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Sample problems (vaguely)

• Modeling: Is it possible to model the four systems in a unified way, that allows

for the development of effective analysis and design techniques?

• Analysis: Some of the usual things in control theory: stability, controllability,

perturbation methods.

• Design: Again, some of the usual things: motion planning, stabilization,

trajectory tracking.

Sample problems (concretely)

Start from rest.

1. Describe the set of reachable states.

(a) Does it have a nonempty interior?

(b) If so, is the original state contained in the interior?

2. Describe the set of reachable positions.

3. Provide an algorithm to steer from one position at rest

to another position at rest.

4. Provide a closed-loop algorithm for stabilizing a speci-

fied configuration at rest.

5. Repeat with thrust direction fixed.
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π
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The literature, historically

• Abraham and Marsden [1978], Arnol’d [1978], Godbillon [1969]: Geometrization

of mechanics in the 1960’s.

• Agrachev and Sachkov [2004], Jurdjevic [1997], Nijmeijer and van der Schaft

[1990]: Geometrization of control theory in the 1970’s, 80’s, and 90’s by

Agrachev, Brockett, Hermes, Krener, Sussmann, and many others.

• Brockett [1977]: Lagrangian and Hamiltonian formalisms, controllability,

passivity, some good examples.

• Crouch [1981]: Geometric structures in control systems.

• van der Schaft [1981/82, 1982, 1983, 1985, 1986]: A fully-developed

Hamiltonian foray: modeling, controllability, stabilization.

• Takegaki and Arimoto [1981]: Potential-shaping for stabilization.

• Bonnard [1984]: Lie groups and controllability.

The literature, historically (cont’d)

• Bloch and Crouch [1992]: Affine connections in control theory, controllability.

• Bates and Śniatycki [1993], Bloch, Krishnaprasad, Marsden, and Murray [1996],

Koiller [1992], van der Schaft and Maschke [1994]: Geometrization of systems

with constraints.

• Bloch, Reyhanoglu, and McClamroch [1992]: Controllability for systems with

constraints.

• Baillieul [1993]: Vibrational stabilization.

• Arimoto [1996], Ortega, Loria, Nicklasson, and Sira-Ramirez [1998]: Texts on

stabilization using passivity methods.

• Bloch, Chang, Leonard, and Marsden [2001], Bloch, Leonard, and Marsden

[2000], Ortega, Spong, Gómez-Estern, and Blankenstein [2002]: Energy shaping.

• Bloch [2003]: Text on mechanics and control.
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The literature, historically (cont’d) Today’s topics.

• Lewis and Murray [1997]: Controllability.

• Bullo and Lewis [2003], Bullo and Lynch [2001]: Low-order controllability,

kinematic reduction, and motion planning.

• Bullo [2001, 2002]: Series expansions, averaging, vibrational stabilization.

• Mart́ınez, Cortés, and Bullo [2003]: Trajectory tracking using oscillatory controls.

What we will try to do today

• Present a unified methodology for modeling, analysis, and design for mechanical

control systems.

• The methodology is differential geometric, generally speaking, and affine

differential geometric, more specifically speaking. Follows:

Geometric Control of Mechanical Systems: Modeling, Analysis, and

Design for Simple Mechanical Control Systems

Francesco Bullo and Andrew D. Lewis

Springer–Verlag, 2004

• Warning! We will be much less precise during the workshop than we are in the

book.

• We make no claims that the methodology presented is better than alternative

approaches.
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Geometric modeling of mechanical systems

Differential geometry essential:

Advantages

1. Prevents artificial reliance on spe-

cific coordinate systems.

2. Identifies key elements of system

model.

3. Suggests methods of analysis and

design.

Disadvantages

1. Need to know differential geome-

try.

Manifolds

• Manifold M, covered with charts

{(Ua, φa)}a∈A satisfying overlap condition.

• Around any point x ∈ M a chart (U, φ)
provides coordinates (x1, . . . , xn).

• Continuity and differentiability are checked in

coordinates as usual.

M

Ua

Ub

φa

Rn

φb

Rn

φab
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Manifolds (cont’d) Manifolds we will use today.

1. Euclidean space: Rn.

2. n-dimensional sphere: Sn = {x ∈ Rn+1 | ‖x‖Rn+1 = 1}.

3. m× n matrices: Rm×n.

4. General linear group: GL(n;R) = {A ∈ Rn×n | detA 6= 0}.

5. Special orthogonal group:

SO(n) = {R ∈ GL(n;R) | RRT = In, detR = 1}.

6. Special Euclidean group: SE(n) = SO(n)× Rn.

The manifolds Sn, GL(n;R), and SO(n) are examples of submanifolds, meaning

(roughly) that they are manifolds contained in another manifold, and acquiring

their manifold structure from the larger manifold (think surface).

M

U

φ

Rn

0

0
γ2

γ1

x
[γ1]x = [γ2]x

Tangent bundles

• Formalize the idea of

“velocity.”

• Given a curve t 7→ γ(t)
represented in coordinates

by t 7→ (x1(t), . . . , xn(t)), its “velocity” is t 7→ (ẋ1(t), . . . , ẋn(t)).

• Tangent vectors are equivalence classes of curves.

• The tangent space at x ∈ M: TxM = {tangent vector at x}.

• The tangent bundle of M: TM = ∪x∈MTxM.

• The tangent bundle is a manifold with natural coordinates denoted by

((x1, . . . , xn), (v1, . . . , vn)).
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M

U

Rn

φ

Vector fields

• Assign to each point x ∈ M

an element of TxM.

• Coordinates (x1, . . . , xn)
vector fields { ∂

∂x1 , . . . ,
∂
∂xn } on

chart domain.

• Any vector field X is given in coordinates by X = Xi ∂
∂xi (note use of

summation convention).

Flows

• Vector field X and chart (U, φ) o.d.e.:

ẋ1(t) = X1(x1(t), . . . , xn(t))

...

ẋn(t) = Xn(x1(t), . . . , xn(t)).

• Solution of o.d.e. curve t 7→ γ(t) satisfying γ′(t) = X(γ(t)).

• Such curves are integral curves of X.

• Flow of X: (t, x) 7→ ΦXt (x) where t 7→ ΦXt (x) is the integral curve of X

through x.
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Lie bracket

• Flows do not generally commute.

• i.e., given X and Y , it is not generally true that ΦXt ◦Φ
Y
s = ΦYs ◦Φ

X
t .

• The Lie bracket of X and Y :

[X,Y ](x) =
d
dt

∣

∣

∣

t=0
Φ−Y√

t
◦Φ−X√

t
◦ΦY√

t
◦ΦX√

t
(x).

Measures the manner in which flows do not commute.

Mechanical exhibition of the Lie bracket

[f1, f2]
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Vector fields as differential operators

• Vector field X and function f : M→ R Lie derivative of f with respect to

X:

LXf(x) =
d
dt

∣

∣

∣

t=0
f(ΦXt (x)).

• In coordinates: LXf = Xi ∂f
∂xi (directional derivative).

• One can show that LXL Y f −L Y LXf = L [X,Y ]f

[X,Y ] =
(∂Y i

∂xj
Xj − ∂Xi

∂xj
Y j
) ∂

∂xi
.

Ospatial

s3

s2

s1

r

Obody

b1
b2

b3

Configuration manifold

• Single rigid body:

positions

of body

(Obody −Ospatial) ∈ R3

[

b1 b2 b3

]

∈ SO(3).

• Q = SO(3)× R3 for a single rigid body.

• For k rigid bodies,

Qfree = (SO(3)× R3)× · · · × (SO(3)× R3)
︸ ︷︷ ︸

k copies

This is a free mechanical system.
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Configuration manifold (cont’d)

• Most systems are not free, but consist of bodies that are interconnected.

Definition 1 An interconnected mechanical system is a collection B1, . . . ,Bk

of rigid bodies restricted to move on a submanifold Q of Qfree. The manifold Q is

the configuration manifold. •

• Coordinates for Q are denoted by (q1, . . . , qn). Often called “generalized

coordinates.”

• For j ∈ {1, . . . , k}, Πj : Q→ SO(3)× R3 gives configuration of jth body. This

is the forward kinematic map.

s2

s1
Ospatial

(x, y)

b1

b2

Obody

θ

Configuration manifold (cont’d)

Example 2 Planar rigid body:

• Q = SO(2)× R2 ' S1 × R2.

• Coordinates (θ, x, y).

•

Π1(θ, x, y) =

(









cos θ − sin θ 0

sin θ cos θ 0

0 0 1









︸ ︷︷ ︸

=R1∈SO(3)

, (x, y, 0)
︸ ︷︷ ︸

=r1∈R3

)

.

•
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θ1

θ2

s2

s1

b1,1

b1,2

b2,1

b2,2

Configuration manifold (cont’d)

Example 3 Two-link manipulator:

• Q = SO(2)× SO(2) ' S1 × S1.

• Coordinates (θ1, θ2).

• Π1(θ1, θ2) = (R1, r1) and

Π2(θ1, θ2) = (R2, r2), where

R1 =









cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 1









, R2 =









cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1









,

r1 = r1R1s1, r2 = `1R1s1 + r2R2s1.

•

s3

s2

s1

(x, y)

φρ

θ

b3

b1b2

Configuration manifold (cont’d)

Example 4 Rolling disk:

• Q = R2 × S1 × S1.

• Coordinates (x, y, θ, φ).

