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1. Introduction—what will you learn in this class?

• Consider the following example of a hovercraft in the plane:

s2

s1
Ospatial

b1

b2

Obody

F

h

• The force F can have its direction and magnitude arbitrarily specified, and the

body moves on the plane without friction.

• Problems:

1. Can one steer between arbitrary configurations at rest?

2. How can one steer between arbitrary configurations at rest?

3. If the motor rotating the fan angle breaks, what is the answer to the preceding

two questions?

• In practice, the dynamics of the fan are significant, and so have to be modelled:

s2

s1

b1,1

b1,2F

b2,1

b2,2

h

τ

4. With the additional dynamics, what are the answers to the first two questions?

• Answers:

1. Yes. This is not a completely trivial problem, but we will learn to answer it in

this class.

2. The answer to 1 that we will give is, in fact, constructive, so we will also

answer 2.
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3. The answer to 3 depends on the angle the fan is pointing when the motor

breaks.

(a) If the fan is pointing straight ahead or straight back, then it is clear that the

answer to 1 is, “No.” Indeed, one can only reach configurations that are

aligned with the initial configuration.

(b) At any other fan angle, the answer is not so clear, and in fact is not perfectly

understood in the literature. What is true is that one cannot steer to all

configurations near the initial configuration without making large excursions.

4. Here the question becomes surprisingly complicated. The answer to 1 is, “No,”

provided the question is posed clearly.

• What is the point?

• This example is a “simple” one in the sense that the equations of motion are not

exceedingly complicated. And the questions we are asking are basic ones.

Nonetheless, they are nontrivial to answer.

• One way to answer these questions is to understand very well the models involved.

That is what this class is about.

• We will understand quite precisely the ideas of “configuration,” “velocity,”

“force,” “acceleration,” etc.
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2. Configuration spaces and differentiable manifolds

• We now begin skipping between Chapters 3 and 4. Initially, we consider

Sections 3.2 and 4.1 together.

2.1. Configuration space

• A particle is an object with mass concentrated at a point.

• A rigid body is an object with mass and volume.

• We will be more careful with these “definitions” later.

• A free mechanical system is a collection P1, . . . , PNP of particles and

B1, . . . , BNB of rigid bodies which move independently of one another.

• How do we specify a configuration of a free mechanical system?

• We do so by specifying separately the configuration of each particle, and each rigid

body.

• To specify the location of a particle, choose an inertial reference frame

(Ospatial, {s1, s2, s3}) consisting of a spatial origin Ospatial and an orthonormal

frame {s1, s2, s3} at Ospatial. The position of the particle Pj is exactly determined

by a vector rj ∈ R3 from Ospatial to the location of Pj .

• To specify the position of a body, additionally specify a body reference frame

(Obody, {b1, b2, b3}) that is fixed to move with the body.

Ospatial

s1

s2

s3

r

Obody

b1
b2

b3
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• The body Bj is specified by the vector rj = Obody −Ospatial ∈ R3, along with a

specification of the orientation of the orthonormal frame {b1, b2, b3} relative to

{s1, s2, s3}.

• This orientation is determined by specifying the components of ba, a ∈ {1, 2, 3},
relative to the basis {s1, s2, s3}:

ba = R1as1 +R2as2 +R3as3.

• The matrix

Rj =









R11 R12 R13

R21 R22 R23

R31 R32 R33









is an orthogonal matrix since the bases {b1, b2, b3} and {s1, s2, s3} are

orthonormal.

• If one chooses the bases to have the same orientation (say, right-handed), then

Rj ∈ SO(3), where

SO(3) =
{

R ∈ R3×3
∣

∣ RRT = I3, detR = 1
}

is the special orthogonal group in three-dimensions. (Removing the condition

that detR = 1 gives O(3), the orthogonal group.)

• Punchline: To specify the configuration of a rigid body one specifies a point in

SO(3)× R3. Therefore, the configuration of a free mechanical system is specified

by a point in

Qfree = R3 × · · · × R3

︸ ︷︷ ︸

NP copies

× (SO(3)× R3)× · · · × (SO(3)× R3)
︸ ︷︷ ︸

NB copies

.
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• Now suppose we have interconnections between particles and bodies, as is almost

always the case.

Example 2.1 Two-link planar manipulator:

θ1

θ2

s2

s1

b1,1

b1,2

b2,1

b2,2

Here we have

Qfree = (SO(3)× R3)× (SO(3)× R3).

However, the actual configurations of the system are specified by the angles θ1 and

θ2 as shown in the figure. Where do these angles live? Each angle is essentially a

number, keeping in mind that, if two numbers differ by an integer multiple of 2π,

then they are really the same angle. More concretely, each angle is measured by a

point on the circle

S1 =
{

(x, y) ∈ R2
∣

∣ x2 + y2 = 1
}

.

Thus the configurations of this simple two-link robot are specified by a point in

S1 × S1. �

• Issues arising from these considerations:

1. How does one do calculations on configuration spaces? We have only been

taught to do calculations on Rn, or open subsets of Rn.

2. In practice, one simply “chooses coordinates” for the configuration space, and

then pretends that one is then working with Euclidean space. This is fine, but

one should be sure one talks about things that do not depend on a particular

choice of coordinates.

3. To get around these issues, we dig into differential geometry. This will take

several weeks.
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Configuration spaces and differentiable manifolds (cont’d)

Recall: a diffeomorphism is a bijection f : U→ V between open subsets

U,V ⊂ Rn which is infinitely differentiable, and for which the inverse is infinitely

differentiable.

M

Ui

Uj

φi

Rn

φj

Rn

φij

2.2. Charts and atlases

Definition 2.2 Let S be a set. A chart

for S is a pair (U, φ) with

(i) U a subset of S and

(ii) φ : U→ Rn an injection for which φ(U)
is an open subset of Rn.

An atlas for S is a collection

A = {(Ua, φa)}a∈A of charts with the property

S = ∪a∈AUa, and such that whenever Ua ∩ Ub 6= ∅ we have

(iii) φa(Ua ∩ Ub) and φb(Ua ∩ Ub) are open subsets of Rn,

(iv) φab , φb ◦φ−1
a |φa(Ua ∩ Ub) is a diffeomorphism from φa(Ua ∩ Ub) to

φb(Ua ∩ Ub). �

• Idea: A chart parameterizes a subset of the set S. The overlap condition (iv)

ensures that different parameterizations will be compatible.

Example 2.3 Let S = R2 and define charts (U1, φ1) and (U2, φ2) by U1 = S and

φ1(x, y) = (x, y), and

U2 = R2 \ { (x, 0) | x ≤ 0} , φ2(x, y) = (
√

x2 + y2, atan(x, y)).

The latter are polar coordinates, with which you are familiar, but now we are

being more formal.

We now verify the overlap condition. Note that

φ1(U1 ∩ U2) = R2 \ { (x, 0) | x ≤ 0} ,

φ2(U1 ∩ U2) = { (r, θ) | r > 0, θ ∈ ]− π, π[ } .

One computes

φ12(x, y) = (
√

x2 + y2, atan(x, y))

which has inverse

φ−1
12 (r, θ) = (r cos θ, r sin θ).
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The Jacobians of these maps are

Dφ12(x, y) =





x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2



 , Dφ−1
12 (r, θ) =





cos θ −r sin θ

sin θ r cos θ



 .

Since the entries in these matrices are continuous, the overlap map and its inverse

are differentiable. In fact, both maps are infinitely differentiable, so the overlap

condition is satisfied. �

Example 2.4 Take S = S1 ⊂ R2. On S1 we define two charts (U1, φ1) and

(U2, φ2) by

U1 = S1 \ {(−1, 0)}, φ1(x, y) = atan(x, y)

U2 = S1 \ {(1, 0)}, φ2(x, y) = atan(−x,−y).

Thus φ1 measures the angle (denote it by θ1) of the point (x, y) from the positive

x-axis, and φ2 measures the angle (denote it by θ2) of the point (x, y) from the

negative x-axis. Note that φ1(U1) = ]− π, π[ and φ2(U2) = ]− π, π[ . Note also

that φ1(U1 ∩ U2) = ]− π, 0[∪ ]0, π[ , and that φ2(U1 ∩ U2) = ]− π, 0[∪ ]0, π[ . One

computes the overlap maps as

φ12(θ1) =







θ1 − π, θ1 ∈ ]0, π[

π + θ1, θ1 ∈ ]− π, 0[ ,
φ12(θ2) =







θ2 − π, θ2 ∈ ]0, π[

π + θ2, θ2 ∈ ]− π, 0[ .

These maps are clearly inverses of one another, and are also clearly infinitely

differentiable. Thus this gives an atlas for S1.

Remark 2.5 It is not possible to cover S1 with a single chart. It is not obvious why

this is so, but it can be roughly argued as follows. A chart for S1, by definition, takes

values in an open subset of R. An open subset of R is a collection of open intervals.

Now, there exists a curve in S1 that ends up where it started, without intersecting

itself (i.e., the curve [0, 2π] 3 t 7→ (cos t, sin t) ∈ S1). No such curve is possible in a

collection of open intervals. Thus, one needs at least two charts to cover S1. �
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Configuration spaces and differentiable manifolds (cont’d)

2.3. Manifolds

Definition 2.6 Two atlases A1 = {(Ua, φa)}a∈A and A2 = {Vb, ψb}b∈B for a set

S are equivalent if A1 ∪A2 is an atlas. �

• Idea: Charts from different atlases must satisfy the overlap condition relative to

one another.

Definition 2.7 A differentiable structure on a set S is an equivalence class of

atlases with the preceding equivalence relation. A manifold is a pair (S,D) where

D is a differentiable structure on S. �

• To specify a differentiable structure in practice, one simply specifies some atlas,

and then considers the equivalence class corresponding to this, usually without

thinking about it, as in our examples.

• In practice, one writes a typical manifold as M, regarding the differentiable

structure as having been fixed.

• If all charts for a manifold take value in Rn for a fixed n, then dim(M) = n is the

dimension of M.

Examples 2.8 1. Rn is a differentiable manifold with the natural differentiable

structure defined by the atlas {(Rn, idRn)}.
2. More generally, if U ⊂ Rn is an open set, then this has the differentiable

structure defined by the atlas (U, idRn |U).

3. Sn is a differentiable manifold, with an atlas defined by stereographic projection:
North Pole

South Pole2φ1(x1, x2)

(x1, x2)

2φ2(y1, y2)

(y1, y2)

See text for details.

4. On S2 one can also specify longitude/latitude coordinates, for example. It is an

exercise to show that the coordinate chart is (V, ψ) where

V = S2 \ { (x, 0, z) | x ≤ 0} , ψ(x, y, z) = (atan(x, y), acos(z)) = (θ, φ),
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defining the coordinates (θ, φ), where θ measures longitude in the range ]− π, π[
and φ measures latitude in the range ]0, π[ . �

2.4. Back to configuration spaces

• To parameterize configuration space, we need to parameterize SO(3), since this

appears in the free configuration space of a rigid body.

