Coordination in Multi-Agent Networks

9th International Workshop on Hybrid Systems: Computation and Control (HSCC) Santa Barbara, March 29-31, 2006 Also: UCLA, April 21, 2006 and Caltech, May 15, 2006

Francesco Bullo

Mechanical Engineering Center for Control, Dynamical Systems and Computation

University of California at Santa Barbara http://motion.mee.ucsb.edu

Ack: Anurag Ganguli, Sara Susca, Ketan Savla Jorge Cortés (UCSC), Emilio Frazzoli (UCLA), Sonia Martínez (UCSD) AFOSR MURI Appers, ARO MURI Swarms, NSF Sensors, ONR YIP

Multi-agent networks

What kind of systems?

Groups of systems with control, sensing, communication and computing

Individual members in the group can

- sense its immediate environment.
- communicate with others
- process the information gathered
- take a local action in response

Wildebeest herd in the Serengeti Geese flying in formation

Atlantis aquarium, CDC 2004

Example networks from engineering

Sensor networks and robotic sensor networks embedded systems, distributed robotics

General actuator/sensor networks robocup, air-traffic systems

High altitude long endurance UAVs

Broad challenge

Useful engineering through small, inexpensive, limited-comm vehicles/sensors

Problem

lack of understanding of how to assemble and coordinate individual devices into a coherent whole

- 1. Feedback
- rather than open-loop computation for known/static setup 2. Information flow who knows what, when, why, how 3. Optimization design efficient algorithms

Approach

integration of control, comm, sensing, computing

Geometric tools

Research in animation

(i) elementary motion tasks (deployment, rendezvous, self-assembly)(ii) sensing tasks (map building, localization, vehicle routing, search)

Outline

- I: Models for Multi-Agent/Robotic Networks
- II: Algorithms and Tools

Part I: Models for Multi-Agent Networks

References

- I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999
- (ii) N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1997. ISBN 1558603484
- D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, MA, 1997. ISBN 1886529019
- (iv) S. Martínez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic networks Part I: Models, tasks and complexity. IEEE Transactions on Automatic Control, April 2005. Submitted

Objective

- (i) meaningful + tractable model
- (ii) feasible operations and their cost
- (iii) control/communication tradeoffs

Part I: Robotic network

Communication models for robotic networks

A uniform/anonymous robotic network S is (i) $I = \{1, ..., N\}$; set of unique identifiers (UIDs) (ii) $\mathcal{A} = \{A_i\}_{i \in I}$, with $A_i = (X, U, f)$ is a set of physical agents (iii) interaction graph

Disk, visibility and Delauney graphs

Relevant graphs

- (i) fixed, directed, balanced
- (ii) switching
- geometric or state-dependent
- (iv) random, random geometric

Message model

(i) message

- (ii) packet/bits
- (iii) absolute or relative positions
- (iv) packet losses

Synchronous control and communication Asynchronous extensions (i) communication schedule $\mathbb{T} = \{t_\ell\}_{\ell \in \mathbb{N}_0} \subset \mathbb{R}_{>0}$ (ii) communication alphabet L including the null message (iii) set of values for logic variables W• bounded delay between transmission and reception (iv) message-generation function msg: $\mathbb{T} \times X \times W \times I \to L$ • each agent performs cycle stf: $\mathbb{T} \times W \times L^N \to W$ (v) state-transition functions

(vi) control function

 $\mathsf{ctrl} \colon \mathbb{R}_{>0} \times X \times W \times L^N \to U$

• each agent has different communication/activation schedule

Task and complexity

- Coordination task is (W, T) where T: X^N × W^N → {true, false}
 Logic-based: achieve consensus, synchronize, form a team
 Motion: deploy, gather, flock, reach pattern
 Sensor-based: search, estimate, identify, track, map
- For $\{\mathcal{S},\mathcal{T},\mathcal{CC}\}$, define costs/complexity: control effort, communication packets, computational cost
- \bullet Time complexity to achieve ${\mathcal T}$ with ${\mathcal {CC}}$

 $\begin{aligned} \operatorname{TC}(\mathcal{T},\mathcal{CC},x_0,w_0) &= \inf \left\{ \ell \mid \mathcal{T}(x(t_k),w(t_k)) = \texttt{true}, \text{ for all } k \geq \ell \right\} \\ \operatorname{TC}(\mathcal{T},\mathcal{CC}) &= \sup \left\{ \operatorname{TC}(\mathcal{T},\mathcal{CC},x_0,w_0) \mid (x_0,w_0) \in X^N \times \mathcal{W}^N \right\} \\ \operatorname{TC}(\mathcal{T}) &= \inf \left\{ \operatorname{TC}(\mathcal{T},\mathcal{CC}) \mid \mathcal{CC} \text{ achieves } \mathcal{T} \right\} \end{aligned}$

Outline

- I: Models for Multi-Agent/Robotic Networks
- II: Algorithms and Tools
 - S1: visibility-based deployment
 - S2: deployment
 - S3: rendezvous

Scenario 1: Visually-based deployment for guards

Model

- (i) Environment: non-self-intersecting polygon Q
- (ii) Sensing and communication within visibility polygon
- (iii) Asynchronous operation
- **Objective:** Achieve complete visibility of nonconvex environment (with simultaneous map building)

S1: Art Gallery Problem and Theorem

Art Gallery Problem (Klee '73):

Imagine placing guards inside a nonconvex polygon with n vertices: how many guards are required and where should they be placed in order for each point in the polygon to be visible by at least one guard?