•
Π1(x, y, θ, φ) =
(









cosφ cos θ sinφ cos θ sin θ

cosφ sin θ sinφ sin θ − cos θ

− sinφ cosφ 0









︸ ︷︷ ︸

=R1∈SO(3)

, (x, y, ρ)
︸ ︷︷ ︸

=r1∈R3

)

.

•
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Velocity

• Rigid body B undergoing motion t 7→ (R(t), r(t)):

1. Translational velocity: t 7→ ṙ(t);

2. Spatial angular velocity: t 7→ ω̂(t) , Ṙ(t)R−1(t);

3. Body angular velocity: t 7→ ̂Ω(t) , R−1(t)Ṙ(t).

• Both ω̂(t) and ̂Ω(t) lie in so(3) define ω(t),Ω(t) ∈ R3 by the rule









0 −a3 a2

a3 0 −a1

−a2 a1 0









(a1, a2, a3).

Inertia tensor

• Rigid body B with mass distribution µ.

• Mass: µ(B) =
∫

B
dµ.

• Centre of mass: xc =
∫

B
x dµ.

• Inertia tensor about xc: Ic : R3 → R3 defined by

Ic(v) =
∫

B

(x− xc)× (v × (x− xc)) dµ.

Workshop on Geometric Control of Mechanical Systems IEEE CDC, December 13, 2004



Geometric modeling of mechanical systems (cont’d) Slide 26

Kinetic energy

• Rigid body B undergoing motion t 7→ (R(t), r(t)).

• Assume Obody is at the center of mass (xc = 0).

• Kinetic energy:

KE(t) =
1
2

∫

B

‖ṙ(t) + Ṙ(t)x‖2R3 dµ

Proposition 5 KE(t) = KEtrans(t) + KErot(t) where

KEtrans(t) = 1
2µ(B)‖ṙ(t)‖2R3 , KErot = 1

2 〈Ic(Ω(t)),Ω(t)〉R3 .

Kinetic energy (cont’d)

• Interconnected mechanical system with configuration manifold Q.

• vq ∈ TQ.

• t 7→ γ(t) ∈ Q a motion for which γ′(0) = vq.

• jth body undergoes motion t 7→ Πj ◦γ(t) = (Rj(t), rj(t)).

• Define ̂Ωj(t) = R−1
j (t)Ṙj(t).

• Define KEj(vq) = 1
2µj(Bj)‖ṙj(0)‖2R3 + 1

2 〈Ij,c(Ωj(0)),Ωj(0)〉R3 .

• This defines a function KEj : TQ→ R which gives the kinetic energy of the jth

body.

• The kinetic energy is the function KE(vq) =
∑k
j=1 KEj(vq).
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Symmetric bilinear maps

• Need a little algebra to describe KE.

• Let V be a R-vector space. Σ2(V) is the set of maps B : V × V→ R such that

1. B is bilinear and

2. B(v1, v2) = B(v2, v1).

• Basis {e1, . . . , en} for V: Bij = B(ei, ej), i, j ∈ {1, . . . , n}, are components of

B.

• [B] is the matrix representative of B.

• An inner product on V is an element G of Σ2(V) with the property that

G(v, v) ≥ 0 and G(v, v) = 0 if and only if v = 0.

Example 6 V = Rn, GRn the standard inner product, {e1, . . . ,en} the standard

basis: (GRn)ij = δij . •

Kinetic energy metric

Proposition 7 There exists an assignment q 7→ G(q) of an inner product on TqQ

with the property that KE(vq) = 1
2G(q)(vq, vq).

• G is the kinetic energy metric and is an example of a Riemannian metric.

• G is a crucial element in any geometric model of a mechanical system.
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Kinetic energy metric (cont’d)

Example 8 Planar rigid body:

I1,c =









∗ ∗ 0

∗ ∗ 0

0 0 J









, Ω1(t) = (R−1
1 (t)Ṙ1)

∨
= (0, 0, θ̇),

KE = 1
2m(ẋ2 + ẏ2) + 1

2Jθ̇
2,

[G] =









J 0 0

0 m 0

0 0 m









.

•

Kinetic energy metric (cont’d)

Example 9 Two-link manipulator:

I1,c =









∗ ∗ 0

∗ ∗ 0

0 0 J1









, I2,c =









∗ ∗ 0

∗ ∗ 0

0 0 J2









,

Ω1(t) = (R−1
1 (t)Ṙ1)

∨
= (0, 0, θ̇1),

Ω2(t) = (R−1
2 (t)Ṙ2)

∨
= (0, 0, θ̇2),

KE = 1
8 (m1 + 4m2)`21θ̇

2
1 + 1

8m2`
2
2θ̇

2
2

+ 1
2m2`1`2 cos(θ1 − θ2)θ̇1θ̇2 + 1

2J1θ̇
2
1 + 1

2J2θ̇
2
2,

[G] =





J1 + 1
4 (m1 + 4m2)`21

1
2m2`1`2 cos(θ1 − θ2)

1
2m2`1`2 cos(θ1 − θ2) J2 + 1

4m2`
2
2



 .

•
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Kinetic energy metric (cont’d)

Example 10 Rolling disk:

I1,c =









Jspin 0 0

0 Jspin 0

0 0 Jroll









, Ω1(t) = (R−1
1 (t)Ṙ1)

∨
= (−θ̇ sinφ, θ̇ cosφ,−φ̇),

KE = 1
2m(ẋ2 + ẏ2) + 1

2Jspinθ̇
2 + 1

2Jrollφ̇
2,

[G] =















m 0 0 0

0 m 0 0

0 0 Jspin 0

0 0 0 Jroll















.

•

Kinetic energy metric (cont’d)

• This whole procedure can be automated in a symbolic manipulation language.

• Snakeboard example:

φ

φ
ψ

θ

`s2

s1

bc,1

bc,2

bf,1

bf,2

bb,1
bb,2

br,1

br,2

• Here Q = R2 × S1 × S1 × S1 with coordinates (x, y, θ, ψ, φ).
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Euler-Lagrange equations

• Free mechanical system with configuration manifold Q and kinetic energy metric

G.

• Question: What are the governing equations?

• Answer: The Euler–Lagrange equations.

• Define the Lagrangian L(vq) = 1
2G(vq, vq).

• Choose local coordinates ((q1, . . . , qn), (v1, . . . , vn)) for TQ.

• The Euler–Lagrange equations are

d
dt

( ∂L

∂vi

)

− ∂L

∂qi
= 0, i ∈ {1, . . . , n}.

• The Euler–Lagrange equations are “first-order” necessary conditions for the

solution of a certain variational problem.

Euler–Lagrange equations

• Let us expand the Euler–Lagrange equations for L = 1
2Gij(q)q̇

iq̇j :

d
dt

( ∂L

∂vi

)

− ∂L

∂qi
= Gij

(

q̈j +Gjk
(∂Gkl
∂qm

− 1
2
∂Glm
∂qk

)

q̇lq̇m
)

= Gij
(

q̈j +
G

Γjlmq̇
lq̇m
)

,

where

G

Γijk =
1
2
Gil
(∂Glj
∂qk

+
∂Glk
∂qj

− ∂Gjk
∂ql

)

, i, j, k ∈ {1, . . . , n}.

• Question: What are these functions
G

Γijk?

Workshop on Geometric Control of Mechanical Systems IEEE CDC, December 13, 2004



Geometric modeling of mechanical systems (cont’d) Slide 36

Affine connections

Definition 11 An affine connection on Q is an assignment to each pair of vector

fields X and Y on Q of a vector field ∇XY , where the assignment satisfies:

(i) (X,Y ) 7→ ∇XY is R-bilinear;

(ii) ∇fXY = f∇XY for all vector fields X and Y , and all functions f ;

(iii) ∇X(fY ) = f∇XY + (LXf)Y for all vector fields X and Y , and all functions

f .

The vector field ∇XY is the covariant derivative of Y with respect to X. •

Affine connections (cont’d)

• Question: What really “characterizes” ∇?

• Coordinate answer: Let (q1, . . . , qn) be coordinates. Define n3 functions Γijk,

i, j, k ∈ {1, . . . , n}, on the chart domain by

∇ ∂

∂qj

∂

∂qk
= Γijk

∂

∂qi
, j, k ∈ {1, . . . , n}.

• Γijk, i, j, k ∈ {1, . . . , n}, are the Christoffel symbols for ∇ in the given

coordinates.
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Affine connections (cont’d)

• A connection is “completely determined” by its Christoffel symbols:

∇XY =
(∂Y i

∂qj
Xj + ΓijkX

jY k
) ∂

∂qi
.

Theorem 12 Let G be a Riemannian metric on a manifold Q. Then there exists a

unique affine connection
G

∇, called the Levi-Civita connection, such that

(i) LX(G(Y, Z)) = G(
G

∇XY, Z) +G(Y,
G

∇XZ) and

(ii)
G

∇XY −
G

∇YX = [X,Y ].

Furthermore, the Christoffel symbols of
G

∇ are
G

Γijk, i, j, k ∈ {1, . . . , n}.

Return to Euler–Lagrange equations

• Had shown that

d
dt

( ∂L

∂vi

)

− ∂L

∂qi
= 0 q̈i +

G

Γijk q̇
j q̇k = 0.

• Interpretation of q̈i + Γijk q̇
j q̇k.

1. Covariant derivative of γ′ with respect to itself:

∇γ′(t)γ′(t) = (q̈i + Γijk q̇
j q̇k) ∂

∂qi .