• Let us define

SO(n) =
{

R ∈ Rn×n
∣

∣ RRT = In, detR = 1
}

,

and think about parameterizing SO(n).

• The case n = 2 can be understood. A general 2× 2 matrix looks like




a11 a12

a21 a22



 .

Note that R2×2 is naturally a 4-dimensional manifold. A general special

orthogonal 2× 2 matrix looks like




cos θ − sin θ

sin θ cos θ





for some θ ∈ R. Note that values of θ differing by an integer multiple of 2π
produce the same orthogonal matrix. Thus, really, SO(2) looks like a copy of S1

sitting in R2×2.

• It is not so perfectly clear how to similarly parameterize SO(3) ⊂ R3×3. However,

since we understand R3×3 well (it is naturally a 9-dimensional manifold), maybe

we would be better off understanding SO(3) as it sits inside R3×3.
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M

S

U

Rk

Rn−k

φ

2.5. Submanifolds

Definition 2.9 A subset S of a manifold M

is a submanifold if, for each point x ∈ S,

there is an admissible chart (U, φ) with x ∈ U

and such that

(i) φ takes its values in a product Rk × Rn−k, and

(ii) φ(U ∩ S) = φ(U) ∩ (Rk × {0}).

A chart with these properties is a submanifold chart for S. �

• Idea: The coordinates in Rk × {0} give a chart for S.

• Like all “subobjects” you have encountered, the idea is that the subset acquires

the structure of the set within which it sits (e.g., a vector space structure for

subspaces, a group structure for subgroups).

• Note that if (U, φ) is a submanifold chart for S, then (U ∩ S, φ|(U ∩ S)) is a chart.

The overlap condition for such charts can be verified. Thus submanifolds are

manifolds.

Configuration spaces and differentiable manifolds (cont’d)

Example 2.10 Take M = R2 and S = S1. Let us find a submanifold chart. Seems

reasonable to adapt polar coordinates, since the standard polar coordinate “r” has

value 1 on S. Thus we shift it:

U = R2 \ { (x, 0) | x ≤ 0} , φ(x, y) = (
√

x2 + y2 − 1, atan(x, y)).

We have φ(U) = ]− 1,∞[× ]− π, π[ , and φ(U ∩ S) = {0}× ]− π, π[⊂ R1 × R1.

Thus this is a submanifold chart. To show that S1 is a submanifold of R2, we need

at atlas of submanifold charts. In this case, this means we would need to cover the

point (−1, 0) ∈ S1 with a submanifold chart. This is left as an easy exercise.

Conclusion: S1 is a submanifold of R2. �

• Many parameterized curves in R2 or R3, or parameterized surfaces in R3, that

may have been encountered in vector calculus are indeed submanifolds.

• However, not all subsets are submanifolds, and some “nice” sets may not be.
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1Example 2.11 Consider the curve in R2 defined

by the parameterization t 7→ (sin t, sin(2t)). Let

S be the image of this curve. This subset is not a

submanifold. Clearly the sticky point is at the origin.

One should imagine trying to show that there is a

set of coordinates for R2 containing (0, 0) ∈ S which

maps S to one of the coordinate axes. Although it is not so easy to rigorously show

why this is impossible, it is easy to imagine why it is. This shows that one needs to

exercise some care when talking about all submanifolds, since perhaps not all nice

objects of your experience are submanifolds. �

• Fact: SO(n) is a submanifold of Rn×n. This is easy to show using

Proposition 3.42 (this is Exercise E3.17), but we will not develop the machinery to

prove this.

2.6. Back to configuration spaces

• Previously, we had discussed free mechanical systems. Now we wish to allow

interconnections between bodies and particles.

Definition 2.12 An interconnected mechanical system is a collection

{Pα}α∈{1,...,NP } ∪ {Bβ}β∈{1,...,NB} of NP particles and NB rigid bodies restricted

to move on a submanifold Q of Qfree. The manifold Q is the configuration

manifold for the system. �

• It is possible that one may be interested in mechanical systems for which the set

of admissible configurations is not a submanifold. For example, a robot which

encounters an obstacle in its workspace is of this sort. There will be a

discontinuity when the robot hits the obstacle.

Example 2.13 (Planar rigid body) We consider a planar rigid body. Thus

Qfree = SO(3)× R3. Recall that to assign a configuration of the body to a point in

Qfree we choose a spatial frame (Ospatial, {s1, s2, s3}) and a body frame

(Obody, {b1, b2, b3}). We wish to adapt our choice of these frames in a manner

suited to the system. Since the body is planar, this means it moves on some

two-dimensional plane P . We then choose our frames to meet the following criterion:

1. Ospatial ∈ P ;

2. s3 is orthogonal to P ;

3. Obody is at the center of mass of the body, which we assume to be in P ;
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4. b3 is orthogonal to P .

With these assumptions, a point in Qfree that corresponds to a configuration of the

body has the form

















cos θ − sin θ 0

sin θ cos θ 0

0 0 1









, (x, y, 0)









∈ SO(3)× R3,

for x, y, θ ∈ R. Note that such configurations really live only in SO(2)× R2, and are

specified by








cos θ − sin θ

sin θ cos θ



 , (x, y)



 ∈ SO(2)× R2.

Thus the configuration space is a submanifold of SO(3)× R3 that, in a natural way,

looks like SO(2)× R2. However, we have already seen that SO(2) is essentially S1.

Thus we shall take Q = S1 × R2, with the “angle” in S1 measuring the rotation of

the body, and the point (x, y) ∈ R2 indicating the position of the center of mass. �

Configuration spaces and differentiable manifolds (cont’d)

Example 2.14 (Two-link manipulator) We return “officially” to our planar

two-link robot. We choose a spatial frame (Ospatial, {s1, s2, s3}), and body frames

(O1,body, {b1,1, b1,2, b1,3}) and (O2,body, {b2,1, b2,2, b2,3}) as follows:

θ1

θ2

s2

s1

b1,1

b1,2

b2,1

b2,2

Thus we assume

1. Ospatial, O1,body, and O2,body lie in the plane P of motion of the links,

2. s3, b1,3, and b2,3 are orthogonal to P , and

3. Oi,body is at the center of mass of link i, which, for simplicity, we suppose to be

at the link’s midpoint.
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In this case, Qfree = (SO(3)× R3)× (SO(3)× R3), and we denote a typical point in

Qfree by ((R1, r1), (R2, r2)). We then easily see that

R1 =









cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 1









, r1 = ( `12 cos θ1,
`1
2 sin θ1, 0)

R2 =









cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1









, r2 = (`1 cos θ1 + `2
2 cos θ2, `1 sin θ1 + `2

2 sin θ2, 0).

This then gives the form of a general point in Q ⊂ Qfree. Now we note that such a

point in Q is determined precisely by the matrices








cos θ1 − sin θ1

sin θ1 cos θ1



 ,





cos θ2 − sin θ2

sin θ2 cos θ2







 ∈ SO(2)× SO(2).

Thus we take Q = S1 × S1, making the identification made previously with SO(2)
and S1. �

Example 2.15 (Rolling disk) Next we take the problem of a disk rolling on a

plane P without slipping:

s3

s2

s1

φr

θ

b3

b1b2

There is just a single rigid body, so we have Qfree = SO(3)× R3. We choose frames

as in the picture. Thus we say that

1. Ospatial ∈ P ,

2. s3 is orthogonal to P ,

3. Obody is at the center of mass of the disk, which we assume to be at the

geometric center of the disk, and

4. b3 points in the direction parallel to P , and orthogonal to direction of motion

allowed by rolling.
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The position of Obody relative to Ospatial is given by a vector of the form (x, y, r) for

x, y ∈ R, and where r > 0 is the radius of the disk. To determine the matrix sending

R ∈ SO(3) corresponding to the orientation of {b1, b2, b3} relative to {s1, s2, s3},
we proceed in three stages. We illustrate these three stages by sketching the bases as

viewed by looking down on the plane P . The first stage produces {b′1, b
′
2, b
′
3} by

s1

s2

s1

s2

b3 b1

b2

b′3
b′
1

b′
2

Thus we rotate the frame {b1, b2, b3} by an angle θ (see picture of disk for definition

of θ) clockwise about the s3-axis. This corresponds to the orthogonal matrix

R1 =









cos θ sin θ 0

− sin θ cos θ 0

0 0 1









.

Next we apply a counterclockwise rotation about s2 by the angle φ (again, see the

figure for the definition of φ) to get {b′′1 , b
′′
2 , b
′′
3}:

s1

s2

s1

s2

b′3
b′
1

b′
2

b′′3

b′′
1

The matrix that does this is

R2 =









cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ









Finally, to get to the basis {s1, s2, s3} we rotate in the clockwise direction by π
2

above s2:

s1

s2

s1

s2

b′′3

b′′
1 b′′′

1

b′′′2
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The matrix that does this is

R3 =









1 0 0

0 0 1

0 −1 0









.

Note that we have si = R3R2R1bi, i ∈ {1, 2, 3}. Thus bi = RT
1R

T
2R

T
3 si,

i ∈ {1, 2, 3}. If we note that we can take s1 = (1, 0, 0), s2 = (0, 1, 0), and

s3 = (0, 0, 1) (this amount to choosing spatial coordinates adapted to our spatial

frame), then we see that bi is the ith column of R , RT
1R

T
2R

T
3 . Thus R as defined

is that matrix in SO(3) describing the orientation of the disk. A computation gives

R =









cosφ cos θ sinφ cos θ sin θ

cosφ sin θ sinφ sin θ − cos θ

− sinφ cosφ 0









.

To summarize, a typical point in SO(3)× R3 corresponding to an admissible

configuration of the disk looks like
















cosφ cos θ sinφ cos θ sin θ

cosφ sin θ sinφ sin θ − cos θ

− sinφ cosφ 0









, (x, y, r)









.

As with our other examples, it is easier to pull out the relevant part of Q from Qfree.

To see how this might be done, note that the matrices R1 and R2 are exactly

specified by the matrices




cos θ − sin θ

sin θ cos θ



 ,





cosφ − sinφ

sinφ cosφ





in SO(2), respectively. Thus the configuration space can be taken to be

Q = R2 × SO(2)× SO(2), or, equivalently, Q = R2 × S1 × S1. �

• In the preceding three examples, we were quite systematic about determining the

configuration manifold as a submanifold of Qfree. In practice, after one has some

experience with these sorts of things, one bypasses the steps we went through in

the examples.

• Nonetheless, there are still occasions when even a seasoned veteran may want to
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think somewhat carefully about what a configuration space is. For example,

consider a rigid body fixed at a point in space by a universal joint. A universal

joint does not allow the body to “twist.” If the universal joint is a ball joint, then

the configuration manifold is simply SO(3). The elimination of twist takes away

one degree-of-freedom, so we expect Q to be two-dimensional for a universal joint.

