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Multi-agent networks

What kind of systems?
Groups of systems with control, sensing, communication and computing

Individual members in the group can

• sense its immediate environment

• communicate with others

• process the information gathered

• take a local action in response

Wildebeest herd in the Serengeti Geese flying in formation Atlantis aquarium, CDC 2004
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Example networks from engineering

Sensor networks and robotic sensor networks
embedded systems, distributed robotics

General actuator/sensor networks
robocup, air-traffic systems

High altitude long endurance UAVs
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Broad challenge

Useful engineering through small, inexpensive, limited-comm vehicles/sensors

Problem lack of understanding of how to assemble and co-
ordinate individual devices into a coherent whole

1. Feedback rather than open-loop computation for known/static setup
2. Information flow who knows what, when, why, how
3. Optimization design efficient algorithms

Approach integration of control, comm, sensing, computing
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Geometric tools

Voronoi partition

Delauney graph
G1

Visibility region

Visibility graph
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Research in animation

(i) elementary motion tasks (deployment, rendezvous, self-assembly)

(ii) sensing tasks (map building, localization, vehicle routing, search)
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Outline

I: Models for Multi-Agent/Robotic Networks

II: Algorithms and Tools
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Part I: Models for Multi-Agent Networks
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Objective

(i) meaningful + tractable model

(ii) feasible operations and their cost

(iii) control/communication tradeoffs
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Part I: Robotic network

A uniform/anonymous robotic network S is

(i) I = {1, . . . , N}; set of unique identifiers (UIDs)

(ii) A = {Ai}i∈I , with Ai = (X, U, f ) is a set of physical agents

(iii) interaction graph

Disk, visibility and Delauney graphs

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Communication models for robotic networks

Delaunay graph r-disk graph r-Delaunay graph

r-limited Delaunay graph Gabriel graph EMST graph

Relevant graphs

(i) fixed, directed, balanced

(ii) switching

(iii) geometric or state-dependent

(iv) random, random geometric

Message model

(i) message

(ii) packet/bits

(iii) absolute or relative positions

(iv) packet losses
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Synchronous control and communication

(i) communication schedule T = {t`}`∈N0
⊂ R≥0

(ii) communication alphabet L including the null message

(iii) set of values for logic variables W

(iv) message-generation function msg : T×X ×W × I → L

(v) state-transition functions stf : T×W × LN → W

(vi) control function ctrl : R≥0 ×X ×W × LN → U
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Asynchronous extensions

• each agent has different communication/activation schedule

• bounded delay between transmission and reception

• each agent performs cycle
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Task and complexity

• Coordination task is (W , T) where T : XN ×WN → {true, false}
Logic-based: achieve consensus, synchronize, form a team

Motion: deploy, gather, flock, reach pattern

Sensor-based: search, estimate, identify, track, map

• For {S, T, CC}, define costs/complexity:
control effort, communication packets, computational cost

• Time complexity to achieve T with CC

TC(T, CC , x0, w0) = inf
{
` | T(x(tk), w(tk)) = true , for all k ≥ `

}
TC(T, CC) = sup

{
TC(T, CC , x0, w0) | (x0, w0) ∈ XN ×WN

}
TC(T) = inf

{
TC(T, CC) | CC achieves T

}
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Outline

I: Models for Multi-Agent/Robotic Networks

II: Algorithms and Tools

S1: visibility-based deployment

S2: deployment

S3: rendezvous

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Scenario 1: Visually-based deployment for guards

Model

(i) Environment: non-self-intersecting polygon Q

(ii) Sensing and communication within visibility polygon

(iii) Asynchronous operation

Objective: Achieve complete visibility of nonconvex environment
(with simultaneous map building)
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S1: Art Gallery Problem and Theorem

Art Gallery Problem (Klee ’73):

Imagine placing guards inside a nonconvex polygon
with n vertices: how many guards are required and
where should they be placed in order for each point
in the polygon to be visible by at least one guard?