2. Curves t 7→ γ(t) satisfying ∇γ′(t)γ′(t) = 0 are geodesics and can be thought

of as being “acceleration free.”

3. Mechanically,
G

∇γ′(t)γ′(t)
︸ ︷︷ ︸

acc’n

= 0
︸︷︷︸

force
mass

.

• “Bottom-line”:
G

∇γ′(t)γ′(t) can be computed, and gives access to significant

mathematical tools.

Workshop on Geometric Control of Mechanical Systems IEEE CDC, December 13, 2004



Geometric modeling of mechanical systems (cont’d) Slide 40

Forces

• Some linear algebra: If V is a R-vector space, V∗ is the set of linear maps from

V to R. This is the dual space of V.

• Denote α(v) = 〈α; v〉 for α ∈ V∗ and v ∈ V.

• If {e1, . . . , en} is a basis for V, the dual basis for V∗ is denoted by {e1, . . . , en}
and defined by ei(ej) = δij .

• The dual space of TqQ is denoted by T∗qQ, and called the cotangent space.

• The dual basis to { ∂
∂q1 , . . . ,

∂
∂qn } is denoted by {dq1, . . . ,dqn}.

• A covector field assigns to each point q ∈ Q an element of T∗qQ.

Example 13 The differential of a function is df(q) ∈ T∗qQ defined by

〈df(q);X(q)〉 = LXf(q). In coordinates, df = ∂f
∂qi dq

i. •

Forces (cont’d)

• Newtonian forces on a rigid body: force f applied to the center of mass and a

pure torque τ .

• Need to add these to the Euler–Lagrange equations in the right way.

• Use the idea of infinitesimal work done by a (say) force f in the direction w:

〈f ,w〉R3 .

• For torques, the analogue is 〈τ ,ω〉R3 where ω̂ is the spatial representation of the

angular velocity.

• Interconnected mechanical system with configuration manifold Q, q ∈ Q,

wq ∈ TqQ. Determine force as element of T∗qQ by its action on wq.
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Forces (cont’d)

• Fix body j with Newtonian force f j and torque τ j .

• Let t 7→ γ(t) satisfy γ′(0) = wq, and let t 7→ (Rj(t), rj(t)) = Πj ◦γ(t).

• Let ω̂j(t) = Ṙj(t)R−1
j (t) be the spatial angular velocity.

• Define Ffj ,τ j ∈ T∗qQ by

〈

Ffj ,τ j ;wq
〉

=
〈

f j , ṙj(0)
〉

R3 + 〈τ j ,ωj(0)〉R3 .

• Sum over all bodies to get total external force F ∈ T∗qQ: F =
∑k
j=1 Ffj ,τ j .

Forces (cont’d)

• Note that the forces may depend on time (e.g., control forces) and velocity

(e.g., dissipative forces).

A force is a map F : R× TQ→ T∗Q satisfying F (t, vq) ∈ T∗qQ.

• Thus can write F = Fi(t, q, v)dqi.

• Question: How do forces appear in the Euler–Lagrange equations?

• Answer: Like this:
d
dt

( ∂L

∂vi

)

− ∂L

∂qi
= Fi.

Why? Because this agrees with Newton.
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Forces (cont’d)

• Given a force F : R× TQ→ T∗Q, define a vector force G](F ) : R× TQ→ TQ

by

G(G](F )(t, vq), wq) = 〈F (t, vq);wq〉 .

• In coordinates, G](F ) = GijFj ∂
∂qi .

• The Euler–Lagrange equations subject to force F are then equivalent to

G

∇γ′(t)γ′(t)
︸ ︷︷ ︸

acc’n

= G](F )(t, γ′(t))
︸ ︷︷ ︸

force
mass

b1

b2F1

φ

h

F2

Forces (cont’d)

Example 14 Planar rigid body:

f1,1 = F (cos(θ + φ), sin(θ + φ), 0),

τ 1,1 = F (0, 0,−h sinφ),

f2,1 = (0, 0, 0), τ 2,1 = τ(0, 0, 1),

F 1 = F
(

cos(θ + φ)dx+ sin(θ + φ)dy − h sinφdθ
)

,

F 2 = τdθ.

Equations of motion easily computed. •
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θ1

θ2

ag

F1

F2

s2

s1

b1,1

b1,2

b2,1

b2,2Forces (cont’d)

Example 15 Two-link manipulator:

τ 1,1 = τ1(0, 0, 1), τ 1,2 = (0, 0, 0),

τ 2,1 = −τ2(0, 0, 1), τ 2,2 = τ2(0, 0, 1),

F 1 = τ1dθ1,

F 2 = τ2(dθ2 − dθ1).

Gravitational force and equations of motion easily computed. •

F2

F1

s3

s2

s1

b3

b1b2

Forces (cont’d)

Example 16 Rolling disk:

τ 1,1 = τ1(0, 0, 1),

τ 2,1 = τ2(− sin θ, cos θ, 0),

F 1 = τ1dθ, F 2 = τ2dφ.

Equations of motion cannot be computed yet, because we have not dealt

with. . . nonholonomic constraints. •
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Distributions and codistributions

• A distribution (smoothly) assigns to each point q ∈ Q a subspace Dq of TqQ.

• A codistribution (smoothly) assigns to each point q ∈ Q a subspace Λq of T∗qQ.

• We shall always consider the case where the function q 7→ dim(Dq)
(resp. q 7→ dim(Λq)) is constant, although there are important cases where this

does not hold.

• Given a distribution D, define a codistribution ann(D) by

ann(D)q = {αq | αq(vq) = 0 for all vq ∈ Dq}.

• Given a codistribution Λ, define a distribution coann(Λ) by

coann(Λ)q = {vq | αq(vq) = 0 for all αq ∈ Λq}.

Nonholonomic constraints

• An interconnected mechanical system with configuration manifold Q, kinetic

energy metric G and external force F .

• A nonholonomic constraint restricts the set of admissible velocities at each

point q to lie in a subspace Dq, i.e., it is defined by a distribution D.

s3

s2

s1
(x, y)

φρ

θ

b3

b1b2

Example 17 At a configuration

q with coordinates (x, y, θ, φ),

the admissible velocities satisfy

ẋ = ρφ̇ cos θ

ẏ = ρφ̇ sin θ.

Thus Dq has {X1(q), X2(q)} as basis, where

X1 = ρ cos θ
∂

∂x
+ ρ sin θ

∂

∂y
+

∂

∂φ
, X2 =

∂

∂θ
. •
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Nonholonomic constraints (cont’d)

• Question: What are the equations of motion for a system with nonholonomic

constraints?

• Answer: Determined by the Lagrange–d’Alembert Principle.

• We will skip a lot of physics and metaphysics, and go right to the affine

connection formulation, originally due to Synge [1928].

Nonholonomic constraints (cont’d)

• Let D⊥ be the G-orthogonal complement to D, let PD be the G-orthogonal

projection onto D, and let P⊥D be the G-orthogonal projection onto D⊥.

• Define an affine connection
D

∇ by

D

∇XY =
G

∇XY + (
G

∇XP⊥D)(Y ).

(Not obvious) Theorem 18 The following are equivalent:

(i) t 7→ γ(t) is a trajectory for the system subject to the external force F ;

(ii)
D

∇γ′(t)γ′(t) = PD(G](F )(t, γ′(t))).
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Affine connection control systems

• Control force assumption: Directions in which control forces are applied depend

only on position, and not on time or velocity.

There exists covector fields F 1, . . . , Fm such that the control force takes

the form Fcon =
∑m
a=1 u

aF a.

• Control forces appear in equations of motion after application of G] and

(possibly) projection by PD.

Model effects of input forces by vector fields Y1, . . . , Ym.

Model uncontrolled external forces by vector force Y .

• Nothing to be gained by assuming that affine connection comes from physics.

Use arbitrary affine connection ∇.

• Control equations:

∇γ′(t)γ′(t) =
m
∑

a=1

ua(t)Ya(γ(t)) + Y (t, γ′(t)),

Affine connection control systems (cont’d)

Definition 19 A forced affine connection control system is a 6-tuple

Σ = (Q,∇,D, Y,Y = {Y1, . . . , Ym}, U) where

(i) Q is a manifold,

(ii) ∇ is an affine connection such that ∇XY takes values in D if Y takes values

in D,

(iii) D is a distribution,

(iv) Y is a vector force taking values in D,

(v) Y1, . . . , Ym are D-valued vector fields, and

(vi) and U ⊂ Rm.

Take away “forced” if Y = 0. •
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Affine connection control systems (cont’d)

Definition 20 A control-affine system is a triple

Σ = (M,C = {f0, f1, . . . , fm}, U) where

(i) M is a manifold,

(ii) f0, f1, . . . , fm are vector fields on M, and

(iii) U ⊂ Rm. •

• Control equations:

γ′(t) = f0(γ(t))
︸ ︷︷ ︸

drift
vector
field

+
m
∑

a=1

ua(t) fa(γ(t))
︸ ︷︷ ︸

control
vector
field

.

Affine connection control systems (cont’d)

• Affine connection control systems are control-affine systems.

1. The state manifold is M = TQ.

2. The drift vector field is denoted by S and called the geodesic spray.

Coordinate expression:

f0 = S = vi
∂

∂qi
− Γijkv

jvk
∂

∂vi

(

cf. q̈i + Γijk q̇
j q̇k = 0

)

.

3. The control vector fields are the vertical lifts vlft(Ya) of the vector fields Ya,

a ∈ {1, . . . ,m}. Coordinate expression:

fa = vlft(Ya) = Y ia
∂

∂vi
.