We have seen two possibilities of two-dimensional manifolds, S1 × S1 and S2. But

neither of these is Q in this case. Indeed, one show that Q = RP2, which is

“two-dimensional real projective space.”

Configuration spaces and differentiable manifolds (cont’d)

2.7. Choosing coordinates for a system

• Now that we have indicated how one in principal finds the configuration manifold

Q for an interconnected mechanical system, we choose coordinates. This will be

useful when we actually have to do computations.

• Note that since Q is a manifold, it possesses charts, so in some sense there is

nothing to talk about. However, in most cases it is helpful to choose coordinate

charts that mean something in terms of the physics.

Example 2.16 (Planar rigid body (cont’d)) We return to our planar rigid

body example, for which we had determined the configuration manifold to be

Q = S1 × R2. As a coordinate chart we choose (U, φ) defined by

U = Q \ { ((u, v), (x, y)) ∈ Q | u = −1, v = 0} ,

φ((u, v), (x, y)) = (atan(u, v), (x, y)).

We write these coordinates as (θ, x, y), and we note that φ(U) as a subset of R3

consists of a “slab” that is infinite in x and y, and for which θ takes values from
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−π to π (boundaries not included). In terms of the physics, the coordinates

(θ, x, y) are to be interpreted as follows:

s2

s1
Ospatial

(x, y)

b1

b2

Obody

θ

�

Remarks 2.17 1. Note that it is quite unlikely that one would choose

coordinates in any other way for this example. However, what we have done is

recognize that this prescription of coordinates has meaning in terms of

providing a chart for Q thought of as a manifold. In this sense, coordinates are

given a quite precise meaning.

2. Note also that the coordinates do not actually cover all of Q. It will often be

the case that one does choose a set of coordinates that does not cover the

configuration manifold. There are two possible reasons why this might be:

(a) it may not be possible to cover Q with a single coordinate chart

(e.g., Q = S1);

(b) although it may be possible to cover Q with a single chart, perhaps the

“natural” physical chart does not cover Q (this is actually the case with

the planar body, although it is perhaps not obvious that it is possible to

cover Q with a single chart for this example). �

Example 2.18 (Two-link manipulator (cont’d)) Consider the two-link

planar manipulator which has Q = S1 × S1. Given that we have a natural way of

defining coordinates for S1, we just use this coordinate twice. Thus we define a

chart (U, φ) by

U = Q \
(

{ ((x1, y1), (x2, y2)) | x1 = −1, y1 = 0}

∪ { ((x1, y1), (x2, y2)) | x2 = −1, y2 = 0}
)

,

φ((x1, y1), (x2, y2)) = (atan(x1, y1), atan(x2, y2)).

Let us denote these coordinates by (θ1, θ2). Physically, these coordinates are

related to the configuration of the body as follows:
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θ1

θ2

s2

s1

b1,1

b1,2

b2,1

b2,2

Let us try to get an idea of what Q “looks like.” First, let us define

Tn = S1 × · · · × S1, the n-fold Cartesian product, which we call the n-torus.

Then Q is the 2-torus. One way of visualizing the 2-torus is as the surface of a

“donut” in R3:

The two circles indicate the portion of Q that we remove to define the coordinate

chart U. Thus, in this representation of the 2-torus, the stuff that is removed is

two circles. Another way to visualize Q in this case is to simply look at φ(U),

which is the square ]− π, π[× ]− π, π[ : Note that the left and right edges of the

square are really “the same,” since these boundaries correspond to one of the

circles that was removed to define U. In like manner, the top and bottom edges

are “the same.” This can be represented by the following picture:

identify edges

identify edges

Thus one glues together the left and right edges, upon which one will have a

cylinder, and then glues together the two boundaries of the cylinder, so producing

the donut representation. �
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Configuration spaces and differentiable manifolds (cont’d)

Example 2.19 (Two-link manipulator (cont’d)) Last time we made a choice

of coordinates for Q = S1 × S1, and we indicated how these coordinates relate to the

physics of the system. Whereas for the planar body, there is perhaps a quite natural

choice of coordinates, in this example, there is at least one other set of coordinates

that makes sense. Let us define this as the chart (V, ψ) given by

V = Q \
(

{ ((x1, y1), (x2, y2)) | x1 = −1, y1 = 0}

∪ { ((x1, y1), (x2, y2)) | x2 = −x1, y2 = −y1}
)

ψ((x1, y1), (x2, y2)) = (atan(x1, y1), atan(cos(atan(x1, y1))x2 + sin(atan(x1, y1))y2,

− sin(atan(x1, y1))x2 + cos(atan(x1, y1))y2)).

This coordinate chart looks complicated, but, if one sorts through the definition, one

can see that the coordinates (θ1, θ2,1) in this chart are related to the position of the

manipulator by:

θ1

θ2,1

s2

s1

b1,1

b1,2

b2,1b2,2

2.8. Maps to and from manifolds

• Now that we have carefully constructed the configuration space of an

interconnected mechanical system, let us talk briefly about things that can be

done using the differentiable structure.

• One of the things one can do is talk about properties of maps between manifolds.
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M N

U V

φ

Rm

ψ

Rn

f

fφψ

Definition 2.20 Let M and N be manifolds

and let f : M→ N. Then f is r-times

continuously differentiable, or of

class Cr, if, for each x ∈ M, there exists charts

(U, φ) for M and (V, ψ) for N with the following

properties:

(i) x ∈ U,

(ii) f(U) ⊂ V, and

(iii) the map fφψ from φ(U) to ψ(V) defined by fφψ(x) = ψ ◦f ◦φ−1(x) is r-times

continuously differentiable. �

• The map fφψ in the definition is the local representative of f .

• Idea: To talk about differentiability of a map between manifolds, one simply

chooses coordinates, represents the map in one’s coordinates, and then talks about

differentiability of the coordinate representation, which makes sense.

• We denote the class Cr maps from M to N by Cr(M; N).

• Two sorts of maps will be of particular interest.

1. N = R: Maps from a manifold to R are called functions, and Cr(M) denotes

the class Cr functions from M to R.

2. M = R: Maps from R to a manifold N are called curves. A typical curve will

be denoted by γ.

Example 2.21 We take M = S2 and define f : S2 → R by f(x, y, z) = z. We

claim that f is a C∞-function. We can check this by applying the definition. Thus

we choose a coordinate chart, find its local representative, and check that the local

representative is C∞. Let us choose, for example, longitude/latitude coordinates

discussed in Example 2.8. It is then easy to see that the local representative of f is

(θ, φ) 7→ cosφ. This function is clearly infinitely differentiable. To actually show that

f is infinitely differentiable, one should choose another chart covering the points not

covered by latitude/longitude coordinates, and make sure the local representative of

f is also infinitely differentiable. This can be done. �
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• An easier way to check the differentiability of a function like that in the preceding

example is to use the following result, which follows directly from the definitions of

submanifold, and class Cr map.

Proposition 2.22 Let M and N be manifolds, let S be a submanifold of M, and
let f ∈ Cr(M; N). Then f |S ∈ Cr(S; N).

• Idea: To check the differentiability of a function defined on a submanifold, it

suffices to check differentiability on the bigger space, which is sometimes easier.

Example 2.23 We continue with our previous example where M = S2 is a

submanifold of R3, and f(x, y, z) = z. Clearly, f is infinitely differentiable on R3.

The result above says that this immediately implies that f is also infinitely

differentiable when restricted to S2, without having to laboriously check local

representatives, etc. �

Configuration spaces and differentiable manifolds (cont’d)

Example 2.24 Next let us consider an example of a curve. We take M = S2 again,

and define a map γ : R→ S2 by γ(t) = (cos t, sin t, 0). We claim that γ is an

infinitely differentiable curve. To verify this by hand, we need to show that the local

representative for γ in a chart is infinitely differentiable. We again take

longitude/latitude coordinates (θ, φ), and in these coordinates the local

representative of γ is t 7→ (t, π2 ). One should be careful to take into account the

domain of validity of longitude/latitude coordinates. After doing so, one sees that

this map is only defined when t is not an odd multiple of π. However, in the range of

validity, we see that the local representative is infinitely differentiable. To show that

γ is infinitely differentiable, one should choose another chart that covers the

remaining part of S2, and check that the local representative here is also infinitely

differentiable. This is possible. �
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• As with checking the differentiability of functions defined on submanifolds, there is

an easy way to check the differentiability of a curve, or more generally, a map,

taking values in a submanifold.

Proposition 2.25 Let M and N be manifolds, let S ⊂ M be a submanifold, and
let f : N→ M be a class Cr map having the property that image(f) ⊂ S. Then f

is a class Cr map from N into S.

• Idea: To check the differentiability of a curve taking values in a submanifold, it

suffices to check the differentiability of the curve taking values in the bigger space,

which is sometimes easier.

Example 2.26 For our previous example, S2 is a submanifold of R3, and since the

curve t 7→ (cos t, sin t, 0) is clearly an infinitely differentiable curve in R3, it is also an

infinitely differentiable curve in S2. �

• Exercises 2.21 and 2.24 might give one the impression that to check the

differentiability of a curve or function, it suffices to use a chart that covers “most”

of the manifold. This is false, as the following example shows.

Example 2.27 We take M = S1, and define a function on M by

f(x, y) = atan(x, y). Let us choose a chart (U, φ) for S1 that covers all but one

point:

U = S1 \ {(−1, 0)}, φ(x, y) = atan(x, y).

Let us denote the coordinate in this case by θ. In this chart, the local representative

of f is θ 7→ θ. This is certainly an infinitely differentiable function. However, to

check the infinite differentiability of f , we need to choose another chart that covers

the point (−1, 0). Let us define a chart (V, ψ) by

V = S1 \ {(1, 0)}, ψ(x, y) = atan(−x,−y),

and denote the coordinate in this chart as θ̃. The local representative of f in this

chart is then given by

θ̃ 7→







−π + θ̃, θ̃ > 0,

π + θ̃, θ̃ ≤ 0.
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Note that this local representative is not even continuous! This shows that it is not

sufficient to check differentiability of a map in a single chart that covers “most” of

the manifold. �

2.9. Comments on smoothness of maps

• In the text, we are fairly careful to specify the smoothness of objects. However, in

this course, it very often suffices to simply assume that everything is infinitely

differentiable, unless otherwise stated.

• Indeed, the only objects in this course that will not be assumed to be infinitely

differentiable are controls, when we get around to talking about them.

• At times in the text, reference will be made to objects that are Cω, or

equivalently, analytic. This does not mean analytic in the sense of complex

variables. In the context of this course, analytic, or more exactly, real analytic,

means that the Taylor series for an object converges to the object. Of course, this

definition means one works in a coordinate chart.

2.10. The forward kinematic maps

• We next introduce a very simple object, one which we have in actuality already

used.

Definition 2.28 Consider an interconnected mechanical system with k

interconnected rigid bodies and configuration manifold Q ⊂ Qfree. For

a ∈ {1, . . . , k}, the ath forward kinematic map is the map

Πa : Q→ SO(3)× R3 which assigns to a point in Q the position of body a

corresponding to that configuration. �

• As we say, we have really seen the forward kinematic map already. Let us illustrate

that this is indeed the case by looking at our examples.