Theorem (Chvátal ’75): bn/3c guards are sufficient and sometimes necessary

“Triangulation + coloring” proof (Fisk ’78):
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Art Gallery Theorems

• Fisk ’78

• bn
3 c sufficient and occasion-

ally necessary

• Kahn, Klawe, Kleitman ’93

• bn
4 c sufficient and occasionally

necessary

• Pinciu ’03

• n
2 − 2 sufficient and occasionally

necessary
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S1: Approach

Approach:

Geometric Structure

Local Navigation and Global Exploration

Distributed Information Processing

(i) Represent the environment by a graph

(ii) Node-to-node navigation and deployment over a graph

(iii) Distributed information exchange
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S1: Vertex-induced tree

Q

s

• the graph GQ(s) is a rooted tree

• maximum # nodes in the vertex-induced tree is
⌊

n
2

⌋
, where n = |Ve(Q)|
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S1: Approach

(i) Represent the environment by a graph

(ii) Node-to-node navigation and deployment over a graph

(iii) Distributed information exchange
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S1: Depth-first deployment
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S1: Node-to-node navigation

the planned paths “from node to parent” and “from node to children:”
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S1: Algorithm

Assume: All agents initially at root s

Incremental partition and depth-first deployment

At each comm round:
1: compares UID with agents at the same node
2: if i is largest UID then
3: stay
4: else
5: obtain W from agent with maximum UID
6: move according to depth-first deployment
7: end if
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S1: Approach

(i) Represent the environment by a graph

(ii) Node-to-node navigation and deployment over a graph

(iii) Distributed information exchange
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S1: Geographic info required for navigation
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• Required memory: W = {pparent, plast, v
′, v′′}

pparent is parent node to current agent’s position
plast is last node visited by the agent
(v′, v′′) is the gap toward the parent node

• Init: four values set to the initial agent position

• Actions:

msg W broadcast together with UID

stf After move from kparent to kchild through gap g1, g2,
update: pparent := kparent, plast := kparent, (v′, v′′) :=
(g1, g2)

stf After move from kchild to kparent, update: plast :=
kchild and agent acquires correct {pparent, v

′, v′′}
from incoming messages
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S1: Convergence and complexity results

(i) At least one agent on min{N, |GQ(s)|} nodes of GQ(s) in time

t∗ ≤ Tmotion + Tcomm/sens/proc,

where Tmotion ≤ 2
(
Lford(GQ(s)) + Lback(GQ(s))

)
and Tcomm/sens/proc ≤ 2(|GQ(s)| − 1)(max λi

l + ρi
l)

(ii) Task achieved for N ≥ n
2

(iii) as N and n → +∞, if the diameter of Q is bounded, then

t∗ ∈ O(min{N, n}) =⇒ TC(Tvis-based deployment, CCpartition+deployment) ∈ O(N)

(iv) in worst case, constant factor optimal run-time because

TC(Tvis-based deployment) ∈ Ω(n)
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S1: Simulations and extensions
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S1: Robustness properties

Communication delays
Arbitrary bounded delays tolerated

Packet drops
As long as packets are “not dropped always”

Changing environments
Sudden ”opening of a door”

Agent arrivals and departures
Completely robust to arrivals at the root
Partially/completely robust to departures depending on deployment algorithm

Sensor noise
Precise deployment still achieved
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Outline

I: Models for Multi-Agent/Robotic Networks

II: Algorithms and Tools

S1: visibility-based deployment

S2: deployment

S3: rendezvous

Deployment
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Scenario 2: Deployment problems and algorithms
ANALYSIS of cooperative distributed behaviors

(i) how do animals share territory?
what if every fish in a swarm goes

toward center of own dominance region?

CENTROIDAL VORONOI TESSELLATIONS 649

Fig.2.2 A top-viewphotograph,usinga polarizing�lter,of theterritoriesof themale Tilapia
mossambica;eachisa pitduginthesandbyitsoccupant.The boundariesoftheterritories,
therimsofthepits,forma patternofpolygons.The breedingmalesare theblack�sh,which
range in sizefrom about 15cm to 20cm. The gray �share thefemales,juveniles,and
nonbreedingmales.The �shwitha conspicuousspotinitstail,intheupper-rightcorner,
isa Cichlasomamaculicauda.Photographand captionreprinted from G. W. Barlow,
HexagonalTerritories, Animal Behavior,Volume 22,1974,by permissionofAcademic
Press,London.

