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Geometric Control of Mechanical Systems

Scientific Interests

(i) success in linear control theory is unlikely to be repeated for nonlinear systems.
In particular, nonlinear system design. no hope for general theory
=) mechanical systems as examples of control systems

(ii) nonlinear control and geometric mechanics

Framework based on affine connections
(i) reduction from 2n to n dimensional computations

(ii) controllability, kinematic models, planning, averaging not stabilization
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Outline: from geometry to algorithms
(i) modeling
(ii) approach
(a) analysis: kinematic reductions and controllability

(b) design: inverse kinematics catalog
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Outline: from geometry to algorithms
(i) modeling

(i) approach #1
(a) analysis: kinematic reductions and controllability
(b) design: inverse kinematics catalog

(iii) approach #2
(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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1 Models of Mechanical Control Systems

Ex #1: robotic manipulators with kinetic energy and forces at joints
systems with potential control forces

Ex #2: aerospace and underwater vehicles
invariant systems on Lie groups

Ex #3: systems subject to nonholonomic constraints
locomotion devices with drift, e.g., bicycle, snake-like robots
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1.1 Basic geometric objects
e manifold Q c RY R™ T™, S™, SO(3), SE(3)
e vector fields X = (X!,...,X"): Q+— TQ

e metric M is an inner product on TQ and its inverse M-!
matrix representations M;; and inverse M!™
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1.2 Constraints, distributions and kinematic modeling

(i) a connection V is a set of functions F;k: Q—-R i, j,ke{l,...,n} & pCos ¢ 0
(ii) the acceleration of a curve ¢: I — Q y|  |psing v 0 w Tr cos 0 0
N A j 0 1 Ur sin ¢ 0
(V4d)" =q" +Tjd’d" ¢ = |1 vt | |w
0 1 0 0 7 tan¢ 0
(iii) the covariant derivative VxY of two vector fields b 0 1
‘ (unicycle dynamics, simplest wheeled
;. oY' — .
(VXY)I — o X7 + F;kayk <X . Y> — VXY + VYX robot dynamlcs)
q
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1.4 SMCS with Constraints: governing equations
1.3 SMCS with Constraints: definition Given (Q,M, V, Fyiss, 7, ), there exists procedure:
A simple mechanical control system with constraints is ) ) s
Vid = Yo(q) + R(G) + Y Yal(q)ta (1)
a=1

an n-dimensional configuration manifold Q,

(i)

(i) a metric M on Q describing the kinetic energy,

(iii) a function V' on Q describing the potential energy,

(iv) a dissipative force Fyss,

(v) a distribution Z of feasible velocities describing the constraints
)

(vi) a set of m covector fields F = {F*,..., F™} defining the control forces

(QanvvaFdisﬁ@uy:{Fla"'7Fm})

or, in coordinates:
i +TH(@)d'd =Yo(@)* + Rf(9)d" + D Y (9)ua
a=1
or, in different coordinates for the velocities,
¢ =v"Xi(q)

m

P+ Ff’j(q)v%j =Yo(q)" + R¥(q)d" + Z YF(q)u,

a=1

=
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1.5 Modeling construction (Lewis, IEEE TAC '00)

From (Q,M, V, Fyiss, Z, F) to

V(}(] — YO((]) JV’ R(Q) + Z Ya(Q)uu

a=1

(i) P: TQ — TQ is the M-orthogonal projection onto
(i) Yo(g) = —P(M~1(dV))

(i) R(q) = P(M~ (Fuiss(4)))

(iv) Yo = P(M™H(F?))

(v) MV is the Levi-Civita connection on (Q, M)

5= M (S 5 B (2)

(vi) V is the constrained affine connection on (Q,M, 2)

VxY ="V — ("WxP)(Y) (3)
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1.6 Planar two links manipulator

(91,92) €EQ= T?

