Deployment and Territory Partitioning for Gossiping Robots

Francesco Bullo

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.mee.ucsb.edu

University of Washington Seattle, Friday April 17, 2009

Minimalist robots and motion coordination

What kind of systems?

Groups of systems with control, sensing, communication and computing

Individual members in the group can

- · sense its immediate environment
- communicate with others
- · process the information gathered
- take a local action in response

Wildebeest herd in the Serengeti Geese flying in formation

Atlantis aquarium, CDC 2004

Collaborators: Paolo Frasca, Ruggero Carli							
Francesco Bullo (UCSB)	Minimalist Coordination and Partitioning	uw	1 / 23	Francesco Bullo (UCSB)	Minimalist Coordination and Partitioning	uw	
Minimalist robots: technologies and applications		Territory partition	ing is art				

AeroVironment Inc, "Raven" small unmanned aerial vehicle

iRobot Inc, "PackBot" unmanned ground vehicle

Environmental monitoring

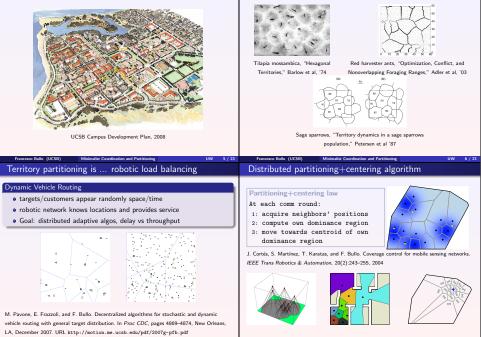
Building monitoring and evac

Security systems

Ocean Park Paintings, by Richard Diebenkorn (1922-1993)

Territory	partitioning	is	centralized	space allo	cation
-----------	--------------	----	-------------	------------	--------

Territory partitioning is ... animal territory dynamics



Multi-center optimization

- ${\color{black}\bullet}$ take environment with density function $\phi: \mathcal{Q} \to \mathbb{R}_{\geq 0}$
- place N robots at p = {p₁,..., p_N}
- partition environment into $v = \{v_1, \dots, v_N\}$
- · define expected quadratic deviation

$$H(v,p) = \sum_{i=1}^{N} \int_{v_i} f(\|q-p_i\|)\phi(q)dq$$

Theorem (Lloyd '57 "least-square quantization")

- () at fixed partition, optimal positions are centroids
- (2) at fixed positions, optimal partition is Voronoi
- Lloyd algorithm:

Francesco Bullo (UCSB)

- alternate p-v optimization
- o convergence to centroidal Voronoi partition

Gossip partitioning policy

- Random communication between two regions
- Occupate two centers
- Ompute bisector of centers
- Partition two regions by bisector

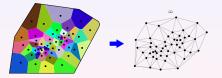
Minimalist Coordination and Partitioning

P. Frasca, R. Carli, and F. Bullo. Multiagent coverage algorithms with gossip communication: control systems on the space of partitions. In *Proc ACC*, pages 2228–2235, St. Louis, MO, June 2009

Today: What are minimal communication requirements?

Partitioning+centering law requires:

- synchronous communication
- Ocommunication along edges of dual graph



Minimalist Coordination and Partitioning

Minimalist robo	tics: what are	minimal comm	requirements?

is synchrony necessary?

Francesco Bullo (UCSB)

- is it sufficient to communicate peer-to-peer (gossip)?
- what are minimal requirements?

From standard to gossip algorithm

Standard partitioning+centering algorithm

- o robot talks to all its neighbors in dual graph
- obot computes its Voronoi region
- o robot moves to centroid of its Voronoi region

Gossip partitioning policy

- optimized production of the second second
- two regions are updated according to

$$arphi_i^+ := ig\{ q \in v_i \cup v_j \mid \ \|q - \mathsf{centroid}(v_i)\| \le \|q - \mathsf{centroid}(v_j)\| ig\}$$

UW 9/23

10 / 23

Implementation: centralized, General Polygon Clipper (GPC) library	 state space is not finite-dimensional non-convex disconnected polygons arbitrary number of vertices gossip map is not deterministic, ill-defined and discontinuous two regions could have same centroid disconnected/connected discontinuity Lyapunov function missing motion protocol for deterministic/random meetings
Francesco Bullo (UCSB) Minimalist Coordination and Partitioning UW 13 / 23	Francesco Bullo (UCSB) Minimalist Coordination and Partitioning UW 14 / 23
From standard to Lyapunov functions for partitions	Symmetric difference
Standard coverage control robot <i>i</i> moves towards centroid of its Voronoi region	Given sets <i>A</i> , <i>B</i> , symmetric difference and distance are: $A\Delta B = (A \cup B) \setminus (A \cap B), d_{\Delta}(A, B) = measure(A\Delta B)$