• Can add external force to drift to accommodate forced affine connection control

systems.
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Representations of control equations

• Global representation:

∇γ′(t)γ′(t) =
m
∑

a=1

ua(t)Ya(γ(t)) + Y (t, γ′(t)).

• Natural local representation:

q̈i + Γijk q̇
j q̇k =

m
∑

a=1

uaY ia + Y i, i ∈ {1, . . . ,m}.

Representations of control equations (cont’d)

• Global first-order representation:

Υ′(t) = S(Υ(t)) + vlft(Y )(t,Υ(t)) +
m
∑

a=1

ua(t)vlft(Ya)(Υ(t)).

• Natural first-order local representation:

q̇i = vi, i ∈ {1, . . . , n},

v̇i = − Γijkv
jvk + Y i +

m
∑

a=1

uaY ia , i ∈ {1, . . . , n}.
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Representations of control equations (cont’d)

• Let X = {X1, . . . , Xn} be vector fields defined on a chart domain U with the

property that, for each q ∈ U, {X1(q), . . . , Xn(q)} is a basis for TqQ.

• For q ∈ U and wq ∈ TqQ, write wq = viXi(q); {v1, . . . , vn} are

pseudo-velocities.

• The generalized Christoffel symbols are

∇XjXk =
X

ΓijkXi, j, k ∈ {1, . . . , n}.

• Poincaré local representation:

q̇i = Xi
jv
j , i ∈ {1, . . . , n},

v̇i = −
X

Γijkv
jvk − Ỹ i +

m
∑

a=1

uaỸ ia , i ∈ {1, . . . , n},

where ·̃ means components with respect to the basis X .

Representations of control equations (cont’d)

• In the case when ∇ =
D

∇, this simplifies when we choose {X1, . . . , Xn} such

that {X1(q), . . . , Xk(q)} forms a G-orthogonal basis for Dq.

X

Γδαβ(q) =
1

‖Xδ(q)‖2G
G(

G

∇XαXβ(q), Xδ(q)), α, β, δ ∈ {1, . . . , k}.

Significant advantages in symbolic computation.

• orthogonal Poincaré representation:

q̇i = Xi
αv

α, i ∈ {1, . . . , n},

v̇δ = −
X

Γδαβv
αvβ +

1
‖Xδ‖2G

(

〈F ;Xδ〉+
m
∑

a=1

ua 〈F a;Xδ〉
)

, δ ∈ {1, . . . , k}.
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Representations of control equations (cont’d)

• Seems unspeakably ugly, but is easily automated in symbolic manipulation

language.

• Snakeboard example.

Controllability theory

1. Definitions of controllability and background for control-affine systems

2. Accessibility theorem

3. Controllability definitions and theorems for ACCS

4. Good/bad conditions

5. Examples

6. Snakeboard using Mma

7. Series expansions
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Reachable sets for control-affine systems

• A control-affine system Σ = (M,C = {f0, f1, . . . , fm}, U)

• A controlled trajectory of Σ is a pair (γ, u), where u : I → U is locally

integrable, and γ : I → M is the locally absolutely continuous

γ′(t) = f0(γ(t)) +
m
∑

a=1

ua(t)fa(γ(t))

• Ctraj(Σ, T ) is set of controlled trajectories (γ, u) for Σ defined on [0, T ]

• Define the various sets of points that can be reached by trajectories of a

control-affine system. For x0 ∈ M, the reachable set fof Σ from x0 is

RΣ(x0, T ) = {γ(T ) | (γ, u) ∈ Ctraj(Σ, T ), γ(0) = x0} ,

RΣ(x0,≤ T ) =
⋃

t∈[0,T ]

RΣ(x0, t).

Controllability notions for control-affine systems

Σ = (M,C = {f0, f1, . . . , fm}, U) is C∞-control-affine system, x0 ∈ M

• Σ is accessible from x0 if there exists T > 0 such that int(RΣ(x0,≤t)) 6= ∅ for

t ∈ ]0, T ]

• Σ is controllable from x0 if, for each x ∈ M, there exists a T > 0 and

(γ, u) ∈ Ctraj(Σ, T ) such that γ(0) = x0 and γ(T ) = x

• Σ is small-time locally controllable (STLC) from x0 if there exists T > 0 such

that x0 ∈ int(RΣ(x0,≤t)) for each t ∈ ]0, T ]

x0

RΣ(x0,≤T )

x0

RΣ(x0,≤T )

x0

RΣ(x0,≤T )

not accessible accessible controllable (STLC)
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Involutive closure

• D is a smooth distribution if it has smooth generators

• a distribution is involutive if it is closed under the operation of Lie bracket

• inductively define distributions Lie(l)(D), l ∈ {0, 1, 2, . . . } by

Lie(0)(D)x = Dx

Lie(l)(D)x = Lie(l−1)(D)x + span
{

[X,Y ](x)
∣

∣

X takes values in Lie(l1)(D)

Y takes values in Lie(l2)(D), l1 + l2 = l − 1
}

• the involutive closure Lie(∞)(D) is the pointwise limit

Theorem 21 (Under smoothness and regularity assumptions) Lie(∞)(D)
contains D and is contained in every involutive distribution containing D

Accessibility results for control-affine systems

• Σ = (M,C , U) is an analytic control-affine system

• we say Σ satisfies the Lie algebra rank condition (LARC) at x0 if

Lie(∞)(C )x0 = Tx0M ⇐⇒ rank Lie(∞)(C )x0 = n

• a control set U is proper if 0 ∈ int(conv(U))

Theorem 22 If U is proper, then

Σ is accessible from x0 if and only if Σ satisfies LARC at x0

It is not known if there are useful necessary and sufficient conditions for STLC.

Available results include a sufficient condition given as the “neutralization of bad

bracket by good brackets of lower order”
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Examples of accessible control-affine systems

z

y

x

�r

�















ẋ

ẏ

φ̇

θ̇















=















ρ cosφ

ρ sinφ

0

1















u1 +















0

0

1

0















u2

(unicycle dynamics, simplest wheeled

robot dynamics)

(xr ; yr)

�

�















ẋr

ẏr

θ̇

φ̇















=















cos θ

sin θ
1
` tanφ

0















u1 +















0

0

0

1















u2

Summary

• notions of accessibility and STLC

• tool: Lie bracket and involutive closure

• necessary and sufficient conditions for configuration accessibility

Workshop on Geometric Control of Mechanical Systems IEEE CDC, December 13, 2004



Controllability theory (cont’d) Slide 68

Trajectories and reachable sets of mechanical systems

• (time-independent) general simple mechanical control system

Σ = (Q,G, V, F,D,F = {F 1, . . . , Fm}, U)

• a controlled trajectory for Σ is pair (γ, u), with u : I → U and γ : I → Q,

satisfying γ′(t0) ∈ Dγ(0t) for some t0 ∈ I and

D

∇γ′(t)γ′(t) = −PD(gradV (γ(t))) + PD(G](F (γ′(t))))

+
m
∑

a=1

ua(t)PD(G](F a(γ(t)))).

• Ctraj(Σ, T ) is set of [0, T ]-controlled trajectories for Σ on Q

• reachable sets from states with zero velocity:

RΣ,TQ(q0, T ) = {γ′(T ) | (γ, u) ∈ Ctraj(Σ, T ), γ′(0) = 0q0} ,

RΣ,Q(q0, T ) = {γ(T ) | (γ, u) ∈ Ctraj(Σ, T ), γ′(0) = 0q0} ,

RΣ,TQ(q0,≤T ) =
⋃

t∈[0,T ]

RΣ,TQ(q0, t), RΣ,Q(q0,≤T ) =
⋃

t∈[0,T ]

RΣ,Q(q0, t).

Controllability notions for mechanical systems

Σ = (Q,G, V, F,D,F , U) is general simple mechanical control system with F

time-independent, U proper, and q0 ∈ Q

• Σ is accessible from q0 if there exists T > 0 such that intD(RΣ,TQ(q0,≤t)) 6= ∅
for t ∈ ]0, T ]

• Σ is configuration accessible from q0 if there exists T > 0 such that

int(RΣ,Q(q0,≤t)) 6= ∅ for t ∈ ]0, T ]

• Σ is small-time locally controllable (STLC) from q0 if there exists T > 0 such

that 0q0 ∈ intD(RΣ,TQ(q0,≤t)) for t ∈ ]0, T ].

• Σ is small-time locally configuration controllable (STLCC) from q0 if there

exists T > 0 such that q0 ∈ int(RΣ,Q(q0,≤t)) for t ∈ ]0, T ].
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Controllability for mechanical systems: linearization results

• Let Σ = (Rn,M ,K,F ) be a linear mechanical control system, i.e.,

M and K are square n× n matrices and F is n×m,

M ẍ(t) +Kx(t) = Fu(t)

Theorem 23 The following two statements are equivalent:

1. Σ is STLC from 0⊕ 0

2. the following matrix has maximal rank
[

M−1F M−1K · (M−1F ) · · · (M−1K)n−1 · (M−1F )
]

• Corresponding linearization result where, in coordinates,

M = G(q0), K = HessV (q0), and no dissipation

Corollary 24 If Σ = (Q,G, V = 0,F , U) is underactuated at q0, then its

linearization about 0q0 is not accessible from the origin.