Theorem (Chvátal '75): $\lfloor n/3 \rfloor$ guards are sufficient and sometimes necessary

"Triangulation + coloring" proof (Fisk '78):

Art Gallery Theorems

- Fisk '78
- | $\frac{n}{3}$ | sufficient and occasionally necessary

- Kahn, Klawe, Kleitman '93
- $\lfloor \frac{n}{4} \rfloor$ sufficient and occasionally necessary
- Pinciu '03 ⁿ/₂ − 2 sufficient and occasionally

necessary

S1: Approach

Approach:

Geometric Structure Local Navigation and Global Exploration **Distributed Information Processing**

(i) Represent the environment by a graph

- (ii) Node-to-node navigation and deployment over a graph
- (iii) Distributed information exchange

S1: Vertex-induced tree

- the graph $\mathcal{G}_Q(s)$ is a rooted tree
- maximum # nodes in the vertex-induced tree is $\left|\frac{n}{2}\right|$, where $n = |\operatorname{Ve}(Q)|$

S1: Approach

(i) Represent the environment by a graph

- (ii) Node-to-node navigation and deployment over a graph
- (iii) Distributed information exchange

S1: Depth-first deployment

the planned paths "from node to parent" and "from node to children:"

S1: Approach

Assume: All agents initially at root s

Incremental partition and depth-first deployment

At each comm round:

S1: Algorithm

- 1: compares UID with agents at the same node
- 2: if *i* is largest UID then

3: stay

- 4: else
- 5: obtain W from agent with maximum UID
- 6: move according to depth-first deployment

7: end if

- (i) Represent the environment by a graph
- (ii) Node-to-node navigation and deployment over a graph
- (iii) Distributed information exchange

S1: Node-to-node navigation

S1: Geographic info required for navigation

- Required memory: W = {p_{parent}, p_{last}, v', v''} p_{parent} is parent node to current agent's position p_{last} is last node visited by the agent (v', v'') is the gap toward the parent node
- Init: four values set to the initial agent position
- Actions:
- $\mathbf{msg} \ W$ broadcast together with UID
- stf After move from k_{parent} to k_{child} through gap $g_1,g_2,$ update: $p_{\mathsf{parent}}:=k_{\mathsf{parent}},\ p_{\mathsf{last}}:=k_{\mathsf{parent}},\ (v',v''):=(g_1,g_2)$
- **stf** After move from k_{child} to k_{parent} , update: $p_{\text{last}} := k_{\text{child}}$ and agent acquires correct $\{p_{\text{parent}}, v', v''\}$ from incoming messages

S1: Convergence and complexity results

(i) At least one agent on $\min\{N, |\mathcal{G}_Q(s)|\}$ nodes of $\mathcal{G}_Q(s)$ in time

$$\mathcal{I}^* \leq \mathcal{T}_{\text{motion}} + \mathcal{T}_{\text{comm/sens/proc}},$$

where $\mathcal{T}_{\mathsf{motion}} \leq 2 \Big(\mathcal{L}_{\mathsf{ford}}(\mathcal{G}_Q(s)) + \mathcal{L}_{\mathsf{back}}(\mathcal{G}_Q(s)) \Big)$ and $\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{G}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{T}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{T}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{T}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{T}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_{\mathsf{comm/sens/proc}} \leq 2 (|\mathcal{T}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{T}_Q(s)| - 1) (\max \lambda_l^i + \rho_l^i) |\mathcal{$

- (ii) Task achieved for $N \ge \frac{n}{2}$
- (iii) as N and $n \to +\infty,$ if the diameter of Q is bounded, then

 $t^* \in O(\min\{N,n\}) \quad \Longrightarrow \quad \mathrm{TC}(\mathcal{T}_{\mathsf{vis-based deployment}}, \mathcal{CC}_{\mathsf{partition+deployment}}) \in O(N)$

(iv) in worst case, constant factor optimal run-time because

 $\mathrm{TC}(\mathcal{T}_{\mathsf{vis-based deployment}}) \in \Omega(n)$

S1: Simulations and extensions

S1: Robustness properties

Communication delays Arbitrary bounded delays tolerated

Packet drops As long as packets are "not dropped always"