Example 2.29 (Planar rigid body (cont’d)) Recall that Q = S1 × R2. There

is one body, and the forward kinematic map Π1 : Q→ SO(3)× R3 is given in

coordinates by

Π1(θ, x, y) =

















cos θ − sin θ 0

sin θ cos θ 0

0 0 1









, (x, y, 0)









.

Andrew D. Lewis Queen’s University



Math 439 Lecture Notes Lecture 10

Note that the forward kinematic map is already contained in our explicit description

of Q as a submanifold of Qfree. �

Example 2.30 (Two link manipulator (cont’d)) Here we had Q = S1 × S1.

There are two bodies and the coordinate representations of the forward kinematic

maps are

Π1(θ1, θ2) =

















cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 1









, ( `12 cos θ1,
`1
2 sin θ1, 0)









,

Π2(θ1, θ2) =

















cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1









, (`1 cos θ1 + `2
2 cos θ2, `2 sin θ2 + `2

2 sin θ2, 0)









.

Again, this is a mere matter of giving a name to something we have already seen. �

3. Velocity and the tangent bundle

• We now talk about something different. We use the physical notion of velocity to

motivate the introduction of a new object: the tangent bundle.

3.1. Velocity

• We first need to understand well what “velocity” is. To come to grips with this,

let us consider a particle moving in R3. The particle’s motion is described by a

curve γ : R→ R3. Thus the position of the particle at time t0 is γ(t0) ∈ R3 and

the velocity of the particle at time t0 is dγ
dt

∣

∣

t=t0
∈ R3.

• The way to imagine this so that it will be useful in our subsequent discussion is as

follows:

t0

γ

γ(t0)
dγ

dt

∣∣
t=t0
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• For the curve in R3, the tangent vector lived also in R3, and we imagined the

origin for the set of velocities to be at the point on the curve whose velocity was

being computed. For a manifold, where “velocity” should live is not so clear.

Definition 3.1 Let M be a manifold and let x ∈ M.

(i) A curve at x is a C1-curve γ : I → M with the property that 0 ∈ int(I) and

γ(0) = x.

(ii) Two curves at x, γ1 and γ2, are equivalent if, for a chart (U, φ) around x, it

holds that D(φ ◦γ1)(0) = D(φ ◦γ2)(0).

(iii) A tangent vector at x is an equivalence class of curves under the above

equivalence relation. The set of tangent vectors at x is denoted TxM and is

called the tangent space at x.

(iv) The tangent bundle to M is the collection of all tangent spaces:

TM =
⋃

x∈M

TxM. �

M

U

φ

Rn

0

0
γ2

γ1

x
[γ1] = [γ2]

Dφ ◦γ1(0) = Dφ ◦γ2(0)

• Idea: One represents the two curves

in a set of coordinates, and asks that they

have the same velocity in the coordinates.

For this to make sense, one should,

of course, check that this idea is independent

of choice of coordinates. This is easily done.

• Idea: For an interconnected mechanical

system with configuration manifold Q, points

in Q are positions of the system, points in TqQ are velocities at position q, and

TQ is the collection of all velocities at all possible positions.

• It is important to note that, in this way of thinking of things, velocity does not

exist independent of position.

• We would like to have a way of expressing velocities in coordinates.
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3.2. Coordinate representations for velocity

• Let (U, φ) be a chart for M. We wish to represent points in TxM for x ∈ U.

• Note that points in U are represented by elements φ(x) ∈ φ(U) ⊂ Rn. Now let

x ∈ U and let γ be a curve at x which therefore defines a tangent vector

[γ] ∈ TxM. In the chart, [γ] is prescribed by D(φ ◦γ)(0) ∈ Rn.

• Punchline: The coordinate representation of a tangent vector at x ∈ U is specified

by (φ(x),D(φ ◦γ)(0)) ∈ φ(U)× Rn.

• Note that, if we write (x1(t), . . . , xn(t)) = φ ◦γ(t), then

D(φ ◦γ)(0) = (ẋ1(0), . . . , ẋn(0)).

• We shall adopt the notation

((x1, . . . , xn)
︸ ︷︷ ︸

in φ(U)

, (v1, . . . , vn)
︸ ︷︷ ︸

in Rn

)

to denote the coordinate representation of a typical tangent vector at a point in U.

• Important question: How are two different coordinate representations of the same

tangent vector related?

• To answer this question, let x ∈ M and let (U, φ) and (Ũ, φ̃) be charts around x.

Let [γ] ∈ TxM and let D(φ ◦γ)(0) and D(φ̃ ◦γ)(0) be the coordinate

representations of [γ].

• It is convenient to write coordinates for (U, φ) as (x1, . . . , xn) and coordinates for

(Ũ, φ̃) as (x̃1, . . . , x̃n). With this notation, we write

φ ◦γ(t) = (x1(t), . . . , xn(t)),

φ̃ ◦γ(t) = (x̃1(t), . . . , x̃n(t)).

• Then, using the Chain Rule,

˙̃xi(0) =
n
∑

j=1

∂x̃i

∂xj
(x̃(0))ẋj(0), i ∈ {1, . . . , n}. (1)

This is exactly what velocities should do when we change coordinates!
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• An alternate way to write (1) is

D(φ̃ ◦γ)(0)
︸ ︷︷ ︸

' ˙̃xi(0)

= D(φ̃ ◦φ−1)(φ ◦γ(0))
︸ ︷︷ ︸

' ∂x̃i
∂xj

(x(0))

D(φ ◦γ)(0)
︸ ︷︷ ︸

'ẋj(0)

. (2)

• That is to say, the velocity in one set of coordinates is obtained by multiplying the

velocity in the other set of coordinates by the Jacobian of the overlap map. If one

were to think about it, this probably is in keeping with some parts of your past

experience.

• Note that (1) and (2) are really the same equation. The representation (1) is more

transparent notationally. The representation (2) is more compact, and makes

explicit the connection with the overlap map introduced in Definition 2.2.

Velocity and the tangent bundle (cont’d)

x0

γ2 γ1

Example 3.2 Let us look at something simple; our

manifold M = R2 with Cartesian coordinates (x, y) and

polar coordinates (r, θ). The charts were denoted

(U1, φ1) and (U2, φ2), respectively. Let us consider

the representation of a specific tangent vector in

each of these two coordinate charts. Let

x0 = ( 1√
2
, 1√

2
) ∈ M. Consider the curves at x0 given by

γ1(t) = ( 1√
2
, 1√

2
) + t(− 1√

2
, 1√

2
) and γ2(t) = (cos(t+ π

4 ), sin(t+ π
4 )). We claim that

these curves are equivalent at x0. To see that this is the case, we need to show that,

in some (and therefore any) coordinate chart, the local representatives of the two

curves have equal derivatives at t = 0. Let us do this with the more difficult of the

two coordinate charts, just for fun.
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The local representatives the curves in polar coordinates are

φ2 ◦γ1(t) = (
√

( 1√
2
(1− t))2 + ( 1√

2
(1 + t))2, atan(1−t, 1+t)), φ2 ◦γ2(t) = (1, π4 +t).

The derivatives of these curves at t = 0 are

D(φ2 ◦γ1)(0) = (0, 1), D(φ2 ◦γ2)(0) = (0, 1).

Thus the two curves are indeed equivalent, and so define the same tangent vector.

Let us show how the two coordinate representations of this tangent vector are

related. We have already shown that the tangent vector in polar coordinates is

represented by

((r, θ), (vr, vθ)) = ((1, π4 ), (0, 1)).

In Cartesian coordinates we compute

D(φ1 ◦γ1)(0) = D(φ1 ◦γ2)(0) = (− 1√
2
, 1√

2
).

(Note that the first equality is guaranteed since the curves are equivalent at x0.)

Thus we represent the tangent vector in Cartesian coordinates by

((x, y), (vx, vy)) = (( 1√
2
, 1√

2
), (− 1√

2
, 1√

2
)).

The rule for how these vectors should be related is

vr =
∂r

∂x
vx +

∂r

∂y
vy =

x
√

x2 + y2
vx +

y
√

x2 + y2
vy,

vθ =
∂θ

∂x
vx +

∂θ

∂y
vy = − y

x2 + y2
vx +

x

x2 + y2
vy.

Substituting in the values for ((x, y), (vx, vy)) we get (vr, vθ) = (0, 1), as desired. �

• Notice that if (U, φ) is a chart for M, the map

TxM 3 [γ] 7→ (φ(x),D(φ ◦γ)(0)) ∈ φ(U)× Rn

defines a coordinate chart for TU = ∪x∈UTxM, denoted by (TU, Tφ).

• One additionally sees, by virtue of our previous machinations, that if (U1, φ1) and

(U2, φ2) are overlapping charts for M, then the overlap map for the corresponding

tangent bundle charts is

φ1(U1 ∩ U2)× Rn 3 (x,v) 7→ (φ12(x),Dφ12(x) · v) ∈ φ2(U1 ∩ U2)× Rn.

This is yet another manifestation of the transformation rule for velocities.

Moreover, it gives us. . .
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• Punchline: TM is a manifold, since if A = {(Ua, φa)}a∈A is an atlas for M, then

TA , {(TUa, Tφa}a∈A is an atlas for TM. The charts in the atlas TA are called

natural charts.

M N

x

γ

f(x)

f ◦γ

[γ]
[f ◦γ]

• Let f : M→ N

be an infinitely differentiable

map, let x ∈ M, and let γ be a curve

at x. Then f ◦γ is a curve at f(x).

• We then define a map

Txf : TxM→ Tf(x)N by Txf([γ]) = [f ◦γ]. Doing this for each x ∈ M defines a

map Tf : TM→ TN, which is the tangent map of f .

Velocity and the tangent bundle (cont’d)

• Let us write the local representative of Tf is a natural chart. Let us denote

natural coordinates for TM by ((x1, . . . , xm), (v1, . . . , vm)), and let us write the

local representative for f as

(x1, . . . , xm) 7→ (f1(x), . . . , fn(x)).

The local representative of γ we write as

t 7→ (x1(t), . . . , xm(t)),

so that the local representative of f ◦γ is

t 7→ (f1(x(t)), . . . , fm(x(t))).

Therefore, the coordinate representation for [γ] is

((x1(0), . . . , xm(0)), (ẋ1(0), . . . , ẋm(0)))

and the coordinate representation for [f ◦γ] is

(

(f1(x(0)), . . . , fn(x(0))),
(
m
∑

j=1

∂f1

∂xj
(x(0))ẋj(0), . . . ,

m
∑

j=1

∂f1

∂xj
(x(0))ẋj(0)

))

.
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• More compactly, the local representative of Tf is

φ(U)× Rm 3 (x,v) 7→ (fφψ(x),Dfφψ(x) · v) ∈ ψ(V)× Rn,

where (U, φ) is the chart on M and (V, ψ) is the chart on N.