The symmetric product

• given manifold Q with affine connection ∇

• the symmetric product corresponding to ∇ is the operation that assigns to

vector fields X and Y on Q the vector field

〈X : Y 〉 = ∇XY +∇YX

• In coordinates

〈X : Y 〉k =
∂Y k

∂qi
Xi +

∂Xk

∂qi
Y i + Γkij

(

XiY j +XjY i
)
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Symmetric product as a Lie bracket

• Given vector field Y on Q, its vertical lift vlft(Y ) is vector field on TQ

Y = Y i
∂

∂qi
≈











Y 1

...

Y n











, vlft(Y ) = Y i
∂

∂vi
≈





0

Y



 = 0⊕ Y

• Recall: The drift vector field S and called the geodesic spray:

S = vi
∂

∂qi
− Γijkv

jvk
∂

∂vi

• remarkable Lie bracket identities:

[S, vlft(Y )](0q) = − Y (q)⊕ 0q

[vlft(Ya), [S, vlft(Yb)]](vq) = vlft(〈Ya : Yb〉)(vq)

Symmetric closure

• take smooth input distribution Y

• a distribution is geodesically invariant if it is closed under the operation of

symmetric product

• inductively define distributions Sym(l)(Y), l ∈ {0, 1, 2, . . . } by

Sym(0)(Y)q = Yq

Sym(l)(Y)q = Sym(l−1)(Y)q + span
{

〈X : Y 〉 (q)
∣

∣

X takes values in Sym(l1)(Y), Y takes values in Sym(l2)(Y), l1 + l2 = l − 1
}

• the symmetric closure Sym(∞)(Y) is the pointwise limit

Theorem 25 (Under smoothness and regularity assumptions) Sym(∞)(Y)
contains Y and is contained in every geodesically invariant distribution containing Y
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Accessibility results for mechanical systems

• Σ = (Q,∇,D,Y = {Y1, . . . , Ym}, U) is an analytic ACCS

• U proper

• q0 point in Q

Theorem 26 1. Σ is accessible from q0 if and only if

Sym(∞)(Y)q0 = Dq0 and Lie(∞)(D)q0 = Tq0Q

2. Σ is configuration accessible from q0 if and only if

Lie(∞)(Sym(∞)(Y))q0 = Tq0Q

Key result in proof: If CΣ = {S, vlft(Y1), . . . , vlft(Ym)}, then, for q0 ∈ Q,

Lie(∞)(CΣ)0q0
' Lie(∞)(Sym(∞)(Y))q0 ⊕ Sym(∞)(Y)q0

Notions for sufficient test

Consider iterated symmetric products in the vector fields {Y1, . . . , Ym}:

1. A symmetric product is bad if it contains an even number of each of the

vector fields Y1, . . . , Ym, and otherwise is good.

E.g., 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad, 〈Ya : 〈Yb : Yc〉〉 is good

2. The degree of a symmetric product is the total number of input vector fields

comprising the symmetric product.

E.g., 〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 has degree 4

3. If P is a symmetric product and if σ is a permutation on {1, . . . ,m},
define σ(P ) as symmetric product where each Ya is replaced with Yσ(a)
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Controllability mechanisms

given control forces {F 1, . . . , Fm}

accessible accelerations {Y1, . . . , Ym}
Ya = PD(G−1F a)

⊃

⊃

access. velocities Sym(∞)(Y1, . . . , Ym)

{Yi, 〈Yj : Yk〉 , 〈〈Yj : Yk〉 : Yh〉 , . . . }

Lie(∞)(V1, . . . , V`): configurations

accessible via decoupling v.f.s

decoupling v.f.s {V1, . . . , V`}
Vi, 〈Vi : Vi〉 ∈ {Y1, . . . , Ym}

access. confs Lie(∞)(Sym(∞)(Y1, . . . , Ym))

{Yi, 〈Yj : Yk〉 , [Yj, Yk], [〈Yj : Yk〉 , Yh], . . . }

Controllability for ACCS

• ACCS Σ = (Q,∇,D,Y, U), q0 ∈ Q, U proper

• Σ satisfies bad vs good condition if for every bad symmetric product P
∑

σ∈Sm

σ(P )(q0) ∈ spanR {P1(q0), . . . , Pk(q0)}

where P1, . . . , Pk are good symmetric products of degree less than P

Theorem 27

rank Sym(∞)(Y)q0 is maximal

bad vs good

STLC= small-time locally controllable

(q0, 0) u−→ (qf, vf) can reach open set

of configurations and velocities

rank Lie(∞)(Sym(∞)(Y))q0 = n

bad vs good

STLCC= small-time locally configura-

tion controllable

(q0, 0) u−→ (qf, vf) can reach open set

of configurations
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Summary for control-affine systems

• notions of accessibility and STLC

• tool: Lie bracket and involutive closure

• necessary and sufficient conditions for accessibility

Summary for ACCS

• notions of configuration accessibility and STLCC

• tool: symmetric product and symmetric closure

• necessary and sufficient conditions for accessibility

θ

ψ

r

Controllability examples

• Y1 is internal torque and

Y2 is extension force.

◦ Both inputs: not

accessible, configuration

accessible, and STLCC

(satisfies sufficient condition).

◦ Y1 only: configuration accessible but not STLCC.

◦ Y2 only: not configuration accessible.
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F

φ• Y1 is component of

force along center axis, and

Y2 is component of force

perpendicular to center axis.

◦ Y1 and Y2: accessible and STLCC (satisfies sufficient condition).

◦ Y1 and Y3: accessible and STLCC (satisfies sufficient condition).

◦ Y1 only or Y3 only: not configuration accessible.

◦ Y2 only: accessible but not STLCC.

◦ Y2 and Y3: configuration accessible and STLCC (but fails sufficient

condition).

s3

s2

s1

(x, y)

φρ

θ

b3

b1b2• Y1 is “rolling” input

and Y2 is “spinning” input.

◦ Y1 and Y2: configuration

accessible and STLCC

(satisfies sufficient

condition).

◦ Y1 only: not configuration accessible.

◦ Y2 only: not configuration accessible.
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φ

φψ

θ

l

• Y1 rotates wheels and

Y2 rotates rotor.

◦ Y1 and Y2: configuration

accessible and STLCC

(satisfies sufficient

condition).

◦ Y1 only: not configuration accessible.

◦ Y2 only: not configuration accessible.

l1

l2

θ

ψ

• Single input at joint.

• Configuration

accessible, but not STLCC.
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Series expansion for affine connection control systems

Σ = (Q,∇,D,Y = {Y1, . . . , Ym}, U) is an analytic ACCS

∇γ′(t)γ′(t) = Y (t, γ(t))

γ′(0) = 0

γ′(t) =
+∞
∑

k=1

Vk(t, γ(t)) absolute, uniform convergence

V1(t, q) =
∫ t

0

Y (s, q)ds

Vk(t, q) = −1
2

k−1
∑

j=1

∫ t

0

〈Vj(s, q) : Vk−j(s, q)〉 ds

Series: comments γ′(t) =
+∞
∑

k=1

Vk(t, γ(t))






V1(t, q) =
∫ t

0
Y (s, q)ds

Vk+1(t, q) = − 1
2

∑∫ t

0
〈Va(s, q) : Vk−a(s, q)〉 ds

Error bounds:

‖Vk‖ = O(‖Y ‖kt2k−1)

In abbreviated notation

V1 = Y , V2 = −1
2
〈

Y : Y
〉

, V3 =
1
2

〈

〈

Y : Y
〉

: Y
〉

so that

γ′(t) = Y (t, γ(t))− 1
2
〈

Y : Y
〉

(t, γ(t)) +
1
2

〈

〈

Y : Y
〉

: Y
〉

(t, γ(t)) +O(‖Y ‖4t7)
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Kinematic reductions and motion planning

1. Motion planning problems for driftless systems and ACCS

2. How to reduce the MPP for ACCS to the MPP for a driftless system

3. Kinematic reductions: notion, theorems and examples

4. Kinematic controllability

5. Inverse kinematics and example solutions

6. Motion planning problems with animations

Motion planning for driftless systems

• (M, {X1, . . . , Xm}, U) is driftless system:

γ′(t) =
m
∑

a=1

Xa(γ(t))ua(t)

where u are U -valued integrable inputs — let U be a set of inputs

• U -motion planning problem is:

Given x0, x1 ∈ M, find u ∈ U , defined on some interval [0, T ], so that the

controlled trajectory (γ, u) with γ(0) = x0 satisfies γ(T ) = x1
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Motion planning for driftless systems: cont’d

• Examples of U -motion planning problem

1. motion planning problem with continuous inputs

2. motion planning problem using primitives:

U = {e1, . . . ,em,−e1, . . . ,−em}
U is collection of piecewise constant U -valued functions

Then, γ is concatenation of integral curves, possibly running backwards in

time, of the vector fields X1, . . . , Xm. Each curves is a primitive

• Motion planning using primitives Consider (M, {X1, . . . , Xm},Rm).