Mo |1t (l%(ml +4mg))/4  (lylogmgcos[1 — 02])/2
(I11gmg cos[fy — 63])/2 Iy + (13mg)/4
lg V(61.609) = mygly sin 6y /2 + mog(ly sin 6y + lo/2sin 6a)
no Fdiss

no constraints
F' =d6,, F? = df, — do,

Equations of motion:

. =Yy +w Y1 +u2Ys
0, + F110101 + T2 29102 + F229292

CMU-20may04-p14

1.7 The snakeboard

(xvya9:¢a¢) S Q:SE(Q) X Tz
F'' =dy, F? =d¢

m 0 0 0 0

0 m 0 0 0

w0 oo M=[0 0 #m J. 0

0 0 Jr Jr 0

Pr)

0 0 0 Jyu
§ ! £cos¢cosl 0 0
Lx £ cos ¢sin @ 0 0
X1 = —sin ¢ Xo=10|,X3=1]0
0 1 0
0 0 1
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T £ cos ¢ cosf %cosqﬁsingbcos@ 0
U {cos ¢psinf % cos ¢ sin ¢ sin 6 0
0| = —sin ¢ v + r;{p (sin ¢)? vo+ | 0 | vs
P 0 1 0
¢ 0 0 1
Jr
U1 + W(COS ¢)U2U3 =0
o ml? cos ¢ o J, cos ¢sin ¢ o me? "
2T e 1 o (sing)2 T T me2 1 o (sing)? 2% T w2, + J2(sing)? ¥
. 1
V3 = TwU¢ .

m

§=v'Xi(g), 0"+ (D)@' =Yole)" + RE @i + ) Y (@)ua
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1.8 Underwater Vehicle in ldeal Fluid

3D rigid body with three forces:
(i) (R,p) €SE@3), (QV)eR®
(i) KE=10TJQ+ 1VvTMYV,

M = diag{m1, ms, ms},

QU = (Ji‘dg{v/lA JQA J;g}

(i) f1 =e4, fo=—hes+e5, [f3=hey+es

Equations of Motion:

R RO IN-JOxQ+MV xV
= , . =uyf1 +usfo +usfs
P RV MV — MV x €.
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Outline: from geometry to algorithms
(i) modeling

(ii) approach #1
(a) analysis: kinematic reductions and controllability
(b) design: inverse kinematics catalog

(iii) approach #2
(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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2 Analysis of Kinematic Reductions

Goal: (low-complexity) kinematic representations for mechanical control systems

Assume: no potential energy, no dissipation: (Q,M,V =0, F4ss = 0, 2, F)

(i) dynamic model with accelerations as control inputs mechanical systems:

Vid = ZYa(q)ua(t) % =span{Y1,..., Y.}
a=1

(i) kinematic model with velocities as control inputs

14

i= 3" Vil)uwn(t)

b=1

¥V =span{Vq,...,Vo}

{ is the rank of the reduction
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2.1 When can a second order system follow the solution of a first order?

ex:

Can follow any straight line and can turn
T 2 preferred velocity fields

(plus, configuration controllability)

[~

Ok
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2.1 When can a second order system follow the solution of a first order?

ex:

Can follow any straight line and can turn
T 2 preferred velocity fields
(plus, configuration controllability)
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2.2 Kinematic reductions (Bullo and Lynch, IEEE TRA '01)

¥ = span{Vy,...,V} is a kinematic reduction if any curve ¢q: I — Q solving the
(controlled) kinematic model can be lifted to a solution to a solution of the
(controlled) dynamic model.

rank 1 reductions are called decoupling vector fields

Theorem The kinematic model induced by {V1,...,V,} is a kine-
matic reduction of (Q,M, V =0, Fyiss =0, Z, F)
if and only if
(yvcw
(i) (v :vycw
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2.3 Examples of kinematic reductions (Bullo and Lewis, IEEE TRA '03)

ol
2

Two rank 1 kinematic reductions (decoupling vector fields)
no rank 2 kinematic reductions
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2.4 Examples of maximally reducible systems

- k“‘\ 0
T pCos @ 0
Y psin ¢ 0 Ty cosf 0
= v+ w . ino 0
sin

¢ 0 1 ol — v+ w
0 1 0 0 % tan ¢ 0

' 0 1

(unicycle dynamics, simplest wheeled ¢
robot dynamics)




2.5 When is a mechanical system kinematic?
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(Lewis, CDC ’99)

When are all dynamic trajectories executable by a single kinematic model?

A dynamic model is maximally reducible (MR) if all its controlled trajectory

(starting from rest) are controlled trajectory of a single kinematic reduction.