Changing environments Sudden "opening of a door"

Agent arrivals and departures

Completely robust to arrivals at the root $\ensuremath{\mathsf{Partially/completely}}$ robust to departures depending on deployment algorithm

Sensor noise Precise deployment still achieved

Outline

- I: Models for Multi-Agent/Robotic Networks
- II: Algorithms and Tools
 - S1: visibility-based deployment
 - S2: deployment
 - S3: rendezvous

Deployment

- (i) J. Cortés, S. Martínez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks. *IEEE Transactions on Robotics and Automation*, 20(2):243–255, 2004
- (ii) A. Howard, M. J. Matarić, and G. S. Sukhatme. Mobile sensor network deployment using potential fields: A distributed scalable solution to the area coverage problem. In *International Conference on Distributed Autonomous Robotic Systems (DARS02)*, pages 299–308, Fukuoka, Japan, June 2002
- J. Cortés, S. Martínez, and F. Bullo. Spatially-distributed coverage optimization and control with limited-range interactions. ESAIM. Control, Optimisation & Calculus of Variations, 11:691–719, 2005
- (iv) A. Ganguli, J. Cortés, and F. Bullo. Distributed deployment of asynchronous guards in art galleries. In American Control Conference, Minneapolis, MN, June 2006. To appear

Scenario 2: Deployment problems and algorithms

ANALYSIS of cooperative distributed behaviors

(i) how do animals share territory? what if every fish in a swarm goes toward center of own dominance region?

Barlow et al, Animal Behavior '74

(ii) what if each vehicle moves away from closest vehicle(s)?

DESIGN of performance metric

- (iii) how to cover a region with n minimum radius overlapping disks?
- (iv) how to design a minimum-distortion (fixed-rate) vector quantizer? (Lloyd '57)
- (v) where to place mailboxes in a city / cache servers on the internet?
- (vi) how to place cameras to illuminate environment?

S2: General multi-center function

Objective: Given agents (p_1, \ldots, p_n) in convex environment Q unspecified comm graph, achieve optimal coverage

Expected environment coverage

- \bullet let ϕ be distribution density function
- let f be a performance/penalty function

$$f(\|q-p_i\|)$$
 is price for p_i to service q

• define multi-center function

$$\begin{aligned} \mathcal{H}_{\mathsf{C}}(p_1,\ldots,p_n) &= E_{\phi}\left[\min_i f(\|q-p_i\|)\right] \\ &= \int_Q \min_i f(\|q-p_i\|)\phi(q)dq = \sum_i \int_{V_i} f(\|q-p_i\|)\phi(q)dq \end{aligned}$$

S2: Distributed gradient result

For a general non-decreasing $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ piecewise differentiable with finite-jump discontinuities at $R_1 < \cdots < R_m$

Thm:

$$\begin{aligned} \frac{\partial \mathcal{H}_{\mathsf{C}}}{\partial p_{i}}(p_{1},\ldots,p_{n}) &= \int_{V_{i}} \frac{\partial}{\partial p_{i}} f(\|q-p_{i}\|)\phi(q)dq \\ &+ \sum_{\alpha=1}^{m} \Delta f_{\alpha}(R_{\alpha}) \Big(\sum_{k=1}^{M_{i}(2R_{\alpha})} \int_{\operatorname{arc}_{i,k}(2R_{\alpha})} n_{B_{R_{\alpha}}(p_{i})}d\phi\Big) \\ &= \operatorname{integral over} V_{i} + \operatorname{integral along arcs inside} V_{i} \end{aligned}$$

Gradient depends on information contained in V_i

S2: Dispersion laws for deployment

Dispersion laws

- At each comm round:
- 1: acquire neighbors' positions
- 2: compute own dominance region
- 3: move towards incenter / circumcenter / centroid of own dominance region

S2: On Voronoi and limited Voronoi partitions

Problem: $\frac{\partial H_C}{\partial p_i}$ is distributed over **Delaunay graph**, but not disk graph **Solution:** modify function so that its gradient is distributed over disk graph

S2: Truncation

problem $\partial \mathcal{H}_{C}$ distributed over Delaunay graph, but comm. is *r*-disk graph

approach truncate
$$f_{\frac{r}{2}}(x) = f(x) \ 1_{[0,\frac{r}{2})}(x) + (\sup_Q f) \cdot 1_{[\frac{r}{2},+\infty)}(x)$$

$$\mathcal{H}_{\frac{r}{2}}(p_1,\ldots,p_n) = E_{\phi}\left[\min_i f_{\frac{r}{2}}(\|q-p_i\|)\right]$$

Result 1: Gradient of $\mathcal{H}_{\frac{r}{2}}$ is distributed over limited Delaunay