If Lie(∞)(X) = TM, then, for each x0, x1 ∈ M, there exist k ∈ N, t1, . . . , tk ∈ R,

and a1, . . . , ak ∈ {1, . . . ,m} such that

x1 = Φ
Xak
tk

◦ · · · ◦ΦXa1
t1 (x0)

Technical conditions: smoothness, complete vector fields, M connected

Motion planning for ACCS

• (Q,∇,D, {Y1, . . . , Ym}, U) is affine connection control system (ACCS)

∇γ′(t)γ′(t) =
m
∑

a=1

ua(t)Ya(γ(t))

• U is set of U -valued integrable inputs

• U -motion planning problem is:

Given q0, q1 ∈ Q, find u ∈ U , defined on some interval [0, T ], so that the

controlled trajectory (γ, u) with γ′(0) = 0q0 has the property that

γ′(T ) = 0q1
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How to reduce the MPP for ACCS to the MPP for a driftless system

Key idea: Kinematic Reductions

Goal: (low-complexity) kinematic representations for mechanical control systems

Consider an ACCS, i.e., systems with no potential energy, no dissipation

1. ACCS model with accelerations as control inputs mechanical systems:

∇γ′(t)γ′(t) =
m
∑

a=1

Ya(γ(t))ua(t) Y = span {Y1, . . . , Ym}

2. driftless = kinematic model with velocities as control inputs

γ′(t) =
∑̀

b=1

Vb(γ(t))wb(t) V = span {V1, . . . , V`}

` is the rank of the reduction

When can a second order system follow the solution of a first order?

�

f

ex:
Can follow any straight line and can turn

2 preferred velocity fields

(plus, configuration controllability)

�

f

dy

dx
F2

F1

h

�1

�2 �3

(x; y)

�� �

�� �
 � �

�

ry

x

Ok ? ? ?
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Kinematic reductions V = span {V1, . . . , V`} is a kinematic reduction if any

curve q : I → Q solving the (controlled) kinematic model can be lifted to a solution

of the (controlled) dynamic model.

rank 1 reductions are called decoupling vector fields

Theorem 28 The kinematic model induced by {V1, . . . , V`} is a

kinematic reduction of (Q,∇,D, {Y1, . . . , Ym}, U)

if and only if

(i) V ⊂ Y

(ii) 〈V : V〉 ⊂ Y

Examples of kinematic reductions

�� �

�� �
 � �

�

ry

x

Two rank 1 kinematic reductions (decoupling vector fields)

no rank 2 kinematic reductions
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Three link planar manipulator with passive link

�1

�2 �3

(x; y)

Actuator Decoupling Kinematically

configuration vector fields controllable

(0,1,1) 2 yes

(1,0,1) 2 yes

(1,1,0) 2 yes

When is a mechanical system kinematic?

When are all dynamic trajectories executable by a single kinematic model?

A dynamic model is maximally reducible (MR) if all its controlled trajectory

(starting from rest) are controlled trajectory of a single kinematic reduction.

Theorem 29 (Q,∇,D, {Y1, . . . , Ym}, U) is maximally reducible

if and only if

(i) the kinematic reduction is the input distribution Y

(ii) 〈Y : Y〉 ⊂ Y
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Examples of maximally reducible systems

z

y

x

�r

�















ẋ

ẏ

φ̇

θ̇















=















ρ cosφ

ρ sinφ

0

1















v +















0

0

1

0















ω

(unicycle dynamics, simplest wheeled

robot dynamics)

(xr ; yr)

�

�















ẋr

ẏr

θ̇

φ̇















=















cos θ

sin θ
1
` tanφ

0















v +















0

0

0

1















ω

Kinematic controllability

Objective: controllability notions and tests for mechanical systems and reductions

Consider: (Q,∇,D, {Y1, . . . , Ym}, U)

V1, . . . , V` decoupling v.f.s

rank Lie(∞)(V1, . . . , V`) = n

KC= locally kinematically controllable

(q0, 0) u−→ (qf, 0) can reach open set of

configurations by concatenating motions

along kinematic reductions

rank Sym(∞)(Y) = n,

“bad vs good”

STLC= small-time locally controllable

(q0, 0) u−→ (qf, vf) can reach open set

of configurations and velocities

rank Lie(∞)(Sym(∞)(Y)) =
n,

“bad vs good”

STLCC= small-time locally configuration

controllable

(q0, 0) u−→ (qf, vf) can reach open set

of configurations
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Controllability mechanisms

given control forces {F 1, . . . , Fm}

accessible accelerations {Y1, . . . , Ym}
Ya = PD(G−1F a)

⊃

⊃

access. velocities Sym(∞)(Y1, . . . , Ym)

{Yi, 〈Yj : Yk〉 , 〈〈Yj : Yk〉 : Yh〉 , . . . }

Lie(∞)(V1, . . . , V`): configurations

accessible via decoupling v.f.s

decoupling v.f.s {V1, . . . , V`}
Vi, 〈Vi : Vi〉 ∈ {Y1, . . . , Ym}

access. confs Lie(∞)(Sym(∞)(Y1, . . . , Ym))

{Yi, 〈Yj : Yk〉 , [Yj, Yk], [〈Yj : Yk〉 , Yh], . . . }

Controllability inferences

STLC = small-time locally controllable

STLCC = small-time locally configuration controllable

KC = locally kinematically controllable

MR-KC = maximally reducible, locally kinematically controllable

STLC

STLCC

KC MR-KC

There exist counter-examples for each missing implication sign.
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Cataloging kinematic reductions and controllability of example systems
System Picture Reducibility Controllability

planar 2R robot

single torque at either joint:

(1, 0), (0, 1)
n = 2,m = 1

(1, 0): no reductions

(0, 1): maximally reducible

accessible

not accessible or STLCC

roller racer

single torque at joint

n = 4,m = 1
no kinematic reductions accessible, not STLCC

planar body with single force

or torque

n = 3,m = 1
decoupling v.f. reducible, not accessible

planar body with single gen-

eralized force

n = 3,m = 1
no kinematic reductions accessible, not STLCC

planar body with two forces

n = 3,m = 2
two decoupling v.f. KC, STLC

robotic leg

n = 3,m = 2
two decoupling v.f., maxi-

mally reducible
KC

planar 3R robot, two torques:

(0, 1, 1), (1, 0, 1), (1, 1, 0)
n = 3,m = 2

(1, 0, 1) and (1, 1, 0): two de-

coupling v.f.

(0, 1, 1): two decoupling v.f.

and maximally reducible

(1, 0, 1) and (1, 1, 0): KC

and STLC

(0, 1, 1): KC

rolling penny

n = 4,m = 2
fully reducible KC

snakeboard

n = 5,m = 2
two decoupling v.f. KC, STLCC

3D vehicle with 3 generalized

forces

n = 6,m = 3
three decoupling v.f. KC, STLC
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Summary

• relationship between trajectories of dynamic and of kinematic models of

mechanical systems

• kinematic reductions (multiple, low rank), and maximally reducible systems

• controllability mechanisms, e.g., STLC vs kinematic controllability

Trajectory design via inverse kinematics

Objective: find u such that (qinitial, 0) u−→ (qtarget, 0)

Assume:

1. (Q,∇,D, {Y1, . . . , Ym}, U) is kinematically controllable

2. Q = G and decoupling v.f.s {V1, . . . , V`} are left-invariant
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Left invariant vector fields on matrix Lie groups

• Matrix Lie groups are manifolds of matrices closed under the operations of

matrix multiplication and inversion

• Example: SO(3) =
{

R ∈ R3×3
∣

∣ RRT = I3,det(R) = +1
}

• left invariant vector fields have the following properties:

1. Ṙ(t) = XV (R(t)) = R(t) · V for some matrix V (linear dependence)

2. flow of left invariant vector field is equal to left multiplication

ΦXVt (R0) = R0 · exp(tV )

3. exp(tV ) ∈ SO(3), that is, V ∈ so(3) set of skew symmetric matrices

4. For e1, e2, e3 the standard basis of R3,

ê1 =









0 0 0

0 0 −1

0 1 0









, ê2 =









0 0 −1

0 0 0

1 0 0









, ê3 =









0 −1 0

1 0 0

0 0 0









Trajectory design via inverse kinematics

Objective: find u such that (qinitial, 0) u−→ (qtarget, 0)

Assume:

1. (Q,∇,D, {Y1, . . . , Ym}, U) is kinematically controllable

2. Q = G and decoupling v.f.s {V1, . . . , V`} are left-invariant

=⇒ matrix exponential exp: g→ G gives closed-form flow

=⇒ composition of flows is matrix product

Objective: select a finite-length combination of k flows along {V1, . . . , V`} and

coasting times {t1, . . . , tk} such that

q−1
initialqtarget = gdesired = exp(t1Va1) · · · exp(tkVak).