(i) (@ %) cw

Theorem (Q, M, V =0, Fyiss =0, 2, F) is maximally reducible

if and only if

(i) the kinematic reduction is the input distribution %
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3 Controllability Analysis

Objective: controllability notions and tests for mechanical systems and reductions

Assume: no potential energy, no dissipation: (Q,M,V =0, Fy4ss = 0,2, %)

Review: Controllable kinematic systems
¢
0= Xilq)ui(t)
i=1

given two v.f.s X,Y, Lie bracket: [X,Y]" =

X’i . 8Xk Yi
oqt oq*

k
Y LARC

/

R

not accessible

accessible

controllable (STLC)

3.1 Controllability mechanisms
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given control forces {F!, ..., F™}

¥

accessible accelerations {Y3,...,Y,,}
Y, = P(M1F®)

" 4

accessible velocities Sym{Yy,..., Yy}

(Y5, (V5 V), (Y] : Vi) : Vi),

¥

access. configs Lie{Sym{Y1,...,Y;,}}
Yi, <}/J . Y}4>7 [Yjvyk‘]v [(Y; : Yk‘)vyh]v s }

&

decoupling v.f.s {V4,...,Vi}
Vi, (Vi: Vi) € {Y1,.... Y0}

¥

Lie{Vi,...,Vi}: configurations
accessible via decoupling v.f.s

3.2 Controllability notions and tests

Vi,..., Vs decoupling v.f.s
rank Lie{Vi,...,V;} =n

rank Sym{#'} = n,
“bad vs good”

rank Lie{Sym{#}} = n,
“bad vs good”

-
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(Lewis and Murray, SIAM JCO '97)

KC= locally kinematically controllable

(qO’ 0) — (Qf, 0)
configurations by concatenating motions

can reach open set of

along kinematic reductions
STLC= small-time locally controllable

(40,0) — (s, vr)
of configurations and velocities

can reach open set

STLCC= small-time locally configura-
tion controllable

(40,0) —= (gr, vr)
of configurations

can reach open set



3.3 Controllability inferences
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3.4 Cataloging kinematic reductions and controllability of example systems

. Pi R ibili llabili
STLC = small-time locally controllable [ System cture | Reduclbilty | Contrlsbitty |
X . i planar 2R robot /
STLCC = small-time locally configuration controllable single torque at either joint: (1,0): no reductions accessible
KC = locally kinematically controllable (1‘0)2" ©.1) . (0,1): maximally reducible | not accessible or STLCC
n=2m=
MR-KC = maximally reducible, locally kinematically controllable s
roller racer /
single torque at joint no kinematic reductions accessible, not STLCC
n=4,m=1
planar body with single force
STLC KC <::| MR—KC or torque decoupling v.f. reducible, not accessible
n=3m=1
% @ planar body with single gen-
eralized force no kinematic reductions accessible, not STLCC
STLCC n=3m=1
| bod th two f
planar body with two forces two decoupling v.f. KC, STLC
There exist counter-examples for each missing implication sign.
CMU-20may04-p29 CMU-20may04-p30
Summary
e dynamic models (mechanics) Vs kinematic models (trajectory analysis)
robotic leg two decoupling v.f., maxi-

n=3m=2

mally reducible

KC

planar 3R robot, two torques:
(0,1,1), (1,0,1), (1,1,0)

e

(1,0,1) and (1,1,0): two de-
coupling v.f.

(0,1,1): two decoupling v.f.

(1,0,1) and (1,1,0): KC
and STLC

n=6m=3

n=3m=2 0,1,1): KC
and maximally reducible (0.1,1)
i
rofiing penny fully reducible KC
n=4m=2
keboard
snakeboar two decoupling v.f. KC, STLCC
n=>5m=2
3D vehicle with 3 generalized
forces ! three decoupling v.f. KC, STLC

e general reductions (multiple, low rank)

e STLCC (e.g., via STLC)

VS

MR (one rank = m)

Vs kinematic controllability
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Summary
e dynamic models (mechanics) Vs kinematic models (trajectory analysis)
e general reductions (multiple, low rank) VS MR (one rank = m)
e STLCC (e.g., via STLC) Vs kinematic controllability

Outline: from geometry to algorithms
(i) modeling

(ii) approach #1
(a) analysis: kinematic reductions and controllability
(b) design: inverse kinematics catalog

(iii) approach #2
(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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4 Trajectory Design via Inverse Kinematics
Objective: find u such that (ginitial, 0) - (Gtarget, 0)

