Visibility-based multiagent deployment in orthogonal environments

Francesco Bullo

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.mee.ucsb.edu

American Control Conference, New York, July 12, 2007

Co-authors: Anurag Ganguli, Jorge Cortés

Robotic agents with visibility sensors

Outline

- Robotic agents with visibility sensors

Outline

- Robotic agents with visibility sensors
- Deployment of multiple agents in orthogonal environments
- Conclusions

Robotic agents with visibility sensor

Robotic agents with visibility sensors

- Orthogonal polygon Q: adjacent edges perpendicular to each other
- Visibility

Visibility polygon $V(p, Q) = \{q \in Q \mid q \text{ is visible from } p\}$

 Robotic agent First order dynamics: p(t+1) = p(t) + uPoint robot with omnidirectional visibility sensing Line of sight communication: visibility graph

Art Gallery Problem (Klee '73):

Outline

- Robotic agents with visibility sensors
- 2 Deployment of multiple agents in orthogonal environments
- Conclusions

1.6.0

Multiagent deployment in orthogonal environme

Preliminaries and problem description Connected deployment Deployment without connectivity constraint

Erancesco Rullo

Imagine placing guards inside a nonconvex polygon with *n* vertices: how many guards are required and where should they be placed in order for each point in the polygon to be visible by at least one guard?

Preliminaries and problem description Connected deployment

Art Gallery Problem (Klee '73):

Deployment of multiple agents in orthogonal environments

Imagine placing guards inside a nonconvex polygon with *n* vertices: how many guards are required and where should they be placed in order for each point in the polygon to be visible by at least one guard?

- Kahn et al '93
- \[\line{\frac{n}{4}} \] sufficient and occasionally necessary

- Pinciu '03
- n/2 2 sufficient and occasionally necessary

Art Gallery Problem (Klee '73):

Deployment of multiple agents in orthogonal environments

Imagine placing guards inside a nonconvex polygon with n vertices: how many guards are required and where should they be placed in order for each point in the polygon to be visible by at least one guard?

- Kahn et al '93
- \[\begin{align*} \frac{n}{4} \end{align*} \] sufficient and occasionally necessary

- Pinciu '03
- n/2 2 sufficient and occasionally necessary

Art Gallery Problem (Klee '73):

Art Gallery Problem (Klee '73):

Imagine placing guards inside a nonconvex polygon with n vertices: how many guards are required and where should they be placed in order for each point in the polygon to be visible by at least one guard?

- Kahn et al '93
- | sufficient and occasionally necessary

Robotic network model

- Pinciu '03
- $\frac{n}{3} 2$ sufficient and occasionally necessary

Preliminaries and problem description

Communicate within line-of-sight and within bounded distance

p_i denotes position; p_i(t + Δt) = p_i(t) + u_i, ||u_i|| ≤ 1

Deployment of multiple agents in orthogonal environments

Each agent has a unique identifier i

M: denotes memory ("limited") contents

Deployment of multiple agents in orthogonal environments

Preliminaries and problem description

Deployment problems

Design a provably correct distributed algorithm:

- achieve complete visibility;
- minimize the number of agents used

Nonconvex deployment problem

Design a provably correct distributed algorithm:

- achieve complete visibility;
- are ensure that the visibility graph of final configuration is connected; and
- minimize the number of agents used

many guards are required and where should they be placed in order for each point in the polygon to be visible by at least one guard?

- Kahn et al '93
- | n | sufficient and occasionally necessary

- Pinciu '03

Imagine placing guards inside a nonconvex polygon with n vertices: how

^a/₅ − 2 sufficient and occasionally necessary

Nonconvex deployment problem with connectivity

Deployment of multiple agents in orthogonal environments

Statement of results

Starting from a single location, $\lfloor \frac{n}{4} \rfloor$ agents are always sufficient and occasionally necessary

Starting from a single location, $\frac{n}{2}-2$ are always sufficient and occasionally necessary

Robotic agents with visibility sensors Deployment of multiple agents in orthogonal environments

Incremental Partition Algorithm

Francesco Bullo Multiagent deployment in orthogonal environments

Incremental Partition Algorithm

Robotic agents with visibility sensors Deployment of multiple agents in orthogonal environments

Incremental Partition Algorithm

Deployment of multiple agents in orthogonal environments

Deployment of multiple agents in orthogonal environments

Incremental Partition Algorithm

Incremental Partition Algorithm

Robotic agents with visibility sensors Deployment of multiple agents in orthogonal environments

Robotic agents with visibility sensors Deployment of multiple agents in orthogonal environments

Vertex-induced tree Incremental algorithm for connected deployment

Francesco Bullo Multiagent deployment in orthogonal environments

Robustness properties Robust to agent failures

Changing environments

Francesco Bullo Multiagent deployment in orthogonal environments

Deployment of multiple agents in orthogonal environments

Sparse point set for deployment without connectivity Sparse point set for deployment without connectivity

Deployment of multiple agents in orthogonal environments

Sparse point set for deployment without connectivity

Robotic agents with visibility sensors Deployment of multiple agents in orthogonal environments

Sparse point set for deployment without connectivity

Multiagent deployment in orthogonal environments

Deployment of multiple agents in orthogonal environn

Deployment of multiple agents in orthogonal environments Sparse point set for deployment without connectivity

Sparse point set for deployment without connectivity

Sparse point set for deployment without connectivity

Robotic agents with visibility sensors Deployment of multiple agents in orthogonal environments

Deployment of multiple agents in orthogonal environments

Depth-first deployment

Every point in the kernel "owns" at least two quadrilaterals or four triangles Total number of triangles is n-2

Therefore, number of points in the kernel is n/4.

Francesco Bullo Multiagent deployment in orthogonal environments

Assume: (i) Each node is a star-shaped set; (ii) Sets corresponding to non-leaf nodes are composed of a union of quadrilaterals equal in number to the number of children

Francesco Bullo Multiagent deployment in orthogonal environments

Depth-first deployment

Deployment without connectivity constraint

Deployment of multiple agents in orthogonal environments

Local navigation and distributed information processing

 Straight line paths between adjacent nodes

- Required memory:
- \mathcal{M}_i : { p_{parent} , p_{last} , g_1 , g_2 }
- After moving from kparent to kchild, kparent is added to the beginning of list powent. (v', v") is added to list g_1 , (v'', v'') is added to list g_2 and $p_{last} := k_{parent}$
- After moving from k_{child} to k_{parent}, the first elements of pparent, g1 and g_2 are deleted and $p_{last} := k_{child}$

Depth-first deployment in general simply connected environments

Outline

- Conclusions

Main results

Connected deployment

Robotic agents with visibility sensors Deployment of multiple agents in orthogonal environments

- If # agents < cardinality of the sparse kernel point set.</p> then in finite time each agent comes to rest at a unique kernel point else in finite time every kernel point contains an agent at rest
- | 4 | agents are always sufficient and occasionally necessary for the task

Deployment without connectivity

- If # agents < cardinality vertex-induced tree,</p>
 - then in finite time each agent comes to rest at a unique node else in finite time every node contains an agent at rest
- agents are always sufficient and occasionally necessary for the task

Conclusions

Summary

- · distributed algorithms to achieve coverage in nonconvex orthogonal environments
- number of agents required is optimal in the worst case · robustness to agent failures and changing environments

Future directions

· environments with holes

- 3D scenarios
- o other notions of optimality: time taken, other complexity measures other than the number of vertices

Francesco Bullo Multiagent deployment in orthogonal environments