No general methodology is available =⇒ catalog for relevant example systems

SO(3),SE(2),SE(3), etc
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Inverse-kinematic planner on SO(3) Any underactuated controllable system on

SO(3) is equivalent to

V1 = ez = (0, 0, 1) V2 = (a, b, c) with a2 + b2 6= 0

Motion Algorithm: given R ∈ SO(3), flow along (ez, V2, ez) for coasting times

t1 = atan2 (w1R13 + w2R23,−w2R13 + w1R23) t2 = acos
(

R33 − c2

1− c2

)

t3 = atan2 (v1R31 + v2R32, v2R31 − v1R32)

where z =





1− cos t2

sin t2



,





w1

w2



 =





ac b

cb −a



 z,





v1

v2



 =





ac −b

cb a



 z

Local Identity Map = R
IK−→ (t1, t2, t3) FK−→ exp(t1ez) exp(t2V2) exp(t3ez)

Inverse-kinematic planner on SO(3): simulation The system can rotate about

(0, 0, 1) and (a, b, c) = (0, 1, 1)

Rotation from I3 onto target rotation exp(π/3, π/3, 0)

As time progresses, the body is translated along the inertial x-axis
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Inverse-kinematic planner for Σ1-systems SE(2) First class of underactuated

controllable system on SE(2) is

Σ1 = {(V1, V2)| V1 = (1, b1, c1), V2 = (0, b2, c2), b22 + c22 = 1}

Motion Algorithm: given (θ, x, y), flow along (V1, V2, V1) for coasting times

(t1, t2, t3) = (atan2 (α, β) , ρ, θ − atan2 (α, β))

where ρ =
√

α2 + β2 and





α

β



 =





b2 c2

−c2 b2













x

y



−





−c1 b1

b1 c1









1− cos θ

sin θ









Identity Map = (θ, x, y) IK−→ (t1, t2, t3) FK−→ exp(t1V1) exp(t2V2) exp(t3V1)

Inverse-kinematic planner for Σ2-systems SE(2) Second and last class of

underactuated controllable system on SE(2):

Σ2 = {(V1, V2)| V1 = (1, b1, c1), V2 = (1, b2, c2), b1 6= b2 or c1 6= c2}

Motion Algorithm: given (θ, x, y), flow along (V1, V2, V1) for coasting times

t1 = atan2
(

ρ,
√

4− ρ2
)

+ atan2 (α, β) t2 = atan2
(

2− ρ2, ρ
√

4− ρ2
)

t3 = θ − t1 − t2

where ρ=
√

α2 + β2,





α

β



 =





c1 − c2 b2 − b1
b1 − b2 c1 − c2













x

y



−





−c1 b1

b1 c1









1− cos θ

sin θ









Local Identity Map = (θ, x, y) IK−→ (t1, t2, t3) FK−→ exp(t1V1) exp(t2V2) exp(t3V1)
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Inverse-kinematic planners on SE(2): simulation

Inverse-kinematics planners for sample systems in Σ1 and Σ2. The systems

parameters are (b1, c1) = (0, .5), (b2, c2) = (1, 0). The target location is (π/6, 1, 1).

Inverse-kinematic planners on SE(2): snakeboard simulation

snakeboard as Σ2-system
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Inverse-kinematic planners on SE(2)× R: simulation 4 dof system in R3, no

pitch no roll

kinematically controllable via body-fixed constant velocity fields:

V1= rise and rotate about inertial point; V2= translate forward and dive

The target location is (π/6, 10, 0, 1)

Inverse-kinematic planners on SE(3): simulation

kinematically controllable via

body-fixed constant velocity fields:

V1= translation along 1st axis

V2= rotation about 2nd axis

V3= rotation about 3rd axis

V3 : 0→ 1: rotation about 3rd axis

V2 : 1→ 2: rotation about 2nd axis

V1 : 2→ 3: translation along 1st axis

V3 : 3→ 4: rotation about 3rd axis

V2 : 4→ 5: rotation about 2nd axis

V3 : 5→ 6: rotation about 3rd axis

xg

zg

yg

x0

z0
y0

0

1

2

3

4

5

6
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Summary

• relationship between trajectories of dynamic and of kinematic models of

mechanical systems

• kinematic reductions (multiple, low rank), and maximally reducible systems

• controllability mechanisms, e.g., STLC vs kinematic controllability

• systems on matrix Lie groups

• inverse-kinematics planners

Analysis and design of oscillatory controls for ACCS

1. Introduction to Averaging

2. Survey of averaging results

3. Two-time scale averaging analysis for mechanical systems

4. Analysis via the Averaged Potential

5. Control design via Inversion Lemma

6. Tracking results and examples
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Introduction to averaging

• Oscillations play key role in animal and robotic locomotion

• oscillations generate motion in Lie bracket directions useful for trajectory design

• objective is to study oscillatory controls in mechanical systems:

∇γ′(t)γ′(t) = Y (t, γ(t)),
∫ T

0

Y (t, q)dt = 0, q ∈ Q.

• oscillatory signals: periodic large-amplitude, high-frequency

Survey of results on averaging

• Early developments: Lagrange, Jacobi, Poincaré

• Oscillatory Theory:

◦ Dynamical Systems: Bogoliubov Mitropolsky, Guckenheimer Holmes, Sanders

Verhulst, . . .

◦ Control Systems: Bloch, Khalil . . .

• Related Work:

◦ General ODE’s: Kurzweil-Jarnik, Sussmann-Liu,

◦ (Electro)Mechanical Systems: Hill, Mathieu, Bailleiul, Kapitsa, Levi . . .

◦ Series Expansions: Magnus, Chen, Brockett, Gilbert, Sussmann, Kawski . . .

◦ Time-dependent vector fields: Agrachev, Gramkrelidze, . . .

◦ Small-amplitude averaging and high-order averaging: Sarychev, Vela, . . .
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Averaging for systems in standard form

• for ε > 0, system in standard form

γ′(t) = εX(t, γ(t)), γ(0) = x0

• assume X is T -periodic, define the averaged vector field

X(x) =
1
T

∫ T

0

X(τ, x)dτ.

• define the averaged trajectory t 7→ η(t) ∈ M by

η′(t) = εX(η(t)), η(0) = x0

Theorem 30 (First-order Averaging Theorem)

γ(t)− η(t) = O(ε) for all t ∈ [0,
t0
ε

]

If X has linearly asymptotically stable point, then estimate holds for all time

Averaging for systems in standard oscillatory form

• for ε > 0, system in standard oscillatory form

γ′(t) = X(t, γ(t)) +
1
ε
Y
( t

ε
, t, γ(t)

)

, γ(0) = x0

• Assumptions:

1. Y is T -periodic and zero-mean in first argument

2. the vector fields x 7→ Y (τ, t, x), at fixed (τ, t), are commutative

• Useful constructions:

1. given diffeomorphism φ and vector field X, the pull-back vector field

φ∗X = Tφ−1 ◦X ◦φ

2. given extended state xe = (t, x), define Xe(xe) = (1, X(xe)), and

Ye(τ, xe) = (0, Y (τ, xe))

3. define F as two-time scale vector field by

(1, F (τ, xe)) =
(

(ΦYe
0,τ )∗Xe

)

(xe)
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Averaging for systems in standard oscillatory form: cont’d

• define F as average with respect to τ

• for fixed λ0, compute the trajectories

ξ′(t) = F (t, ξ(t))

η′(t, λ0) = Y (t, λ0, η(t))

with initial conditions: ξ(0) = x0 and η(0) = ξ(t)
(note τ 7→ η(τ, t) equals ξ(t) plus zero-mean oscillation)

Theorem 31 (Oscillatory Averaging Theorem)

γ(t)− η(t/ε, t) = O(ε) for all t ∈ [0, t0]

Two-time scale averaging for mechanical systems

• for ε ∈ R+, consider the forced ACCS (Q,∇, Y,D,Y = {Y1, . . . , Ym},Rm):

∇γ′(t)γ′(t) = Y (t, γ′(t)) +
m
∑

a=1

1
ε
ua
( t

ε
, t
)

Ya(γ(t))

where Y is an affine map of the velocities

• assume the two-time scale inputs u = (u1, . . . , um) : R̄+ × R̄+ → Rm are

T -periodic and zero-mean in their first argument

• define the symmetric positive-definite curve Λ : R̄+ → Rm×m by

Λab(t) = 1
2

(

U(a)U(b)(t)− U (a)(t)U (b)(t)
)

, a, b ∈ {1, . . . ,m}

where

U(a)(τ, t) =
∫ τ

0

ua(s, t)ds, U (a)(t) =
1
T

∫ T

0

U(a)(τ, t)dτ
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• define the averaged ACCS

∇ξ′(t)ξ′(t) = Y (t, ξ′(t))−
m
∑

a,b=1

Λab(t) 〈Ya : Yb〉 (ξ(t))

with initial condition

ξ′(0) = γ′(0) +
m
∑

a=1

U (a)(0)Ya(γ(0))

Theorem 32 (Oscillatory Averaging Theorem for ACCS) there exists

ε0, t0 ∈ R+ such that, for all t ∈ [0, t0] and for all ε ∈ (0, ε0),

γ(t) = ξ(t) +O(ε),

γ′(t) = ξ′(t) +
m
∑

a=1

(

U(a)( tε , t)− U (a)(t)
)

Ya(ξ(t)) +O(ε).

If oscillatory inputs depend only on fast time, and if the averaged ACCS has linearly

asymptotically stable equilibrium configuration, then estimate holds for all time

Averaging analysis with potential control forces

• when is the averaged system again a simple mechanical system?

• consider simple mechanical control system (Q,G, V, Fdiss,F ,Rm)

1. no constraints

2. F = {dφ1, . . . ,dφm}, where φa : Q→ R for a ∈ {1, . . . ,m}
3. Fdiss is linear in velocity

• define input vector fields

Ya(q) = gradφa(q), (gradφa)i = Gij
∂φa

∂qj

Lemma 33 symmetric product between vector fields satisfies
〈

gradφa : gradφb
〉

= grad
〈

φa : φb
〉

where symmetric product between functions (Beltrami bracket) is:

〈

φa : φb
〉

=
〈

dφa,dφb
〉

= Gij
∂φa

∂qi
∂φb

∂qj
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Averaging via the averaged potential

G

∇γ′(t)γ′(t) = − gradV (γ(t)) +G](Fdiss(γ′(t)))

+
m
∑

a=1

1
ε
ua
( t

ε

)

grad(φa)(γ(t)),

G

∇ξ′(t)ξ′(t) = − gradVavg(ξ(t)) +G](Fdiss(ξ′(t)))

Vavg = V +
m
∑

a,b=1

Λab
〈

φa : φb
〉

.