Assume:

(i) (Q,M,V =0, Fy4ss=0,2,.Z) is kinematically controllable

CMU-20may04-p31-a

4 Trajectory Design via Inverse Kinematics

Objective: find u such that (ginitial, 0) — (Gtarget, 0)

Assume:

(i) (Q,M, V=0, Fyiss=0, 2, F) is kinematically controllable

(i) Q = G and decoupling v.f.s {V7,..., Ve} are left-invariant
=—> matrix exponential exp: g — G gives closed-form flow

No general methodology is available = catalog for relevant example systems
SO(3),SE(2),SE(3), etc
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4 Trajectory Design via Inverse Kinematics
Objective: find u such that (ginitial; 0) —— (target, 0)

Assume:

(i) (Q,M, V=0, Fyiss=0, Z, F) is kinematically controllable

(i) Q = G and decoupling v.f.s {V7,..., Vi} are left-invariant

=—> matrix exponential exp: g — G gives closed-form flow

Objective: select a finite-length combination of k flows along {V1,...,V;} and
coasting times {t1, ..., ¢} such that

qi;iiiaﬂtarget = Ydesired = exp(tl Vu) Tt eXp(thvik)-

No general methodology is available = catalog for relevant example systems
SO(3),SE(2),SE(3), etc
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4.1 Inverse-kinematic planner on SO(3)  (Martinez, Cortés, and Bullo, IROS '03)
Any underactuated controllable system on SO(3) is equivalent to

Vi=e,=(0,0,1) Vo = (a,b,¢) with a® +b* #0
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4.1 Inverse-kinematic planner on SO(3)  (Martinez, Cortés, and Bullo, IROS '03)
Any underactuated controllable system on SO(3) is equivalent to

Vi=e,=(0,0,1) Vo = (a,b,c) with a® +b* #0

Motion Algorithm: given R € SO(3), flow along (e,, V2, e,) for coasting times

; Rss —¢?
=acos | ———
2 1—¢2

t3 = atan2 (vy R31 + vaR32, vaR31 — v1 R32)

1 — costo w1 U1 ac —b
where z = , = 2
sin to wa Vg cb a

t1 = atan2 (w1R13 4+ wo Ros, —wo R13 + ’U)1R23)

Local Identity Map = R L (t1,to,t3) X exp(tie,) exp(taVa) exp(tse,)
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4.2 Inverse-kinematic planner on SO(3): simulation

The system can rotate about (0,0,1) and (a,b,c) = (0,1,1)

Rotation from I3 onto target rotation exp(w/3,7/3,0)

As time progresses, the body is translated along the inertial x-axis
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4.3 Inverse-kinematic planner for X;-systems SE(2)

First class of underactuated controllable system on SE(2) is

21 - {(‘/17‘/2)‘ ‘/1 = (1ablacl)av2 = (07b2362)a bg + Cg = 1}

Motion Algorithm: given (0, z,y), flow along (V1, V3, V7) for coasting times

(t1,t2,t3) = (atan2 («, B) , p, 6 — atan2 (o, 3))

b —c1 bi| |1—cosd
where p = \/m and i 2 C2 c1 01 cos
p —c2 b L bi «a sin 0

(0,2,y) 75 (t1,ta,ts) 75 exp(ty V1) exp(taVa) exp(tsVh)

Identity Map =
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4.4 Inverse-kinematic planner for Xo-systems SE(2)

Second and last class of underactuated controllable system on SE(2):

3o ={(Vi,V2)| Vi =(1,b1,¢c1),Va = (1,b2,¢2), by #baorey # ca}

Motion Algorithm: given (0, x,v), flow along (V1,Va, V7)) for coasting times

t; = atan2 (p, \4— p2) + atan2 («, 3)

ts=0—1t1 —to

« c1—c2 ba—b T —c1 b 1 —cost
where p=+/a? + (2, = —
/6] {bl o b2 - 62] ( [y] [ bl Cl] [ Sin 9 ] )

to = atan2 (2 —p% pV/4— p2>

Local Identity Map = (8,2,) — (t1,t2,t3) * exp(t1Vi) exp(taVa) exp(ta Vi)
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4.5 Inverse-kinematic planners on SE(2): simulation