As anexampleofsynchronoussettlingforwhich theterritoriescanbevisualized,
considerthemouthbreeder�sh(Tilapiamossambica).Territorialmalesofthisspecies
excavatebreedingpitsinsandybottomsby spittingsandaway fromthepitcenters
towardtheirneighbors.Fora highenoughdensity of�sh,thisreciprocalspitting
resultsinsandparapetsthatarevisibleterritorialboundaries.In[3],theresultsof
a controlledexperimentweregiven.Fishwereintroducedintoa largeoutdoorpool
witha uniformsandybottom.Afterthe�shhad establishedtheirterritories,i.e.,
afterthe�nalpositionsofthebreedingpitswereestablished,theparapetsseparating
theterritorieswerephotographed.InFigure2.2,theresultingphotographfrom[3]
isreproduced.The territoriesareseentobepolygonaland,in[27,59],itwasshown
thattheyareverycloselyapproximatedby a Voronoitessellation.

A behavioralmodelforhow the�shestablishtheirterritorieswasgiven in[22,
23,60].When the�shentera region,they�rstrandomlyselectthecentersoftheir
breedingpits,i.e.,thelocationsatwhich theywillspitsand.Theirdesiretoplacethe
pitcentersasfaraway aspossiblefromtheirneighborscausesthe�shtocontinuously
adjustthepositionofthepitcenters.Thisadjustmentprocessismodeledasfollows.
The�sh,intheirdesiretobeasfarawayaspossiblefromtheirneighbors,tendtomove
theirspittinglocationtowardthecentroidoftheircurrentterritory;subsequently,the
territorialboundariesm ustchangesincethe�sharespittingfromdi�erentlocations.
Sinceallthe�shareassumedtobe ofequalstrength,i.e.,theyallpresumablyhave

Barlow et al, Animal Behavior ’74

(ii) what if each vehicle moves away from closest vehicle(s)?

DESIGN of performance metric

(iii) how to cover a region with n minimum radius overlapping disks?

(iv) how to design a minimum-distortion (fixed-rate) vector quantizer? (Lloyd ’57)

(v) where to place mailboxes in a city / cache servers on the internet?

(vi) how to place cameras to illuminate environment?
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S2: General multi-center function
Objective: Given agents (p1, . . . , pn) in convex environment Q

unspecified comm graph, achieve optimal coverage

Expected environment coverage

• let φ be distribution density function

• let f be a performance/penalty function

f (‖q − pi‖) is price for pi to service q

• define multi-center function

HC(p1, . . . , pn) = Eφ

[
min

i
f (‖q − pi‖)

]
=

∫
Q

min
i

f (‖q − pi‖)φ(q)dq =
∑

i

∫
Vi

f (‖q − pi‖)φ(q)dq
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S2: Distributed gradient result

For a general non-decreasing f : R≥0 → R
piecewise differentiable with finite-jump discontinuities at R1 < · · · < Rm

Thm:

∂HC

∂pi

(p1, . . . , pn) =

∫
Vi

∂

∂pi

f (‖q − pi‖)φ(q)dq

+

m∑
α=1

∆fα(Rα)
( Mi(2Rα)∑

k=1

∫
arci,k(2Rα)

nBRα(pi)dφ
)

= integral over Vi + integral along arcs inside Vi

Gradient depends on information contained in Vi
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S2: Dispersion laws for deployment

Dispersion laws

At each comm round:
1: acquire neighbors’ positions
2: compute own dominance region
3: move towards incenter /

circumcenter / centroid of own
dominance region
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S2: On Voronoi and limited Voronoi partitions

