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The Target Assignment Problem

• n mobile robots, m target locations, in R
2

• Each robot with unique identifier
• moves ṗ[i ] = u[i ], |u[i ]| ≤ vmax

• knows, or can sense, the target locations

• Discrete-time communication model
• communication range rcomm

• max message length O(log n)

Problem: distributed algorithm to

• allow group of agents to divide m targets among themselves;

• lead each agent to its unique target in minimum time.

Related Combinatorics and Robotics Literature

Centralized assignment problems:

• Max. matching in bipartite graphs (Hopcroft and Karp, ’73)

• Sum assignment problem (Kuhn, ’55)

• Bottleneck assignment problem (Derigs and Zimmermann ’78)

Parallel/Decentralized assignment problems

• The auction algorithm (Bertsekas, ’88)

• Others include Zavlanos and Pappas, Castañón and Wu,
Moore and Passino, Arslan, Marden and Shamma.

Distributed Target Assignment

Our Goals:

• Develop efficient algorithms for target assignment problem.

• Evaluate scalability/asymptotic performance.

Key Challenge: Optimize completion time while satisfying

1 range constraint: compute distributed assignment, possibly
without connectivity.

2 bandwidth constraint: share assignment data sparingly.
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Monotonic Algorithms for Target Assignment

Definition (Monotonic algorithms)

• deterministic algorithm

• target j occupied at time t1 ⇒ target j occupied for all t > t1.

Theorem (Worst-case lower bound on Monotonic Algs)

n agents and n targets in square E(n):

E(n) size Worst-case completion time

Sparse
(

|E(n)|
n

→ +∞
)

Ω(
√

n|E(n)|)

Critical
(

|E(n)|
n

→ C
)

Ω(n)

Dense
(

|E(n)|
n

→ 0
)

Ω(|E(n)|)

ETSP Assgmt for Sparse Environments

• Target locations known a priori

• Maintain “available/taken” bit for each target.

The Basic Ideas:

1 all agents turn the cloud of targets into ordered ring

2 move toward the closest target on the ring

3 if agent loses conflict, move to next available target on ring

4 agents exchange segments of tour that are “taken.”



Idea 1: create ordered ring

• constant factor ETSP

• same tour for all agents, same order

Idea 2: move toward the closest target on ring

Agent keeps “current” pointer and moves accordingly

Idea 3: lose conflict, move to next available target on ring

• closest agent wins conflict,

• loser selects next target on ring which may be available.

Idea 4: transmit a segment of the tour

• message transmission O(log n) bits.

• merge “taken” segments.



Time Complexity for ETSP Assgmt

Theorem (Worst-case upper bound)

• Assume n agents, n targets in E(n),

• then worst-case completion time in O(
√

|E(n)|n).

Sparse/critical E(n) ⇒ ETSP Assgmt is an asymptotically
optimal monotonic algorithm

Simulations for ETSP Assgmt

Grid Assgmt Algorithm for Dense Environments

The Basic Ideas:

1 All agents partition environment into small cells.

2 In each cell, agents find maximum matching and elect leader.

3 Leaders communicate to determine location of free targets.

4 Unassigned agents are directed to free targets by leaders.

Assumes either

• Each agent knows target locations a priori, or

• no a priori knowledge but rsense ≥
√

2/5rcomm to sense.

Idea 1: partition the environment

Choose grid size, based on E(n) and rcomm so that:

• Communication graph in a cell is complete.

• Communication between adjacent cells is possible.



Idea 2: leader election and maximum matching in each cell

• Match agents to targets

• Elect leader
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Idea 3: leaders estimate free target locations

Example column

Leaders estimate number of available targets.
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Idea 3: leaders estimate free target locations

Example column

comm.

round

−2

+9

+1

+5

+1

−1

−1

0

−2

+6

+1

0

+1

−1

−1

0

comm.

round

−2

+1

+1

0

+1

−1

−1

0

Fixed point

comm.

round
∆[3]

∆
[3]
blw

−2

+11

+1

+8

+1

+4

−1

0

Initialization

∆[4]

∆
[4]
blw

∆[1]

∆
[1]
blw

∆[2]

∆
[2]
blw

Only let unassigned agents “down” if estimates are positive

Idea 4: unassigned agent motion
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Grid Assgmt Simulations Worst-case upper bound for Grid Assgmt

Theorem (Worst-case upper bound)

• Assume n agents, n targets in E(n).

• then worst-case completion time in O(|E(n)|).

Worst-case performance comparison:

Sparse Critical Dense

Monotonic Ω(
√

|E(n)|n) Ω(n) Ω(|E(n)|)

ETSP Assgmt O(
√

|E(n)|n) O(n) O(
√

|E(n)|n)
Grid Assgmt O(|E(n)|) O(n) O(|E(n)|)



Stochastic Bounds on Grid Assgmt

• Recall, dense E(n) ⇒ |E(n)|
n

→ 0 as n → +∞.

• Connectivity regime: |E(n)|
n

∈ O
(

1
log n

)

.

Theorem (Stochastic performance)

• n agents, m targets uniformly randomly distributed in E(n).

• Assume E(n) is in connectivity regime.

• If m = n, then w.h.p. completion time in O(
√

|E(n)|).

• If m = n/ log n then w.h.p., completion time in O(1).

Conjectured properties

Stochastic properties of ETSP Assgmt

• In sparse E(n):

If m = n, then stochastic performance is same as worst case

• In critical or sparse E(n):

If m = n/ log n, then completion time is O(log n).

Stochastic properties of Grid Assgmt in connectivity regime

• If m = cn for some c ∈ (0, ccrit), then compltn time is O(1).

i.e., constant factor additional agents =⇒ for O(1)

Conclusions and Related Problems

In this talk, introduced:

• a broad class of algorithms for static target assignment;

• asymp. opt. algorithms for dense and sparse environments;

• a sensor based target assignment problem.

Variations and other problems:

• Nonholonomic vehicles (w/ EF and KS)

• Consistent knowledge assumption

• Related problems

1 Targets arriving sequentially/dynamically over time (w/ EF)
2 Search and assignment problems
3 Moving targets
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