Inverse-kinematics planners for sample systems in 31 and X5. The systems
parameters are (by,c1) = (0,.5), (b2, c2) = (1,0). The target location is (7/6,1,1).
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4.6 Inverse-kinematic planners on SE(2): snakeboard simulation

snakeboard as X,-system
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4.7 Inverse-kinematic planners on SE(2) x R: simulation

4 dof system in R3, no pitch no roll

kinematically controllable via body-fixed constant velocity fields:
V1= rise and rotate about inertial point; Vo= translate forward and dive

The target location is (7/6,10,0,1)
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4.8 Inverse-kinematic planners on SE(3): simulation

kinematically controllable via
body-fixed constant velocity fields:

V1= translation along 1st axis

Vo= rotation about 2nd axis

V3= rotation about 3rd axis

V3 : 0 — 1: rotation about 3rd axis 4 <

V5 : 1 — 2: rotation about 2nd axis " ) 74
V1 : 2 — 3: translation along 1st axis g\

V3 : 3 — 4: rotation about 3rd axis . 6

V5 : 4 — 5: rotation about 2nd axis
V3 : 5 — 6: rotation about 3rd axis

CMU-20may04-p40

Outline: from geometry to algorithms

(i) modeling and approach #1
e dynamic models (mechanics) vs  kinematic models (trajectory analysis)
MR (one rank = m)

kinematic controllability

e general reductions (multiple, low rank) Vs
e STLCC (e.g., via STLC) Vs
e catalogs of systems and solutions
(i) approach #2
(a) analysis: oscillatory controls and averaging

(b) design: approximate inversion
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5 Averaging Analysis

Oscillations play key role in animal and robotic locomotion, oscillations generate
motion in Lie bracket directions useful for trajectory design

Objective: oscillatory controls in mechanical systems

T
Vii=Y(0.0 / Y (g, t)dt = 0
0
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5 Averaging Analysis

Oscillations play key role in animal and robotic locomotion, oscillations generate
motion in Lie bracket directions useful for trajectory design

Objective: oscillatory controls in mechanical systems
T
Vi =Y(q,t) / Y (g, t)dt =0
0

Assume: (Q,M,V, Fyiss, 7,.%). Let € >0

Vi =Yoo+ 7@+ 3t (L) Vala)

where u, are T-periodic and zero-mean in their first argument.



5.1 Main Averaging Result
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(Martinez, Cortés, and Bullo, IEEE TAC '03)

Vi = Yol + 7@ + 3 tua (1) Vato)

€

a=1

I

2

J0

Vi =Yo(q) + R

1 TT
Aab([’) - 3 ((/ (a,b) ( ) + U() (1)(L)

t
U (7,t) = /uu(T, s)ds,  Uqp)(7,t) /

m

Z Aab(t)<Ya : Yb>(Q)

NOBIO)

up(T, S2 / Uq (T, 51)ds1ds2

0

approximation valid over certain time scale
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5.2 Averaging analysis with control potential forces

Assume no constraints (2 = TQ) and F = {dy1,...,dpm}.

Then

(grad <pa)i = MY %

Ya(q) = grad ¢a(q), g

Symmetric product restricts
(grad ¢, : grad ¢p) = grad (¢a : ¢p)
where Beltrami bracket (Crouch ’81):

1] 690(1 GLPb
M* - ——
aq* O’

(¢a : pa) = (dpa , dpp)) =

5.3 Averaged potential
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Vi = —grad V(g) + R(4) + > _ ua(t) grad(a)(q) -

a=1

I

quq = - grad ‘/;veraged (Q) + R(Q)

I/averaged =V + Z Aab<99a : gﬁb>

m

a,b=1
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5.4 Oscillations stabilization example: a 2-link manipulator

N
7,

5| /2

k T

<

< 0
< time (sec) 0

Two-link damped manipulator with oscillatory control at first joint. The averaging
analysis predicts the behavior. (the gray line is 67, the black line is 65).
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6 Trajectory Design via Oscillatory Controls and

Approximate Inversion

Objective: steer configuration of (Q, M, V, Fyiss, Z,.% ) along target trajectory
Yearget : [0,T] — Q via oscillatory controls:

m

Vi =Yo(a) + R(d) + D uaYa(q),

a=1
Low-order STLC assumption:

(i) span{Yy, (V3
(i) “bad vs good” condition: (Y, :Y,) € # = span{Y,}.