• Punchline: The local representative of Tf is defined by the derivative

(i.e., Jacobian) of the local representative of f . Thus one should think of Tf as

being the derivative of f .

Example 3.3 (Planar two-link manipulator) To get some intuition about

maps between manifolds, and about derivatives of such maps, we consider the

two-link planar manipulator that has been used previously. The configuration

manifold is Q = S1 × S1. We define a map f : Q→ R2 by asking that f(q) be the

position in the plane of the tip of the second link. This would be the position of the

end effector of the robot.

Let us ask some basic questions about this map.

1. Is f surjective? If not, describe image(f).

2. Is f injective? If not, describe the character of f−1(x, y) for (x, y) ∈ image(f).

It is quite clear that f is not surjective, since points that are distance greater than

`1 + `2 (`i is the length of link i) from the base of the robot are not reachable using

f . A more detailed description is given by the following picture:

`1 + `2

`1 − `2

`1 > `2

`1 + `2

`2 − `1

`2 > `1

`1 + `2

`1 = `2

Thus the image of f is an annulus when `1 6= `2, and is a disk when `1 = `2.

What about injectivity? A little thought gives the following characterization of the

sets f−1(x, y).
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`1 > `2 `2 > `1 `1 = `2

(x, y) ∈ bd(image(f)) single point single point single point

(x, y) ∈ int(image(f)) two points two points two points

(x, y) = (0, 0) n/a n/a copy of S1

The entries in the table give the character of f−1(x, y)

The idea is that when one is in the interior of image(f), there are two possible robot

configurations giving the same position of the tip of the second link. In the case

where we are at the boundary of image(f), there is only one possible robot

configuration giving that position of the tip of the second link. A degenerate case

arise when `1 = `2 and (x, y) = (0, 0). In this case, one can rotate the robot links

together, and the tip of the second link will not move.

Now let us look at the derivative Tf of the map f . Rather than just compute it, let

us think about what the derivative means. If one is at configuration q ∈ Q moving

with velocity vq ∈ TqQ, then Tf(vq) is the velocity of the tip of the second link.

An interesting question is the following. Are there configurations q and nonzero

velocities vq ∈ Q for which T (vq) = 0. This means that even though the links may

be moving, it is possible that the tip of link two is not moving. Rephrasing the

question mathematically, are there configurations q for which ker(Tqf) is nontrivial

(i.e., consists of more than the zero vector)? To answer this question, one can

compute Tf . Note that, in the coordinates (θ1, θ2), the local representative of f is

(θ1, θ2) 7→ (`1 cos θ1 + `2 cos θ2, `1 sin θ1 + `2 sin θ1).

The local representative of Tf is then

((θ1, θ2), (v1, v2))

7→ ((`1 cos θ1 + `2 cos θ2, `1 sin θ1 + `2 sin θ2), (J11v1 + J12v2, J21v1 + J22v2)),

where Jij , i, j = {1, 2}, are the components of the Jacobian of the local

representative of f :




−`1 sin θ1 −`2 sin θ2

`1 cos θ1 `2 cos θ2





One can then readily verify that Tqf has nontrivial kernel if and only if

f(q) ∈ int(image(f)), provided that `1 6= `2. When `1 = `2, then Tqf has nontrivial

kernel if and only if (1) f(q) ∈ int(image(f)) and (2) f(q) 6= (0, 0).

Moral of the story: There is a relation ship between the derivative changing rank,

and changes in the character of f−1(x, y). This is generally true. However, the main
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idea of working out this example in detail is to try to get some intuition for the

behavior of maps between manifolds. �

• We next introduce some convenient notation. Let γ : R→ M be a curve. Then

Tγ is a map from TR to TM.

• Since R possesses a natural global coordinate chart, TR ' R× R. We then define

γ′(t) = Tγ · 1.

• If the local representative for γ is

t 7→ (x1(t), . . . , xn(t)),

then the local representative of γ′ in natural coordinates for the tangent bundle is

t 7→ ((x1(t), . . . , xn(t)), (ẋ1(t), . . . , ẋn(t))).

• The picture one should have in mind for γ′ is that γ′(t) if the velocity of the curve

γ at time t:

γ(t)

γ′(t)

• Finally, some convenient terminology I forgot to mention earlier. While it is

sometimes convenient to write tangent vectors as [γ] to emphasize their definition

as equivalence classes of curves, it is sometimes cumbersome to do this. Thus we

shall frequently write a point in the tangent space TxM as vx. The subscript “x”

reminds us at what base point this tangent vector sits.
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4. Angular velocity

4.1. Velocity of rigid body motion

• Suppose that a body is undergoing a motion described by

t 7→ (R(t), r(t)) ∈ SO(3)× R3 (look back to our discussion of the configuration

of a rigid body, if you forget why this describes the motion of a rigid body).

• We shall suppose that r(t) describes the position of the center of mass,

corresponding to our choice of body origin at the center of mass. Then ṙ(t) is the

translational velocity.

• The description of angular velocity is less straightforward, and we just provide the

“answer.”

• First define matrices ω̂(t) = Ṙ(t)RT (t) and ̂Ω(t) = RT (t)Ṙ(t).

Lemma 4.1 The matrices ω̂(t) and ̂Ω(t) are skew-symmetric.

Proof: We do this for ̂Ω(t), leaving ω̂(t) as an exercise. Differentiating the
equality RT (t)R(t) = I3 with respect to t gives

ṘT (t)R(t) +RT (t)Ṙ(t) = 0.

Therefore,
(RT (t)Ṙ(t))T = −RT (t)Ṙ(t),

as desired. �

• Let us write

ω̂(t) =









0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)

−ω2(t) ω1(t) 0









, ̂Ω(t) =









0 −Ω3(t) Ω2(t)

Ω3(t) 0 −Ω1(t)

−Ω2(t) Ω1(t) 0









.

• This allows us to define ω(t) = (ω1(t), ω2(t), ω3(t)) and

Ω(t) = (Ω1(t),Ω2(t),Ω3(t)), which are the spatial angular velocity and body

angular velocity for the motion.
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• Note that we have implicitly define a map ·̂ : R3 → so(3) from R3 into the set

so(3) of skew-symmetric 3× 3 matrices. It is easy to verify that this is an

isomorphism of vector spaces, and satisfies (and can indeed be defined by)

âb = a× b, where a, b ∈ R3 and where × denotes the vector cross-product. We

denote the inverse of the “hat map” by ·̌ : so(3)→ R3.

• Physical interpretations: At a given instant in time, the body’s rotational motion

in space is about the axis ω(t) ∈ R3, and the magnitude of the angular velocity is

‖ω(t)‖R3 . The body angular velocity is how an observer fixed in the body would

measure the vector ω(t) ∈ R3 in the body frame.

4.2. Velocity for interconnected mechanical systems

• Now suppose that we have an interconnected mechanical system with k rigid

bodies and with configuration manifold Q ⊂ Qfree. Let Πa : Q→ SO(3)× R3,

a ∈ {1, . . . , k}, denote the forward kinematic maps.

• Define maps ρspatial, ρbody, λspatial, λbody : T(SO(3)× R3)→ R3 by

ρspatial(R, r,A,v) = (ART )
∨
,

ρbody(R, r,A,v) = (RTA)
∨
,

λspatial(R, r,A,v) = v,

λbody(R, r,A,v) = v.

(Note that in writing a point in T(SO(3)× R3) we are using two facts:

1. SO(3)× R3 is a submanifold of R3×3 × R3;

2. T(R3×3 × R3) ' (R3×3 × R3)× (R3×3 × R3).

You should probably think a little about this.)
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• Now suppose that the system is undergoing a motion t 7→ γ(t) ∈ Q. Then body a

is undergoing the physical motion t 7→ Πa ◦γ(t) ∈ SO(3)×R3. We can then define

the body and spatial velocities of body a just as we did for a single body above.

• Explicitly, the spatial angular velocity of body a is

ρspatial

( d
dt

∣

∣

∣

t=0
Πa ◦γ(t)

)

,

the body angular velocity of body a is

ρbody

( d
dt

∣

∣

∣

t=0
Πa ◦γ(t)

)

,

the spatial translational velocity of body a is

λspatial

( d
dt

∣

∣

∣

t=0
Πa ◦γ(t)

)

,

and body translational velocity of body a is

λbody

( d
dt

∣

∣

∣

t=0
Πa ◦γ(t)

)

.

Example 4.2 (Planar rigid body (cont’d)) This is all easily illustrated with

an example. We consider the planar rigid body with configuration manifold

Q = S1 × R2. The key thing is the forward kinematic map:

Π1(θ, x, y) =



























cos θ − sin θ 0

sin θ cos θ 0

0 0 1









︸ ︷︷ ︸

R1

, (x, y, 0)
︸ ︷︷ ︸

r1



















.

To compute the spatial angular velocity we compute

Ṙ1R
T
1 =









− sin θθ̇ − cos θθ̇ 0

cos θθ̇ − sin θθ̇ 0

0 0 0

















cos θ − sin θ 0

sin θ cos θ 0

0 0 1









= ̂(0, 0, θ̇).

This gives the coordinate expression

ρspatial

( d
dt

∣

∣

∣

t=0
Π1 ◦γ(t)

)

= (0, 0, θ̇).
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In similar manner we compute

ρbody

( d
dt

∣

∣

∣

t=0
Π1 ◦γ(t)

)

= (0, 0, θ̇),

λspatial

( d
dt

∣

∣

∣

t=0
Πa ◦γ(t)

)

= (ẋ, ẏ, 0),

λbody

( d
dt

∣

∣

∣

t=0
Πa ◦γ(t)

)

= (ẋ, ẏ, 0).

This begins to show the value of the forward kinematic maps, since they reduce this

computation to one that is merely rote. �

5. Vector fields

Definition 5.1 A vector field on a manifold M is a class C∞ map X : M→ TM

with the property that X(x) ∈ TxM. �

• Idea: A vector field assigns a tangent vector to each point in M.

• To represent a vector field in coordinates is a simple matter. In coordinates

(x1, . . . , xn) the local representative of X is

(x1, . . . , xn) 7→ ((x1, . . . , xn), (X1(x), . . . , Xn(x)))

for some functions X1, . . . , Xn of the coordinates.

• The functions X1, . . . , Xn are called the components of X in the coordinates

(x1, . . . , xn).

• Vector fields have many facets, and we explore some of them.
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5.1. Vector fields and differential equations

Definition 5.2 An integral curve of a vector field X at x ∈ M is a curve γ at x

having the property that γ′(t) = X(γ(t)) for all times t for which γ is defined. �

• Let us understand what an integral curve is by writing the defining equality

γ′(t) = X(γ(t)) in coordinates.

• The coordinate representation for γ′(t) is

((x1(t), . . . , xn(t)), (ẋ1(t), . . . , ẋn(t))).

• The coordinate representative for X(γ(t)) is

((x1(t), . . . , xn(t)), (X1(x(t)), . . . , Xn(x(t)))).