The space of partitions	Convergence theorem: nondeterminism
Definition (space of <i>N</i> -partitions) \mathcal{V}_N is collections of <i>N</i> subsets of <i>Q</i> , $v = \{v_i\}_{i=1}^N$, such that \mathbf{O} $v_i \neq \emptyset$ and $v_i = interior(v_i)$ \mathbf{O} interior $(v_i) \cap$ interior $(v_j) = \emptyset$ if $i \neq j$, and $\mathbf{O} \bigcup_{i=1}^N v_i = Q$ Theorem (topological properties of the space of partitions) \mathcal{V}_N with $d_\Delta(u, v) = \sum_{i=1}^N d_\Delta(u_i, v_i)$ is metric and precompact	• X is metric space • set-valued $T : X \Rightarrow X$ with $T(x) = \{T_i(x)\}_{i \in I}$ for finite I • consider sequences $\{x_n\}_{n \ge 0} \subset X$ with $x_{n+1} \in T(x_n)$
Francesco Bullo (UCSB) Minimalist Coordination and Partitioning UW 17/23 Convergence thm: uniformly persistent switches	Francesco Builto (UCSB) Minimalist Coordination and Partitioning UW 18 / 23 Convergence thm: randomly persistent switches
 A is metric space set-valued T: X ⇒ X with T(x) = {T_i(x)}_{i∈1} for finite I consider a sequence {x_n}_{n≥0} ⊂ X with x_{n+1} ∈ T(x_n) x_{n+1} ∈ T(x_n) W ⊂ X compact and positively invariant for T U : W → ℝ non-increasing along T, decreasing along T \ {id} U and T_i are continuous on W for all i ∈ 1, there are infinite times n such that x_{n+1} = T_i(x_n) and delay between any two consecutive times is bounded If x₀ ∈ W, then x_n → {x ∈ W x = T_i(x) for all i ∈ 1) ∩ U⁻¹(c) 	 X is metric space set-valued T: X ⇒ X with T(x) = {T_i(x)}_{i∈I} for finite I onsider sequences {x_n}_{n≥0} ⊂ X with x_{n+1} ∈ T(x_n) Xsume: W ⊂ X compact and positively invariant for T U : W → ℝ non-increasing along T, decreasing along T \ {id} U and T_i are continuous on W there exists probability p ∈]0, 1[such that, for all indices i ∈ I and times n, we have ℝ[x_{n+1} = T_i(x_n) past] ≥ p If x₀ ∈ W, then almost surely x_n → {x ∈ W x = T_i(x) for all i ∈ I} ∩ U⁻¹(c) 20 2012

Conclusions

"Distributed Control of	Robotic	Networks"
-------------------------	---------	-----------

Distributed Control

A Mathematical Approach to Motion Coordination Algorithms

Francesco Bullo

Sonia Martinez

Jorge Cortés

of Robotic Networks

	ma	

- novel gossip partitioning algorithm
- space of partitions
- convergence theorem for switching maps
- convergence to centroidal Voronoi partition

P. Frasca, R. Carli, and F. Bullo. Multiagent coverage algorithms with gossip communication: control systems on the space of partitions. In Proc ACC, pages 2228-2235, St. Louis, MO, June 2009

Ongoing work

Fra

- I motion laws to maximize peer-to-peer meeting frequencies
- Convergence rates: known in 1D; unknown in 2D
- robots arriving/departing
- o more general version of partitioning:

nonsmooth, equitable, nonconvex, 3D

Eme

a n

a C

a

- ir
- 0

- intro to distributed algorithms (graph theory, synchronous networks, and averaging algos)
- geometric models and geometric optimization problems
- model for robotic, relative sensing networks, and complexity
- algorithms for rendezvous, deployment, boundary estimation

Status: Freely downloadable at http://coordinationbook.info with tutorial slides and (ongoing) software libraries.

ancesco Bullo (UCSB)	Minimalist Coordination and Partitioning	uw	21 / 23	Francesco Bullo (UCSB)	Minimalist Coordination and Partitioning	uw	22 / 23
erging discipline	e: robotic networks						
network modeling							
0	comm algorithm, task, complexity						
coordination algori	ithm						
deployment, ta	ask allocation, boundary estimation						
n problems							
algorithmic design fo	or minimalist robotic networks						
scalable, adapti	ive, asynchronous, agent arrival/depa	rture					
tasks: search, e	exploration, identify and track						
integrated coordinat	tion, communication, and estimation						
complex sensing/act	tuation scenarios						