Yo)| a,b,ce{1,...,m}} is full rank
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6.1 From the STLC assumption ...

(i) fictitious inputs ¢, ., 20 .+ [0,T] = R, a < b, with
Vv{a,get7€arget = Y ('Ytarget) =+ R(’Yt/arget)

+ Z ztarget ’Ytarget + Z Ztarget Y Y;? (PYtargEt (t))a
a<b

(i) for a,b € {1,...,m}, bad/good coefficient functions a,;: Q — R

Ya> = Z aa,sz .
b=1

CMU-20may04-p47-a

6.1 From the STLC assumption ...

(i) fictitious inputs 2 ., 220 .+ [0,7] — R, a < b, with
Vv(arget7€arget =Y (’Ytarget) + R(F}/t/arget)

+ Z Ztarget ’Ytarget + Z Ztarget Y }/b ("Ytarget(t))?
a<b

(ii) for a,b € {1,...,m}, bad/good coefficient functions a,;;: Q — R
Ya> = Z Oéa,vab .
b=1

Also, there are N = m(m — 1)/2 pairs of elements (a,b) in {1,...,m}, with
a <b. Let (a,b) — w(a,b) € {1,...
define w-frequency sinusoidal function

Gotap) (1) = V2w(a,b) cos(w(a, b)t)

, N} be a enumeration of these pairs, and
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6.2 Trajectory tracking via Approximate Inversion
(Martinez, Cortés, and Bullo, IEEE TAC '03)

Theorem Consider (Q,M, V, Fyiss, Z,.%). Let

1 t
Ug = Ua<t7 Q) + —we | =t
€ €

with

we (T, 1) =

va(t, q) =

Then, t — ¢(t) follows targer With an error of order € over the time scale 1.
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6.2 Trajectory tracking via Approximate Inversion
(Martinez, Cortés, and Bullo, IEEE TAC '03)

Theorem Consider (Q,M, V, Fyiss, Z,.7). Let

1 t
Ug = Va(t,q) + —wq | -, 1
€ €

with

W (T,t) =

va(t,q) = Ztaarget (t)

Then, ¢t — ¢(t) follows ~target With an error of order € over the time scale 1.

CMU-20may04-p48-b

6.2 Trajectory tracking via Approximate Inversion
(Martinez, Cortés, and Bullo, IEEE TAC '03)

Theorem Consider (Q,M, V, Fyiss, Z,.%). Let

1 t
Uq = Ua(t7Q) + —wq _7t
€ €

Z ww((’ a)

with
m

U”'ll(T? t) = Z Zti\crget( ww(ar

c=a+1
Vq (ta Q) = Ztaarget(t)

Then, ¢t — ¢(t) follows 7target With an error of order € over the time scale 1.
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6.2 Trajectory tracking via Approximate Inversion
(Martinez, Cortés, and Bullo, IEEE TAC '03)

Theorem Consider (Q,M, V, Fyiss, 7, F). Let

1 t
Uq = Ua(ta Q) + —we | -,
€ €

with

m

Wq (T, f) = Z Zgacrget( QZ)w(a c)

c=a+1

Z ¢w(c a)

Va (t’ (]) = Ztaarget(t)

1™
+ 9 Zaa,b(Q) J—1+ Z Ztarget
b=1

c=j+1

Then, ¢t — ¢(t) follows target With an error of order € over the time scale 1.
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6.3 Oscillatory controls ex. #1: A second-order nonholonomic integrator
Consider

Ty =Up, T2=1uz, IT3=UIT2+ U2T1,

Controllability assumption ok. Design controls to track (z¢(t), z4(t), z4(t)):

. 14 . t
UL = x‘f + ﬁ (xg - x‘fxg azgx‘f) cos <Z>

V2 (t>
Uy = Ty — —— COS | —

€

€
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7 Summary: from geometry to algorithms

Trajectory design via kinematic reductions

e dynamic models (mechanics) Vs kinematic models (trajectory analysis)
e general reductions (multiple, low rank) Vs MR (one rank = m)
e STLCC (e.g., via STLC) Vs kinematic controllability

e catalogs of systems and solutions
Trajectory design via averaging
e high-amplitude high-frequency two time-scales averaging

e general tracking result based on STLC assumption

trajectory analysis: reduction, controllability, averaging
trajectory design: inverse kinematics and approximate inversion
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Future research