Problem: ∂HC

∂pi
is distributed over Delaunay graph, but not disk graph

Solution: modify function so that its gradient is distributed over disk graph

G1

G4
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S2: Truncation

problem ∂HC distributed over Delaunay graph, but comm. is r-disk graph

approach truncate fr
2
(x) = f (x) 1[0, r

2)(x) + (supQ f ) · 1[ r
2 ,+∞)(x),

Hr
2
(p1, . . . , pn) = Eφ

[
min

i
fr

2
(‖q − pi‖)

]
Result 1: Gradient of Hr

2
is distributed over limited Delaunay

∂Hr
2

∂pi

= integral over Vi ∩B r
2
(pi) + integral along arcs inside Vi ∩B r

2
(pi)

Result 2: HC constant-factor approximation

βHr
2
(P ) ≤ HC(P ) ≤ Hr

2
(P ) , β =

(
r

2 diam(Q)

)2
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Scenario 3: aggregation laws for rendezous

Aggregation laws

At each comm round:
1: acquire neighbors’ positions
2: compute connectivity constraint

set
3: move towards circumcenter of

neighbors (while remaining
connected)

Initial position of the agents Final position of the agentsEvolution of the network

Task: rendezvous with connectivity constraint
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S3: Example complexity analysis

(i) first-order agents with disk graph, for d = 1,

TC(Trendezvous, CCcircumcenter) ∈ Θ(N)

(ii) first-order agents with limited Delaunay graph, for d = 1,

TC(T(rε)-rendezvous, CCcircumcenter) ∈ Θ(N 2 log(Nε−1))
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S3: Example proof technique

For N ≥ 2 and a, b, c ∈ R, define the N ×N Toeplitz matrices

TridN(a, b, c) =


b c 0 . . . 0
a b c . . . 0
... . . . . . . . . . ...
0 . . . a b c
0 . . . 0 a b



CircN(a, b, c) = TridN(a, b, c) +


0 . . . . . . 0 a
0 . . . . . . 0 0
... . . . . . . . . . ...
0 0 . . . 0 0
c 0 . . . 0 0


To be studied for interesting a, b, c as N → +∞
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S3: Tridiagonal Toeplitz and circulant systems

Let N ≥ 2, ε ∈]0, 1[, and a, b, c ∈ R. Let x, y : N0 → RN solve:

x(` + 1) = TridN(a, b, c) x(`), x(0) = x0,

y(` + 1) = CircN(a, b, c) y(`), y(0) = y0.

(i) if a = c 6= 0 and |b| + 2|a| = 1, then lim`→+∞ x(`) = 0, and
the maximum time required for ‖x(`)‖2 ≤ ε‖x0‖2 is Θ

(
N 2 log ε−1

)
;

(ii) if a 6= 0, c = 0 and 0 < |b| < 1, then lim`→+∞ x(`) = 0, and
the maximum time required for ‖x(`)‖2 ≤ ε‖x0‖2 is O

(
N log N + log ε−1

)
;

(iii) if a ≥ 0, c ≥ 0, b > 0, and a + b + c = 1, then lim`→+∞ y(`) = yave1,
where yave = 1

N
1Ty0, and the maximum time required for ‖y(`) − yave1‖2 ≤

ε‖y0 − yave1‖2 is Θ
(
N 2 log ε−1

)
.
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Summary: Coordination as Emerging Discipline

• network modeling
network, ctrl+comm algorithm, task, complexity

• coordination algorithm
optimal deployment, rendezvous, vehicle routing
scalable, adaptive, asynchronous, agent arrival/departure

• Systematic algorithm design

(i) geometric structures

(ii) meaningful aggregate cost functions

(iii) class of (gradient) algorithms local, distributed

(iv) distributed information processing

(v) stability theory for networked hybrid systems
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Open problems

(i) more general complexity analysis: communication/control/time

(ii) algorithms for asynchronous networks with agent arrival/departures

(iii) robotic networks over random geometric graphs (multipath, fading)

(iv) general pattern formation problem

(v) bn/3c algorithm for visibility-based deployment

(vi) integrated motion coordination and sensor/estimation tasks

(vii) connections with biological networks