Example: stabilizing a two-link manipulator via oscillations

�1
�

�2

PSfrag replacements
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PSfrag replacements

π/2
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time (sec)

θ 1
,θ

2
(r

ad
)

u = −θ1 +
1
ε

cos
(

t

ε

)

Two-link damped manipulator with oscillatory control at first joint. The averaging

analysis predicts the behavior. (the gray line is θ1, the black line is θ2).
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Summary

• averaging theorem for standard form

• averaging theorem for standard oscillatory form

• averaging for mechanical systems with oscillatory controls

• analysis via the averaged potential

Design of oscillatory controls via approximate inversion

• Objective: design oscillatory control laws for ACCS

• stabilization and tracking for systems that are not linearly controllable

• setup: consider ACCS (Q,∇, Y,D,Y = {Y1, . . . , Ym},Rm) where Y is an affine

map of the velocities

• define averaging product A[0,T ] as the map taking a pair of two-time scale

vector fields into a time-dependent vector field by

A[0,T ](V,W )(t, q) = − 1
2T

∫ T

0

〈∫ τ1

0

V (τ2, t, q)dτ2 :
∫ τ1

0

W (τ2, t, q)dτ2

〉

dτ1

+
1

2T 2

〈

∫ T

0

∫ τ1

0

V (τ2, t, q)dτ2dτ1 :
∫ T

0

∫ τ1

0

W (τ2, t, q)dτ2dτ1

〉

.
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Basis-free restatement of averaging theorem

Corollary 34 For ε ∈ R+, consider governing equations

∇γ′(t)γ′(t) = Y (t, γ′(t)) +
1
ε
W
( t

ε
, t, γ(t)

)

,

(i) W takes values in Y

(ii) q 7→W (τ, t, q), for (τ, t) ∈ R̄+ × R̄+, are commutative

Then, the averaged forced affine connection system is

∇ξ′(t)ξ′(t) = Y (t, ξ′(t)) + A[0,T ](W,W )(t, ξ(t))

Problem 35 (Inversion Objective) Given any time-dependent vector field X,

compute two vector fields taking values in Y

1. WX,slow is time-dependent

2. WX,osc is two-time scales, periodic and zero-mean in fast time scale

such that

WX,slow + A[0,T ](WX,osc,WX,osc) = X (1)

Controllability assumption and constructions

• Controllability Assumption: for all a ∈ {1, . . . ,m}, 〈Ya : Ya〉 ∈ Y

(i) smooth functions σba, a, b ∈ {1, . . . ,m}, such that, for all a ∈ {1, . . . ,m}

〈Ya : Ya〉 =
m
∑

b=1

σbaYb

(ii) for T ∈ R+ and i ∈ N, define ϕi : R→ R by

ϕi(t) =
4πi
T

cos
(

2πi
T
t

)

(iii) define the lexicographic ordering as the bijective map

lo :
{

(a, b) ∈ {1, . . . ,m}2
∣

∣ a < b
}

→ {1, . . . , 1
2m(m− 1)} given by

lo(a, b) =
∑a−1
j=1 (n− j) + (b− a)
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Inversion algorithm

• For an ACCS with Controllability Assumption, assume

X(t, q) =
m
∑

a=1

ηa(t, q)Ya(q) +
m
∑

b,c=1,b<c

ηbc(t, q) 〈Yb : Yc〉 (q)

• Then Inversion Objective (1) is solved by

WX,slow(t, q) =
m
∑

a=1

uaX,slow(t, q)Ya(q), WX,osc(τ, t, q) =
m
∑

a=1

uaX,osc(τ, t, q)Ya(q)

where

uaX,slow(t, q) = ηa(t, q) +
m
∑

b=1

(

b− 1 +
m
∑

i=b+1

(ηbi(t, q))2

4

)

σab (q)

+
m
∑

b=a+1

(1
2
ηab
(

L Yaη
ab
)

−L Ybη
ab
)

(t, q),

uaX,osc(τ, t, q) =
a−1
∑

i=1

ϕlo(i,a)(τ)− 1
2

m
∑

i=a+1

ηai(t, q)ϕlo(a,i)(τ)

Tracking via oscillatory controls Consider ACCS

(Q,∇, Y,D = TQ,Y = {Y1, . . . , Ym},Rm) satisfying Controllability Assumption

and span {Ya, 〈Yb : Yc〉 | a, b, c ∈ {1, . . . ,m}} = TQ

Problem 36 (Vibrational Tracking) given reference γref, find oscillatory controls

such that closed-loop trajectory equals γref up to an error of order ε

Vibrational tracking is achieved by oscillatory state feedback

uaX,slow(t, vq) = uaref(t) +
m
∑

b=1

(

b− 1 +
m
∑

c=b+1

(ubcref(t))
2

4

)

σab (q),

uaX,osc(τ, t, vq) =
a−1
∑

c=1

ϕlo(c,a)(τ)− 1
2

m
∑

c=a+1

uacref(t)ϕlo(a,c)(τ)

where the fictitious inputs are defined by

∇γ′ref(t)
γ′ref(t)−Y (t, γ′ref(t)) =

m
∑

a=1

uaref(t)Ya(γref(t))+
m
∑

b,c=1
b<c

ubcref(t) 〈Yb : Yc〉 (γref(t))

Workshop on Geometric Control of Mechanical Systems IEEE CDC, December 13, 2004



Analysis and design of oscillatory controls for ACCS (cont’d) Slide 133

Example: A second-order nonholonomic integrator Consider

ẍ1 = u1 , ẍ2 = u2 , ẍ3 = u1x2 + u2x1 ,

Controllability assumption ok. Design controls to track (xd1(t), xd2(t), xd3(t)):

u1 = ẍd1 +
1√
2ε

(

ẍd3 − ẍd1xd2 − ẍd2xd1
)

cos
(

t

ε

)

u2 = ẍd2 −
√

2
ε

cos
(

t

ε

)
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Example: A planar vertical takeoff and landing (PVTOL) aircraft

z

x
�

mg

w1 +mg
w2=2

�

4

w2=2

�

4

ẋ = cos θvx − sin θvz

ż = sin θvx + cos θvz

θ̇ = ω

v̇x − vzω = −g sin θ + (−k1/m)vx + (1/m)u2

v̇z + vxω = −g(cos θ − 1) + (−k2/m)vz + (1/m)u1

ω̇ = (−k3/J)ω + (h/J)u2

Q = SE(2) : Configuration and velocity space via (x, z, θ, vx, vz, ω). x and z are

horizontal and vertical displacement, θ is roll angle. The angular velocity is ω and

the linear velocities in the body-fixed x (respectively z) axis are vx (respectively vz).

u1 is body vertical force minus gravity, u2 is force on the wingtips (with a net

horizontal component). ki-components are linear damping force, g is gravity

constant. The constant h is the distance from the center of mass to the wingtip,

m and J are mass and moment of inertia.
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Oscillatory controls ex. #2: PVTOL model

Controllability assumption ok. Design

controls to track (xd(t), zd(t), θd(t)):

z

x
�

mg

w1 +mg
w2=2

�

4

w2=2

�

4

u1 =
J

h
θ̈d +

k3

h
θ̇d −

√
2
ε

cos
(

t

ε

)

u2 =
h

J
− f1 sin θd + f2 cos θd − J

√
2

hε

(

f1 cos θd + f2 sin θd
)

cos
(

t

ε

)

,

where we let c = J
h θ̈

d + k3
h θ̇

d and

f1 = mẍd +
(

k1 cos2 θd + k2 sin2 θd
)

ẋd +
sin(2θd)

2
(k1 − k2)żd +mg sin θd − c cos θd ,

f2 = mz̈d +
sin(2θd)

2
(k1 − k2)ẋd +

(

k1 sin2 θd + k2 cos2 θd
)

żd +mg(1− cos θd)− c sin θd .

PVTOL simulations: trajectories and error
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Trajectory design at ε = .01. Tracking errors at t = 10.
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Summary

• averaging theorem for standard form

• averaging theorem for standard oscillatory form

• averaging for mechanical systems with oscillatory controls

• analysis via the averaged potential

• inversion based on controllability

• fairly complete solution to stabilization and tracking problems

Summary

1. Introduction

2. Modeling of simple mechanical systems

3. Controllability

4. Kinematic reductions and motion planning

5. Analysis and design of oscillatory controls

6. Open problems. . .
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Open problems

Modeling

1. variable-rank distributions in nonholonomic mechanics

2. affine nonholonomic constraints

3. Riemannian geometry of systems with symmetry

4. infinite-dimensional systems

5. control forces that are not basic

6. tractable symbolic models for systems with many degrees of freedom

Controllability

1. linear controllability of systems with gyroscopic and/or dissipative forces

2. controllability along relative equilibria

3. acccessibility from non-zero initial conditions

4. weaker sufficient conditions for controllability

Workshop on Geometric Control of Mechanical Systems IEEE CDC, December 13, 2004



Slide 139

Kinematic reductions and motion planning

1. understanding when the kinematic reduction allows for low-complexity

calculation of motion plans for underactuated systems

2. motion planning with locality constraints

3. relationship with theory of consistent abstractions

4. feedback control to stabilize trajectories of the kinematic reductions

5. design of stabilization algorithms based on kinematic reductions

Analysis and design of oscillatory controls

1. series expansions from non-zero initial conditions

2. motion planning algorithms based on small-amplitude controls

3. higher-order averaging and inversion + relationship with higher order

controllability

4. analysis of locomotion gaits
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