(i) weaken strict assumptions for reductions approach
V' =0, kinematic controllability, group actions

(i) render second approach more realistic

(i) integrate with numerical and passivity methods for trajectory design

(iv) locomotion in fluid (fishes, flying insects, etc)

(v) computational geometry and coordination in multi-vehicle systems
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Research work reflected in this talk: (http://motion.csl.uiuc.edu)

(i) F. Bullo and M. Zefran. On mechanical control systems with nonholonomic constraints and symmetries.
IFAC Syst. & Control L., 45(2):133-143, 2002

(if) F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory planning in underactuated
mechanical systems. |[EEE T. Robotics Automation, 17(4):402—-412, 2001

(iii) F. Bullo, N. E. Leonard, and A. D. Lewis. Controllability and motion algorithms for underactuated
Lagrangian systems on Lie groups. IEEE T. Automatic Ctrl, 45(8):1437-1454, 2000

(iv) F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM JCO, 40(1):166-190,
2001

(v) F. Bullo. Averaging and vibrational control of mechanical systems. SIAM JCO, 41(2):542-562, 2002

(vi) S. Martinez, J. Cortés, and F. Bullo. Analysis and design of oscillatory control systems. |[EEE T.
Automatic Ctrl, 48(7):1164-1177, 2003

(vii) F. Bullo and A. D. Lewis. Kinematic controllability and motion planning for the snakeboard. IEEE T.
Robotics Automation, 19(3):494-498, 2003

(viii) F. Bullo and A. D. Lewis. Low-order controllability and kinematic reductions for affine connection control
systems. SIAM JCO, January 2004. To appear

(ix) S. Martinez, J. Cortés, and F. Bullo. A catalog of inverse-kinematics planners for underactuated systems
on matrix Lie groups. In Proc IROS, pages 625-630, Las Vegas, NV, October 2003

(x) F. Bullo. Trajectory design for mechanical systems: from geometry to algorithms. European Journal of
Control, December 2003. Submitted
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7.2 Comparison with perturbation methods for mechanical control systems

forced response of Lagrangian system from rest

H = H(q,p) + %‘P (q’p’“ (E))

p(0) = po

I) High magnitude high frequency
“oscillatory control &
vibrational stabilization”

I1) Small input from rest
“small-time local controllability”

I11) Classical formulation H = H(q,p)+ ep(q,p)

integrable Hamiltonian systems
p(0) = po
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7.3 A planar vertical takeoff and landing (PVTOL) aircraft

T = cos Qv — sin O,
%z = sin Qv + cos Ov,
0=w

U — Vw = —gsin @ + (—ki/m)vs + (1/m)us

& = (—ks/J)w + (h)J)uz

Q = SE(2) : Configuration and velocity space via (z, 2,0, v;,v,,w). x and z are
horizontal and vertical displacement, 6 is roll angle. The angular velocity is w and
the linear velocities in the body-fixed = (respectively z) axis are v, (respectively v,).

uq is body vertical force minus gravity, us is force on the wingtips (with a net
horizontal component). k;-components are linear damping force, g is gravity
constant. The constant h is the distance from the center of mass to the wingtip,
m and J are mass and moment of inertia.
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7.4 Oscillatory controls ex. #2: PVTOL model

Controllability assumption ok.  Design
controls to track (z?(t), 2%(t), 0%(t)):

ulziéd—i—@éd—@cos E
h h € €

h 2 t
Uy = 7= f sin ¢ + fo cos % — %[ (f1 cos 0% + fa sin@d) cos <—> )
€

€
where we let ¢ = %Qd + %3951 and

sin(20%)
2

fi=mi + (k1 cos® 07 + ko sin® Od) it + (k1 — k2)2* + mgsin 0 — ccos 0%,

o= mzt 4 sin(

d
720)(]61 — k:g)dud + (k1 sin® 8% + ko cos> Hd) 3% 4 mg(1 — cos Gd) — ¢sing?.
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7.5 PVTOL Simulations: trajectories and error

Trajectory design at e = .01.

Tracking errors at t = 10.

Uy + vpw = —g(cos O — 1) + (—ko/m)v. + (1/m