• The equality is then

ẋ1(t) = X1(x(t))

...

ẋn(t) = Xn(x(t)).

• This is an ordinary differential equation!

• Punchline: To determine, at least locally, an integral curve for a vector field, one

has to solve a differential equation.

• Solving differential equations is generally impossible. However, from the theory of

differential equations we may assert that integral curves exist (for small times) and

are unique.

• However, the new idea here is that of thinking of a solution to a differential

equation as a curve:

γ(t)

γ′(t) = X(γ(t))

• This more geometric interpretation of the solution to a differential equation is a

powerful one, as we shall see.

Example 5.3 Let us take M = R2 and take (x, y) to be the usual Cartesian

coordinates. We define a vector field X by defining its coordinate representative in

these coordinates:

(x, y) 7→ ((x, y), (−y, x)).
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Let us “draw” this vector field to get some idea of what it says:

From the picture, it seems reasonable that integral curves should be circles. Let us

check this by writing down the differential equation, and seeing if we can solve it.

The differential equation is

ẋ(t) = −y(t), ẏ(t) = x(t).

This is actually a linear differential equation, and we know how to solve it. The

solution is

(x(t), y(t)) = (x(0) cos t− y(0) sin t, x(0) sin t+ y(0) cos t).

Since x(t)2 + y(t)2 = x(0)2 + y(0)2, we can conclude that indeed the integral curves

are circles. �

• It is possible that an integral curve at x cannot be defined for all time. However, it

is defined for small times, and by extending the interval on which an integral curve

can be extended to be as large as possible, we obtain an interval which we denote

by I(X,x). The integral curve defined on I(X,x) is called the maximal

integral curve of X through x.

• The domain of X is the set

dom(X) = { (t, x) ∈ R×M | t ∈ I(X,x)} .

• For (t, x) ∈ dom(X), denote by ΦXt (x) the point in M given by γ(t), where γ is

the maximal integral curve for X through x. The map (t, x) 7→ ΦXt (x) is called

the flow for X.

Example 5.4 (Vector field on R2 cont’d) We again take M = R2, and we let

X be the vector field defined in Example 5.3. Note that all integral curves can be

defined for all time. Thus I(X, (x, y)) = R for each (x, y) ∈ M. Therefore,
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dom(X) = R×M. The flow is given by

(t, (x, y)) 7→ (x cos t− y sin t, x sin t+ y cos t).

The symbol ΦXt (x, y) is represented by

ΦXt (x, y) = (x cos t− y sin t, x sin t+ y cos t).

If one fixes t and thinks of the map (x, y) 7→ ΦXt (x, y) as being a transformation of

M, then this transformation is simply a rotation by angle t. This, again, is a more

geometric way of thinking of a solution to a differential equation. �

Vector fields (cont’d)

5.2. Some coordinate notation

M

U

Rn

φ

• We next introduce some notation

concerning vector fields that, while seemingly

weird at first, is actually extremely useful.

• Let X be a vector field on M and let (U, φ)
be a chart with coordinates (x1, . . . , xn).

• Define vector fields E1, . . . , En by asking that the local representative of Ei in this

chart be x 7→ (x, ei), where ei is the ith standard basis vector.

• Since the standard basis is. . . er. . . a basis, for each x ∈ U, {E1(x), . . . , En(x)} is

a basis for TxM.

• Notation: Ei = ∂
∂xi , i ∈ {1, . . . , n}.

• The notation seems weird initially, but we shall see shortly why is it so useful.
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• Note that if X is a vector field defined on U, then we may write

X(x) =
n
∑

i=1

Xi ∂

∂xi
= Xi ∂

∂xi
︸ ︷︷ ︸

what does
this mean?

. (3)

• The last term in the previous equation introduces some new notation we shall

make extensive use of. Namely, we have omitted the summation sign.

• The convention being employed here is called the Einstein summation

convention, and it says that in an expression where repeated indices occur,

summation over these indices is implied.

• Some rules for the summation convention:

1. summation always occurs over one index that is a superscript, and one that is a

subscript (a superscript (resp. subscript) in the denominator of an expression is

taken to be a subscript (resp. superscript));

2. in an equality where the summation convention is being used, the “free

indices” (i.e., those not being summed) should agree;

3. no index should appear more than twice in the same expression.

• We shall see how these rules come up as we go along.

• In (3), the functions X1, . . . , Xn on U are the same components of X we defined

in the last lecture.

Change of basis formulae for vector fields

• Let X be a vector field, let (x1, . . . , xn) and x̃1, . . . , x̃n) be coordinates, and let

X1, . . . , Xn and X̃1, . . . , X̃n be the components of X in the two sets of

coordinates.

• Since X(x) ∈ TxM, it follows immediately that the components of X transform in

the same way as do the components of tangent vectors.

• We look back and see that this means that

X̃i =
∂x̃i

∂xj
Xj , i ∈ {1, . . . , n}.

Note that the summation convention is in force.
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• Let us also investigate how the basis vector fields ∂
∂x̃i are related to the basis

vector fields ∂
∂xi .

• If the notation makes sense, then it should be the case that one can use the Chain

Rule:
∂

∂x̃i
=
∂xj

∂x̃i
∂

∂xj
.

• To check that this is the actual transformation rule, we should check that

X = Xi ∂

∂xi
= X̃i ∂

∂x̃i
.

Let us verify this:

X̃i ∂

∂x̃i
=
∂x̃i

∂xj
∂xk

∂x̃i
Xj ∂

∂xk
.

Note that ∂x̃i

∂xj are the components of the Jacobian of the overlap map going from

coordinates x to x̃, and ∂xk

∂x̃i are the components of the Jacobian of the overlap

map going from coordinates x to x̃. These matrices are inverses of one another.

This means that

∂x̃i

∂xj
∂xk

∂x̃i
= δjk =







1, j = k,

0, j 6= k.

Note that δjk are then the components of the identity matrix. This symbol is called

the Kronecker delta. Now we have

X̃i ∂

∂x̃i
= δjkX

j ∂

∂xk
= Xk ∂

∂xk
,

using the definition of the Kronecker delta. Thus, after the dust settles, we do

indeed see that the proposed change of coordinates rule for the basis vector fields

makes sense.

Example 5.5 Let us look at an example to illustrate these ideas. We take

M = R2, and the vector field X we dealt with in the preceding lecture. In the

notation of last time, we said that X had local representative

(x, y) 7→ ((x, y), (−y, x))

in Cartesian coordinates. In our present notation, we would write

X = −y ∂
∂x

+ x
∂

∂y
.

We also wish to write this vector field in polar coordinates. We do this in two ways,

first by transforming the components of X, then by transforming the basis vectors.

First the components transformation rule. Let us write (Xx, Xy) as the components
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of X in Cartesian coordinates (i.e., Xx = −y and Xy = x) and (Xr, Xθ) as the

components of X in polar coordinates. We have

Xr =
∂r

∂x
Xx +

∂r

∂y
Xy =

x
√

x2 + y2
(−y) +

y
√

x2 + y2
(x) = 0,

Xθ =
∂θ

∂x
Xx +

∂θ

∂y
Xy =

−y
x2 + y2

(−y) +
x

x2 + y2
(x) = 1.

Therefore,

X = 0
∂

∂r
+ 1

∂

∂θ
.

Now let us change the basis vectors. We have

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ

=
x

√

x2 + y2

∂

∂r
− y

x2 + y2

∂

∂θ

= cos θ
∂

∂r
− sin θ

r

∂

∂θ
,

and

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ

=
y

√

x2 + y2

∂

∂r
+

x

x2 + y2

∂

∂θ

= sin θ
∂

∂r
+

cos θ
r

∂

∂θ
.

Substituting this into the expression for X we get

X = −y ∂
∂x

+ x
∂

∂y
= 0

∂

∂r
+ 1

∂

∂θ
,

as, of course, we must. �

Andrew D. Lewis Queen’s University



Math 439 Lecture Notes Lecture 16

• In some sense, the change of coordinates rules for vector fields define vector fields.

That is to say, they provide us with a means of identifying whether an object is a

vector field.

• As a specific instance of this, consider the following question: “For a function

f : M→ R, is the object represented in coordinates as having components

( ∂f∂x1 , . . . ,
∂f
∂xn ) a vector field?”

• To answer this question, we need only check whether the object obeys the change

of coordinates rule for vector fields.

• By the Chain Rule we have
∂f

∂x̃i
=
∂xj

∂x̃i
∂f

∂xj
.

If the object were to be a vector field, however, it would have to satisfy

∂f

∂x̃i
=
∂x̃i

∂xj
∂f

∂xj
.

Note that this formula wrecks havoc with the summation convention, which itself

is cause for suspicion.

• In any event, the object does not transform like a vector field, so cannot be a

vector field. So what is it?. . .

6. Some linear algebra

• We now engage in a short diversion into linear algebra, taking a new look at things

you have probably seen before.

6.1. Dual spaces

• Let V be a finite-dimensional R-vector space.

• By V∗, denote the set of linear maps from V to R. This is the dual of V.

• Recall that the set of linear maps from an n-dimensional vector space to an

m-dimensional vector space forms a vector space of dimension nm (think

matrices, if this helps). Thus V∗ is an n-dimensional vector space if dim(V) = n.

• We will exhibit a basis for V∗ given a basis {e1, . . . , en} for V.

• For i ∈ {1, . . . , n}, define ei ∈ V∗ by

ei(v) = ei(vjej) = vi.

Thus ei picks out the ith component of v ∈ V in the basis {e1, . . . , en}.
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• Notation: We number vectors in V with subscripts, and we number vectors in V∗

with superscripts. This will be important in the use of the summation convention

as we go along.

Proposition 6.1 The set {e1, . . . , en} is a basis for V∗, called the dual basis

to {e1, . . . , en}.

Proof: We will show linear independence of the dual basis, as well as show that it
spans V∗. In actuality, we need only show one of these two properties. (Why?)
For linear independence, suppose that we have constants c1, . . . , cn ∈ R so that
cie

i = 0. Note that ei(ej) = δij (the ith component of the jth basis vector is zero,
unless i = j, in which case it is one). Therefore

0 = ciei(ej) = ciδ
i
j = cj .

Since this holds for all j ∈ {1, . . . , n}, it follows that {e1, . . . , en} is linearly
independent.

Now we show that the dual basis spans V∗. Let α ∈ V∗ and define
αi = α(ei) ∈ R, i ∈ {1, . . . , n}. For v ∈ V we have

α(v) = α(viei) = viα(ei) = αie
i(v).

Since this must hold for all v ∈ V, it follows that α = αie
i. Thus {e1, . . . , en}

spans V∗, as desired. �

• If α ∈ V∗, then we write α = αie
i, and α1, . . . , αn are the components of α in

the dual basis.

• Notation: Note that the components of a vector are indexed with superscripts,

while the components of a dual vector are indexed with subscripts.

