, (53)6 '08) Adaptation and decentralization (Pavone, Frazzoli, FB: TAC, sub '09) Goal Distinct-priority targets (SLS, Pavone, FB, Frazzoli: SICON, sub '09) Design policies that maximize expected fraction of targets captured Heterogeneous vehicles and teaming (SLS, FB: SCL, sub '08) Assume that task arrivals are: Moving targets (SBD, SLS, FB: CDC & TAC, sub '09) • Poisson in time with rate $\lambda \implies \mathbb{E}[N(\Delta t)] = \lambda \Delta t$ uniformly distributed on line segment Bullo, Smith and Bopardikar (UCSB) CMU seminar on 30apr09 Bullo, Smith and Bopardikar (UCSB) Allocation and Routing 23/39 Allocation and Routing

Prior work on dynamic vehicle routing

Dynamic traveling repairperson problem

- Tasks arrive sequentially in time
- Each task location is randomly distributed in service region
- Each task requires on-site service

Underlying problem structure

For fixed W, problem parameters are

• speed ratio v:

 $v = \frac{\text{target speed}}{\text{vehicle speed}}$

- \bullet arrival rate λ
- deadline distance L

Underlying problem structure

For fixed W, problem parameters are

• speed ratio v:

- arrival rate λ
- deadline distance L

		$L = +\infty$	L is finite			$L = +\infty$	L is finite
		Stabilize queue	Maximize capture fraction			Stabilize queue	Maximize capture fraction
	<i>v</i> < 1	translational path policy	translational path policy		v < 1	translational path policy	translational path policy
	$v \ge 1$	Not possible for any $\lambda > 0$	longest path policy		$v \ge 1$	Not possible for any $\lambda > 0$	longest path policy
Bullc	, Smith and Bop	pardikar (UCSB) Allocation and Routi	ng CMU seminar on 30apr09 25 / 3	9 Bullo	, Smith and Bo	pardikar (UCSB) Allocation and Routi	ng CMU seminar on 30apr09 25 /
Ur	derlying	g problem structure		Fu	ındamer	ntal limits for $L=+\infty$ a	and $v < 1$
F	 fixed <i>W</i> speed arrival deadlir 	V, problem parameters are ratio v: $v = \frac{\text{target speed}}{\text{vehicle speed}}$ rate λ he distance L		Fo	r every pc λ ≤	Solicy: $\leq \frac{4}{\sqrt{W}}$, for stability	Buy Buy Buy Buy Buy Buy Buy Buy Buy Buy
		$L = +\infty$ Stabilize queue	<i>L</i> is finite Maximize capture fraction				
	v < 1	translational path policy	translational path policy				
	v > 1	Not possible for any $\lambda > 0$	longest path policy				

Allocation and Routing CMU seminar on 30apr09

25 / 39 Bullo, Smith and Bopardikar (UCSB)

B) Allocation and Routing

ninar on 30apr09 26 / 39

Bullo, Smith and Bopardikar (UCSB)

Allocation and Routing

CMU seminar on 30apr09

28 / 39 Bullo, Smith and Bopardikar (UCSB)

CSB) Allocation and Routing

CMU seminar on 30apr09

Bullo, Smith and Bopardikar (UCSB)

Allocation and Routing CMU

seminar on 30apr09 30 / 39

30 / 39 Bullo, Smith and Bopardikar (UCSB)

Allocation and Routing CMU seminar of

CMU seminar on 30apr09 31 / 39

			~
$\Lambda \Lambda I$	hore	250	1110/
_ V V I	IIEIE	ALE.	VVEI

	$L = +\infty$ Stabilize queue	<i>L</i> is finite Maximize capture fraction
<i>v</i> < 1	translational path policy	modified trans. path policy
$v \ge 1$	Not possible for any $\lambda > 0$	

	$L = +\infty$ Stabilize queue	<i>L</i> is finite Maximize capture fraction
v < 1	translational path policy	modified trans. path policy
$v \ge 1$	Not possible for any $\lambda > 0$	

Bulk	o, Smith and Boj	Sardikar (UCSB) Allocation and Rol	ating CMU seminar on 30apr09	32 / 39	Bullo, Smith and Bopardikar (C	UCSB)	Allocation and Routing	CMU seminar on 30apr09	32 / 39
W	here are	e we?		Maximize fract	ion of t	argets for $v\geq 1$			
					For $v \ge 1$, it is opt	timal to re	emain on deadline		
							•		
		$L = +\infty$ Stabilize queue	<i>L</i> is finite Maximize capture fraction]			, in the second		
	v < 1	translational path policy	modified trans. path policy			्०	•		
	$v \ge 1$	Not possible for any $\lambda > 0$?				Reachable targets		
				_					

0

33 / 39

Summary of boundary guarding

Summary of boundary guarding: policies

- Identified four regimes
- Derived fundamental limits on capture fraction
- Developed provably efficient algorithms

	$L = +\infty$	L is finite
	Stabilize queue	Maximize capture fraction
v < 1	translational path policy	translational path policy
$v \ge 1$	Not possible for any $\lambda > 0$	longest path policy

Allocation and Routing

- Stochastic processes and queueing
- Combinatorial optimization

Allocation and Routing

CMU

Summary

Bullo, Smith and Bopardikar (UCSB)

Future autonomous missions

- · Fleets (swarms) of networked vehicles
- · Complex sets of tasks that evolve during execution
- Increased autonomy, humans as supervisors

Enabling technology: real-time task allocation and vehicle routing

Technical approach: Fundamental theory and algorithms

- underlying problem structure
- 6 fundamental limits on performance
- simple, provably efficient algorithms

CMU seminar on 30apr05

37 / 39

Bullo, Smith and Bopardikar (UCSB)