Monotonic Target Assignment For Robotic Networks

Stephen L. Smith

Center for Control, Dynamical Systems and Computation University of California at Santa Barbara

2008 ICRA Workshop

Advisor: Francesco Bullo

May 20, 2008

Related Combinatorics and Robotics Literature

The Target Assignment Problem

- n mobile robots, m target locations, in R²
 - · Each robot with unique identifier • moves $\dot{p}^{[i]} = u^{[i]}, |u^{[i]}| < v_{max}$
 - . knows, or can sense, the target locations
- · Discrete-time communication model
- communication range r_{comm}
 - max message length O(log n)

Problem: distributed algorithm to

- · allow group of agents to divide m targets among themselves;
- · lead each agent to its unique target in minimum time.

Distributed Target Assignment

Centralized assignment problems:

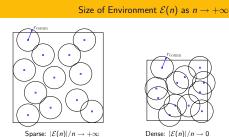
- Max. matching in bipartite graphs (Hopcroft and Karp, '73)
- Sum assignment problem (Kuhn, '55)
- · Bottleneck assignment problem (Derigs and Zimmermann '78)

Parallel/Decentralized assignment problems

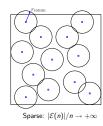
- . The auction algorithm (Bertsekas, '88)
- · Others include Zavlanos and Pappas, Castañón and Wu, Moore and Passino, Arslan, Marden and Shamma.

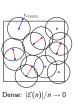
Our Goals:

- Develop efficient algorithms for target assignment problem.
- Evaluate scalability/asymptotic performance.
- Key Challenge: Optimize completion time while satisfying nange constraint: compute distributed assignment, possibly without connectivity.
- pandwidth constraint: share assignment data sparingly.



Critical: $|\mathcal{E}(n)|/n \to C \in \mathbb{R}_{>0}$





Size of Environment $\mathcal{E}(n)$ as $n \to +\infty$

Critical: $|\mathcal{E}(n)|/n \to C \in \mathbb{R}_{\geq 0}$

ETSP Assgmt for Sparse Environments

Monotonic Algorithms for Target Assignment

 $\Omega(|\mathcal{E}(n)|)$

· deterministic algorithm target j occupied at time t₁ ⇒ target j occupied for all t > t₁.

Theorem (Worst-case lower bound on Monotonic Algs)

Definition (Monotonic algorithms)

n agents and n targets in square $\mathcal{E}(n)$: $\mathcal{E}(n)$ size Worst-case completion time Sparse $\left(\frac{|\mathcal{E}(n)|}{n} \to +\infty\right)$ $\Omega(\sqrt{n|\mathcal{E}(n)|})$ Critical $\left(\frac{|\mathcal{E}(n)|}{n} \to C\right)$ $\Omega(n)$ Dense $\left(\frac{|\mathcal{E}(n)|}{n} \to 0\right)$

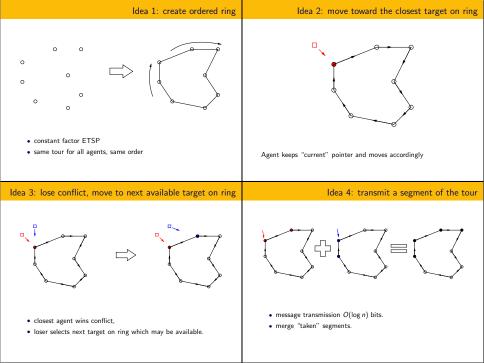
The Basic Ideas:

· Maintain "available/taken" bit for each target.

1 all agents turn the cloud of targets into ordered ring

· Target locations known a priori

- 2 move toward the closest target on the ring
- 3 if agent loses conflict, move to next available target on ring 4 agents exchange segments of tour that are "taken."

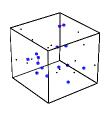


Time Complexity for ETSP ASSGMT

Theorem (Worst-case upper bound)

- Assume n agents, n targets in E(n),
- then worst-case completion time in $O(\sqrt{|\mathcal{E}(n)|n})$.

Sparse/critical $\mathcal{E}(n) \Rightarrow \text{ETSP Assgmt}$ is an asymptotically optimal monotonic algorithm



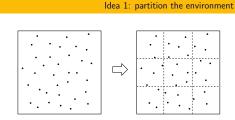
Simulations for ETSP ASSGMT

GRID ASSGMT Algorithm for Dense Environments

- All agents partition environment into small cells.
- In each cell, agents find maximum matching and elect leader.
- Leaders communicate to determine location of free targets.
 Unassigned agents are directed to free targets by leaders.