• Note that if α ∈ V∗ and if v ∈ V we have

α(v) = αie
i(vjej) = αiv

jei(ej) = αiv
jδij = αiv

i

︸︷︷︸

not a dot
product!

. (4)

• The last term looks alluringly like a dot product. It is not. A dot product takes

two vectors and gives a number. The expression in (4) is that of an element of V∗

acting on an element of V. This is a cause for confusion. Unconfuse yourself.
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• To clarify things, let us look at an example.

Example 6.2 Take V = Rn, and let {e1, . . . ,en} be the standard basis. Let us

follow the usual practice, and think of vectors in Rn as column vectors. Then, a

linear map from Rn to Rm is to be thought of as an m× n matrix. In particular,

elements of (Rn)∗ are to be thought of as 1× n matrices, i.e., as row vectors. Thus

we write a typical element in Rn as

v =











v1

...

vn











(5)

and we write a typical element in (Rn)∗ as

α =
[

α1 · · · αn

]

. (6)

The basis for (Rn)∗ dual to the standard basis is then readily seen to be

e1 =
[

1 0 · · · 0
]

, e2 =
[

0 1 · · · 0
]

, . . . , en =
[

0 0 · · · 1
]

.

With α as in (6) and with v as in (5), we have

α(v) = αiv
i.

Again, note that this is not a dot product, since α is not a column vector, i.e., not

an element of Rn. �

• Notation: We shall use the following notation interchangeably for the same thing:

α(v), 〈α; v〉 , α · v.

Again, the last bit of notation makes you think dot product, but don’t do this. We

will have alternative notation for what you know as the dot product.

6.2. Symmetric bilinear maps

• We now introduce a concept that is somewhat familiar to you, but we will think of

it a little more carefully than perhaps you are used to doing.
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Definition 6.3 Let V be a finite-dimensional R-vector space.

(i) A bilinear map on V is a map B : V × V→ R with the property that

B(c1v1 + c2v2, v3) = c1B(v1, v3) + c2B(v2, v3),

for all v1, v2, v3 ∈ V, and c1, c2 ∈ R.

(ii) A bilinear map B is symmetric (resp. skew-symmetric) if

B(v1, v2) = B(v2, v1) (resp. B(v1, v2) = −B(v2, v1)) for all v1, v2 ∈ V.

The set of symmetric bilinear maps is denoted Σ2(V).

• Let {e1, . . . , en} be a basis for V. Given a bilinear map B, the n2 numbers

Bij = B(ei, ej), i, j ∈ {1, . . . , n}, are the components of B in the basis.

• Note that if u = uie1 and v = viei, then

B(u, v) = B(uiei, vjej) = uivjB(eiej) = Biju
ivj .

Thus, to know the value of B on any two vectors, it suffices to know the

components of B, along with the components of the vectors.

Some linear algebra (cont’d)

Example 6.4 Let V = Rn and denote by GRn ∈ Σ2(Rn) the standard inner

product on Rn, i.e., the “dot product.” Let’s compute the components of GRn with

respect to the standard basis {e1, . . . ,en}:

GRn(ei, ej) = δij =







1, i = j,

0, i 6= j.

Note that this gives

GRn(u,v) = δiju
ivj ,

which represents the “dot product” in our summation convention form. �

6.3. Plain ol’ linear maps

• Let us revisit the venerable subject of linear maps, but now using our notation.

• Let U and V be R-vector spaces with bases {f1, . . . , fm} and {e1, . . . , en}. Let

A ∈ L(U; V)(=the set of linear maps from U to V).
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• The components of A in the bases are the nm numbers Aia, a ∈ {1, . . . ,m},
i ∈ {1, . . . ,m}, that satisfy

A(fa) = Aiaei.

• We would like to think of these as being elements in a matrix, so we must decide

which index is the row index, and which is the column index.

• Here are two possible ways to think of this.

1. A linear map from Rm to Rn is represented by a matrix with n rows and m

columns. Thus the superscript should be the row index, and the subscript

should be the column index.

2. Let u = uafa. Then A(u) = A(uafa) = Aiau
aei. Thus the components of

A(u) are Aiau
a, i ∈ {1, . . . , n}. Summation in matrix/vector multiplication

takes place over the columns of the matrix. Thus the subscript should be the

column index, and the superscript the row index.

• In any case, we write

[A] =















A1
1 A1

2 · · · A1
m

A2
1 A2

a · · · A2
m

...
...

. . .
...

An1 An2 · · · Anm















,

which is the matrix representative for A.

• Note that the components of both a linear map from V to itself, and a symmetric

bilinear map are represented by n× n matrices. However, these are not the same

sorts of objects! This is evidenced, for example, by the location of the indices for

the components of a linear map (one up and one down) and a symmetric bilinear

map (both down).

• We also assemble the components of a bilinear map into a matrix by

[B] =















B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · B)nn















.
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6.4. Linear maps associated with bilinear maps

• Given a bilinear map B : V × V→ R, we define a map B[ : V→ V∗ (pronounced

“B-flat”) by asking that, for v ∈ V, B[(v) satisfy
〈

B[(v);u
〉

= B(u, v) for all

u ∈ V.

• Make sure you understand how this defines a linear map B[ ∈ L(V; V∗).

• Let {e1, . . . , en} be a basis for V with {e1, . . . , en} the dual basis. We wish to

compute the components of B[ in these bases. By definition

B[(ei) = (B[)jiej

gives the components (B[)ji of B[. Let’s see what these are. On the one hand,

〈B[(ei); ek〉 = B(ek, ei) = Bki.

On the other hand

〈(B[)jiej ; ek〉 = (B[)ji
〈

ej ; ek
〉

= (B[)jiδ
j
k = (B[)ki.

Therefore, (B[)ji = Bji. That is, the components of B[ are just those of B. This

can be confusing.

• From this it follows that B[(v) = Bijv
jei. Thus the components of B[(v) are

obtained by multiplying the vector of components of v by the matrix of

components of B in the usual fashion.

• If B[ is invertible, then its inverse is denoted by B] ∈ L(V∗; V) (pronounced

“B-sharp”).

• By repeating the sort of computations as above, one can show that the

components of B] form a matrix which is the inverse of the matrix of components

of B[, and that the components of B](α) are obtained by multiplying the vector

of components of α by the matrix of components of B].

• Note that if G is an inner product, then G[ is invertible. Indeed, the matrix [G] is

symmetric and positive-definite (this follows from the properties of an inner

product). This means that all of its eigenvalues are real and positive, and therefore

the matrix is invertible, giving invertibility of G[.
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7. Kinetic energy and Riemannian metrics

• We now wish to go about defining the kinetic energy of an interconnected

mechanical system.

• This will involve our determining the kinetic energy first for each of the

component rigid bodies and particles, then summing these together. We first need

to spend some time talking about rigid bodies.

7.1. Rigid bodies

• A rigid body is a pair (B, µ) where B ⊂ R3 is compact, and where µ is a

“positive Borel measure on R3 whose support is equal to B,” and is called the

mass distribution.

• Most often, we shall take µ = ρdV , where ρ is the “mass density” of the body,

and dV is the volume element in R3.

• However, if one wants to consider particles as rigid bodies (and it is convenient to

do so), then we cannot have so simple an idea of what µ is. In this case, we think

of µ as being a map on the (Borel) subsets of R3 into [0,∞[ , with µ(S) being the

“mass” of the set S.

Examples 7.1 1. A particle is the rigid body B = {χ0} (this is the location of the

particle) and a mass distribution defined by

µ(S) =







m, χ0 ∈ S,
0, χ0 6∈ S,

where m is the mass of the particle.

2. Suppose we have two masses at points χ1 and χ2 ∈ R3, and with masses m1

and m2. The particles are constrained to have the same position relative to one

another, and so form a rigid body. The mass distribution here would be

µ(S) =



























m1 +m2, χ1,χ2 ∈ S,
m1, χ1 ∈ S, χ2 6∈ S,
m2, χ1 6∈ S, χ2 ∈ S,
0, χ1,χ2 6∈ S.

3. A general rigid body will not be contained in any line, and there is not much one

can say in general about its mass distribution. �
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7.2. Mass and center of mass

• The mass of (B, µ) is

µ(B) ,
∫

R3
dµ.

• The center of mass of (B, µ) is

χc ,
1

µ(B)

∫

R3
χdµ.

Examples 7.2 1. The particle at χ0 has center of mass

χc =
1
m

∫

R3
χdµ =

1
m
mχ0 = χ0,

as expected.

2. The two particles have center of mass

χc =
1

m1 +m2

∫

R3
χdµ =

1
m1 +m2

(m1χ1 +m2χ2),

again, as expected.

7.3. The inertia tensor

• Let χ0 ∈ R3. The inertia tensor for (B, µ) about χ0 is the linear map

Iχ0
∈ L(R3;R3) given by

Iχ0
(u) =

∫

R3
(χ− χ0)× (u× (χ− χ0)) dµ.

• We shall make two simplifying assumptions:

1. χ0 = χc: we take the moment of inertia about the center of mass;

2. χc = 0: we choose the body frame so that the origin is at the center of mass.

In this case we denote Ic = Iχc , and have

Ic(u) =
∫

R3
χ× (u× χ) dµ.

• Let us record some nice properties of the inertia tensor.

Proposition 7.3 We have

(i) Ic is a symmetric linear map with respect to the standard inner product on
R3, and

(ii) GR3(Ic(u,u) ≥ 0.
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Proof: We recall the vector identity

GR3(u,v ×w) = GR3(w,u× v). (7)

Using this identity twice we have

GR3(Ic(u),v) =
∫

R3
GR3(χ× (u× χ),v) dµ

=
∫

R3
GR3(u× χ,v × χ) dµ (8)

=
∫

B

GR3(u,χ× (v × χ)) dµ

= GR3(u, Ix(v)),

which gives the symmetry of Ic. That Ic is positive-semidefinite follows directly
from (8). �

• Note that it follows that

1. all eigenvalues of Ic are real and nonnegative, and

2. the eigenvectors of Ic form an orthogonal basis for R3.

• The eigenvalues we denote by J1, J2, J3, and call these the principal inertias.

The eigenvectors we denote by u1.u2,u3, and call these the principal axes.

• The inertial ellipsoid, along with the mass, gives us all the essential inertial

information about a rigid body.

• Here’s an interesting experiment to perform at home.

1. Take a rigid body with three distinct principal inertias. A good example of this

is a book with three quite different length/width/thickness dimensions.

2. Spin the body about the axis corresponding to the smallest principal inertia.

Note that it spins about this axis.

3. Spin the body about the axis corresponding to the largest principal inertia.

Note that it spins about this axis.

4. Spin the body about the axis corresponding to the intermediate principal

inertia. Note that now the body does not just spin about this axis. The

rotation about this axis in unstable.

• To understand the general motion of a body, look up Poinsot’s Theorem on

the web.
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Kinetic energy and Riemannian metrics (cont’d)

• We shall not dwell much on the computation of the inertia tensor. Commonly

shaped bodies have formulae for their moments of inertia that can be looked up.