 $\frac{\partial \mathcal{H}_{\underline{r}}}{\partial p_i} = \text{ integral over } V_i \cap B_{\frac{r}{2}}(p_i) + \text{ integral along arcs inside } V_i \cap B_{\frac{r}{2}}(p_i)$

Result 2: \mathcal{H}_C constant-factor approximation

$$\beta \, \mathcal{H}_{\underline{r}}(P) \leq \mathcal{H}_{\mathsf{C}}(P) \leq \mathcal{H}_{\underline{r}}(P) \,, \quad \beta = \left(\tfrac{r}{2 \operatorname{diam}(Q)} \right)^2$$

Scenario 3: aggregation laws for rendezous

Aggregation laws

- At each comm round:
- 1: acquire neighbors' positions
- 2: compute connectivity constraint set
- 3: move towards circumcenter of neighbors (while remaining connected)

Task: rendezvous with connectivity constraint

S3: Example complexity analysis

(i) first-order agents with disk graph, for d = 1,

 $\mathrm{TC}(\mathcal{T}_{\mathsf{rendezvous}}, \mathcal{CC}_{\mathsf{circumcenter}}) \in \Theta(N)$

(ii) first-order agents with limited Delaunay graph, for $d=1,\,$

 $\mathrm{TC}(\mathcal{T}_{(r\epsilon)\text{-rendezvous}},\mathcal{CC}_{\mathsf{circumcenter}}) \in \Theta(N^2\log(N\epsilon^{-1}))$

S3: Example proof technique

For $N\geq 2$ and $a,b,c\in\mathbb{R},$ define the $N\times N$ Toeplitz matrices

$$\operatorname{Trid}_{N}(a, b, c) = \begin{bmatrix} b & c & 0 & \dots & 0 \\ a & b & c & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a & b & c \\ 0 & \dots & 0 & a & b \end{bmatrix}$$
$$\operatorname{Circ}_{N}(a, b, c) = \operatorname{Trid}_{N}(a, b, c) + \begin{bmatrix} 0 & \dots & \dots & 0 & a \\ 0 & \dots & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ c & 0 & \dots & 0 & 0 \end{bmatrix}$$

To be studied for interesting a,b,c as $N\to+\infty$

S3: Tridiagonal Toeplitz and circulant systems

Let $N \ge 2$, $\epsilon \in]0,1[$, and $a,b,c \in \mathbb{R}$. Let $x,y \colon \mathbb{N}_0 \to \mathbb{R}^N$ solve:

$x(\ell+1) = \text{Trie}$	$\mathrm{d}_N(a,b,c)x(\ell),$	$x(0) = x_0,$
$y(\ell + 1) = \operatorname{Cir}$	$c_N(a,b,c) y(\ell),$	$y(0) = y_0.$

- (i) if $a = c \neq 0$ and |b| + 2|a| = 1, then $\lim_{\ell \to +\infty} x(\ell) = 0$, and the maximum time required for $||x(\ell)||_2 \le \epsilon ||x_0||_2$ is $\Theta(N^2 \log \epsilon^{-1})$;
- (ii) if $a \neq 0$, c = 0 and 0 < |b| < 1, then $\lim_{\ell \to +\infty} x(\ell) = 0$, and the maximum time required for $||x(\ell)||_2 \le \epsilon ||x_0||_2$ is $O(N \log N + \log \epsilon^{-1})$;
- (iii) if $a \ge 0$, $c \ge 0$, b > 0, and a + b + c = 1, then $\lim_{\ell \to +\infty} y(\ell) = y_{\mathsf{ave}} \mathbf{1}$, where $y_{\mathsf{ave}} = \frac{1}{N} \mathbf{1}^T y_0$, and the maximum time required for $\|y(\ell) - y_{\mathsf{ave}} \mathbf{1}\|_2 \le \epsilon \|y_0 - y_{\mathsf{ave}} \mathbf{1}\|_2$ is $\Theta(N^2 \log \epsilon^{-1})$.

Summary: Coordination as Emerging Discipline

network modeling

network, ctrl+comm algorithm, task, complexity

• coordination algorithm

optimal deployment, rendezvous, vehicle routing scalable, adaptive, asynchronous, agent arrival/departure

• Systematic algorithm design

- (i) geometric structures
- $(\ensuremath{\mathsf{ii}})$ meaningful aggregate cost functions
- (iii) class of (gradient) algorithms local, distributed
- (iv) distributed information processing
- $\left(v\right)$ stability theory for networked hybrid systems

Open problems

- (i) more general complexity analysis: communication/control/time
- (ii) algorithms for asynchronous networks with agent arrival/departures
- (iii) robotic networks over random geometric graphs (multipath, fading)
- (iv) general pattern formation problem
- (v) $\lfloor n/3 \rfloor$ algorithm for visibility-based deployment
- (vi) integrated motion coordination and sensor/estimation tasks
- (vii) connections with biological networks