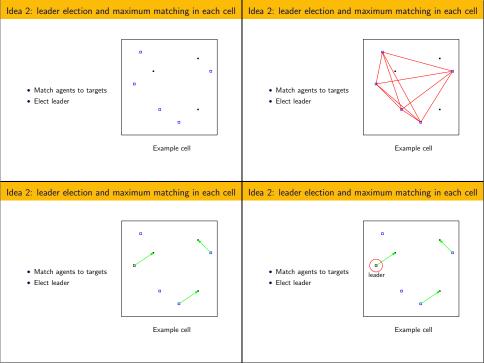
Assumes either

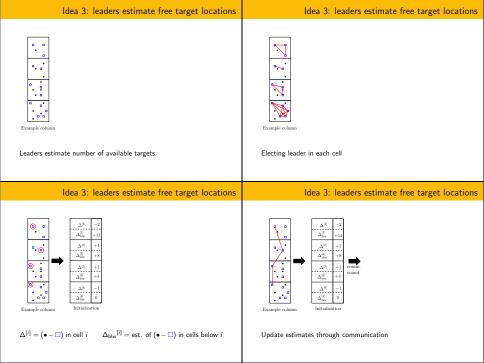
- Each agent knows target locations a priori, or
- no a priori knowledge but r_{sense} > √2/5r_{comm} to sense.

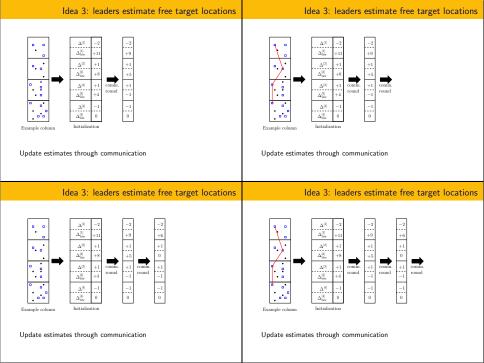


Choose grid size, based on $\mathcal{E}(n)$ and r_{comm} so that:

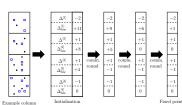
- Communication graph in a cell is complete.
- Communication between adjacent cells is possible.







Idea 3: leaders estimate free target locations

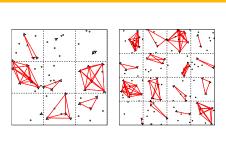


Only let unassigned agents "down" if estimates are positive

Nominal search order

Idea 4: unassigned agent motion

GRID ASSGMT Simulations



Worst-case upper bound for GRID ASSGMT

Theorem (Worst-case upper bound)

- Assume n agents, n targets in E(n).
- then worst-case completion time in $O(|\mathcal{E}(n)|)$.

Worst-case performance comparison:

	Sparse	Critical	Dense
Monotonic	$\Omega(\sqrt{ \mathcal{E}(n) n})$	$\Omega(n)$	$\Omega(\mathcal{E}(n))$
ETSP Assgmt	$O(\sqrt{ \mathcal{E}(n) n})$	O(n)	$O(\sqrt{ \mathcal{E}(n) n})$
Grid Assgmt	$O(\mathcal{E}(n))$	O(n)	$O(\mathcal{E}(n))$

• Recall, dense $\mathcal{E}(n) \Rightarrow \frac{|\mathcal{E}(n)|}{n} \to 0$ as $n \to +\infty$.

Stochastic Bounds on GRID ASSGMT

- Connectivity regime: $\frac{|\mathcal{E}(n)|}{n} \in O\left(\frac{1}{\log n}\right)$.
- Theorem (Stochastic performance)
 - n agents, m targets uniformly randomly distributed in E(n).

 - Assume E(n) is in connectivity regime.
 - If m = n, then w.h.p. completion time in O(√|E(n)|). If m = n/log n then w.h.p., completion time in O(1).

Conclusions and Related Problems

- In this talk, introduced:
- · a broad class of algorithms for static target assignment;
- asymp, opt, algorithms for dense and sparse environments; · a sensor based target assignment problem.

- - · Nonholonomic vehicles (w/ EF and KS)
 - · Consistent knowledge assumption
- · Related problems
- 1 Targets arriving sequentially/dynamically over time (w/ EF) Search and assignment problems Moving targets

- Stochastic properties of ETSP ASSGMT In sparse E(n):
 - If m = n, then stochastic performance is same as worst case
 - In critical or sparse E(n): If $m = n/\log n$, then completion time is $O(\log n)$.
 - Stochastic properties of GRID ASSGMT in connectivity regime If m = cn for some c ∈ (0, c_{crit}), then compltn time is O(1).
 - i.e., constant factor additional agents \implies for O(1)
- References

Conjectured properties

communication. In American Control Conference, pages 1155-1160, New York, July 2007 2 S. L. Smith and F. Bullo. Target assignment for robotic networks: Worst-case and stochastic performance in dense

 S. L. Smith and F. Bullo. Target assignment for robotic networks: Asymptotic performance under limited

- environments. In IEEE Conf. on Decision and Control, pages 3585-3590. New Orleans, LA. December 2007 A S. L. Smith and F. Bullo, Monotonic target assignment for robotic networks. IEEE Transactions on Automatic Control.
- June 2007. To appear