For really complicated bodies, measurement is the best approach.

• However, for the situations we consider in this course, a few comments are helpful.

1. For a planar body, the vector orthogonal to the plane can be assumed to be a

principal axis.

2. If a body has an axis of symmetry (meaning its inertial ellipsoid is invariant

under rotations about some axis), then

(a) this axis of symmetry is a principal axis, and

(b) the other two principal inertias are equal.

7.4. Kinetic energy of a rigid body

• The kinetic energy of a particle with mass m undergoing a motion described by

t 7→ r(t) is KE(t) = 1
2m‖ṙ(t)‖R3 .

• We wish to generalise this to a rigid body.

• We suppose the body is undergoing a motion described by t 7→ (R(t), r(t)). A

point in the body that is located at χ ∈ R3 relative to the body frame will be

located at x(t) = r(t) +Rχ(t) at time t.

• By analogy with the particle case, the kinetic energy is

KE(t) =
1
2

∫

B

‖ṙ(t) + Ṙ(t)χ‖2R3 dµ,
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Kinetic energy and Riemannian metrics (cont’d)

• We wish to obtain a convenient expression for the kinetic energy.

Proposition 7.4 Let a rigid body (B, µ) undergo a motion specified by a
differentiable curve t 7→ (R(t), r(t)) as above. If

KEtran(t) = 1
2µ(B)‖ṙ(t)‖2R3 , KErot(t) =

1
2
GR3(Ic(Ω(t)),Ω(t)),

then KE(t) = KEtran(t) + KErot(t).

Proof: We compute

KE(t) =
1
2

∫

B

‖ṙ(t)‖2R3 dµ+
1
2

∫

B

‖Ṙ(t)χ‖2R3 dµ+
∫

B

GR3(ṙ(t), Ṙ(t)χ) dµ

= 1
2µ(B)‖ṙ(t)‖2R3 +

1
2

∫

B

‖Ṙ(t)χ‖2R3 dµ,

using in the second line the fact that
∫

B

χdµ = 0,

since the center of mass of the body is at the origin of the body frame. Thus the

result will follow if we can show that
∫

B

‖Ṙ(t)χ‖2R3 dµ = GR3(Ic(Ω),Ω(t)).

To this end we compute
∫

B

‖Ṙ(t)χ‖2R3 dµ =
∫

B

‖R(t)(Ω× χ)‖2R3 dµ =
∫

B

‖Ω× χ‖2R3 dµ

=
∫

B

GR3(χ× (Ω(t)× χ),Ω(t)) dµ

= GR3(Ic(Ω),Ω(t)),

where we have used the vector identity (7) and the fact that χc = 0. �

• Important note: If the body frame is not located at the center of mass, the

preceding result does not hold. That is to say, the kinetic energy does not

generally decouple into a translational and rotational part.

• Side fact: If the body is fixed in space at some point (i.e., that point does not

move), then one might place the body frame at this point. If one does this, the

kinetic energy will be purely rotational, and computed using the inertia tensor

about the fixed point.
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7.5. Kinetic energy for an interconnected mechanical system

• Suppose we have an interconnected mechanical system comprised of rigid bodies

(B1, µ1), . . . , (Bk, µk), and with configuration manifold Q ⊂ Qfree.

• Now suppose that the system is in motion, meaning we have a curve t 7→ γ(t) in

Q. Each rigid body will then be in motion, and so its kinetic energy will be

computed as above. The total kinetic energy will be the sum of the kinetic

energies for each body. We wish to make this a little more precise.

• Fix a ∈ {1, . . . , k} and let Πa : Q→ SO(3)× R3 be the map that assigns the

position of the ath body to the point q ∈ Q. Define (Ra(t), ra(t)) = Πa ◦γ(t).

Then the kinetic energy of the ath body is as computed above:

KEa(t) =
1
2
µa(Ba)‖ṙa(t)‖2R3 +

1
2
GR3Ic,a(Ωa(t))Ωa(t).

• The total kinetic energy along γ is

KEγ(t) =
k
∑

a=1

KEa(t).

• Note that the kinetic energy at time t for the system depends on the position at

time t and the velocity at time t. Thus, it makes sense to speculate on the

existence of a function KE: TQ→ R with the property that KE(γ′(t)) = KEγ(t).

• Indeed, it is easy to define such a function. Let vq ∈ TQ and let γ be a curve at q

for which vq = [γ]. Then we simply define KE(vq) = KEγ(0). This is the kinetic

energy for the interconnected mechanical system.

• Question: For fixed q ∈ Q, what properties does the function KE have when

restricted to TqQ?

• Answers:

1. It is quadratic in velocity, since the rigid body terms are quadratic in velocity.

2. It is nonnegative, again since the rigid body terms are nonnegative.

Therefore, KE(vq) = 1
2G(q)(vq, vq), where G(q) is a symmetric bilinear map on

TqQ having the property that G(q)(vq, vq) ≥ 0 for all vq.

• If the modeling of the system has been done in a “reasonable” way, it turns out

that G(q)(vq, vq) > 0 whenever vq 6= 0. “Reasonable” essentially means that there

are no degrees of freedom of the system that have no inertia associated to them

(e.g., particles with rotational degrees of freedom).
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• Motivated by the preceding description of the kinetic energy for an interconnected

mechanical system, we have the following important concept.

Definition 7.5 On a manifold Q (not necessarily the configuration manifold for a

free mechanical system) a Riemannian metric is a smooth assignment of an

inner product G(q) to each point q ∈ Q. �

• Punchline: Every interconnected mechanical system possesses a natural

Riemannian metric G with the property that KE(vq) = 1
2G(vq, vq). This

Riemannian metric is called the kinetic energy metric.

• The kinetic energy metric carries the information about the inertial properties of

the system.

• For the remainder of the course, the kinetic energy metric, and entities associated

with it, will be extremely important.

Kinetic energy and Riemannian metrics (cont’d)

7.6. Coordinate representations for covectors and Riemannian metrics

• Let Q be a manifold. The dual space to the tangent space TqQ is denoted T∗qQ,

and is called the cotangent space. Elements of T∗qQ are called cotangent

vectors. The collection T∗Q = ∪q∈QT∗qQ is called the cotangent bundle.

• We have seen that a vector field is an assignment of a tangent vector to each

point in Q. A covector field is an assignment

• Now suppose that we have coordinates (q1, . . . , qn). We had the notation ∂
∂qi ,

i ∈ {1, . . . , n}, for a basis of vector fields in the given set of coordinates.

• We have seen the idea of a dual basis corresponding to a basis for a vector space.

We do the same for tangent spaces, using funny notation for this.

• The basis dual to { ∂
∂q1 (q), . . . , ∂

∂qn (q)} we denote by {dq1(q), . . . ,dqn(q)}. The

reason for this notation will become clear later.

• A covector field α is then written in coordinates as α = αidqi, where α1, . . . , αn
are the components of α.

• This is all just like we did when we talked about linear algebra.
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• Now suppose that G is a Riemannian metric on Q.

• The components of G in coordinates (q1, . . . , qn) are the n2 numbers

Gij = G( ∂
∂qi ,

∂
∂qj ).

• The way we write G in coordinates is

G = Gijdqi ⊗ dqj . (9)

• The symbol ⊗ is called the tensor product.

• In this course, the only use we will make of the tensor product is in writing the

expression (9).

• However, here’s a useful fact to help you think about what the dqi ⊗ dqj are:

The set
{

dqi(q)⊗ dqj(q)
∣

∣ i, j ∈ {1, . . . , n}
}

is a basis for the set of

bilinear maps from TqQ× TqQ to R.

• Now we look at how this works in some examples.

Example 7.6 (Planar rigid body cont’d) We had previously determined that

the configuration manifold for the system is Q = S1 × R2. In Example 2.13 we made

some choices concerning spatial and body frames, so these should be recalled. In

Example 2.16 we introduced coordinates (θ, x, y) for the system, so these should be

recalled.

With the preceding recollections, the coordinate form for the map

Π1 : Q→ SO(3)× R3 that defines the position of the body at a given configuration

is by

(θ, x, y) 7→



























cos θ − sin θ 0

sin θ cos θ 0

0 0 1









︸ ︷︷ ︸

R

, (x, y, 0)
︸ ︷︷ ︸

r



















.
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Now one considers a curve t 7→ (θ(t), x(t), y(t)) in these coordinates and computes

Ṙ(t) =









− sin θ(t) − cos θ(t) 0

cos θ(t) − sin θ(t) 0

0 0 0









θ̇, ṙ(t) = (ẋ(t), ẏ(t), 0).

It is then an elementary computation to get

̂Ω = RT (t)Ṙ(t) = θ̇









0 −1 0

1 0 0

0 0 0









,

giving Ω(t) = (0, 0, θ̇).

Now we need the inertia tensor for the body. Since it is planar, and since b3 is

orthogonal to the plane of motion, we can suppose that b3 is a principal axis, and

denote the corresponding principal inertia by J . The exact character of the other

principal axes and principal inertias is irrelevant, so we can simply assume that

Ic =









A11 A12 0

A12 A22 0

0 0 J









.

(Why can we assume that the (1, 3), (2, 3), (3, 1), and (3, 2) entries are zero?) The

mass of the body is denoted m. Now one simply uses Proposition 7.4 to compute

KE =
1
2
m‖ṙ(t)‖2R3 +

1
2
GR3(Ic(Ω(t)),Ω(t)) =

1
2
m(ẋ2 + ẏ2)
︸ ︷︷ ︸

KEtran

+
1
2
Jθ̇2

︸ ︷︷ ︸

KErot

.

One can now write this as a function on TQ in coordinates as

KE =
1
2
m(v2

x + v2
y) +

1
2
Jv2

θ .

To compute the kinetic energy metric in coordinates we first compute the matrix

with components

Gij =
∂2KE
∂vi∂vj

, i, j ∈ {1, 2, 3}.
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This matrix we write as

[G] =









J 0 0

0 m 0

0 0 m









,

which is the matrix representative for the kinetic energy metric. To write the

kinetic energy metric as a geometric object in coordinates, we use the notation (9):

G = Jdθ ⊗ dθ +mdx⊗ dx+mdy ⊗ dy. �

Example 7.7 (Two-link manipulator (cont’d)) We refer to Examples 2.14

and 2.18 for a review of the description of Q = S1 × S1 and the coordinates (θ1, θ2).

The maps Π1,Π2 : Q→ SO(3)× R3 defining the positions of the body are readily

seen to have the coordinate forms (θ1, θ2) 7→ (Ra, ra), a ∈ {1, 2}, where

Ra =









cos θa − sin θa 0

sin θa cos θa 0

0 0 1









, a ∈ {1, 2},

r1 = ( 1
2`1 cos θ1,

1
2`1 sin θ1, 0),

r2 = (`1 cos θ1 + 1
2`2 cos θ2, `1 sin θ1 + 1

2`2 sin θ2, 0).

One then readily computes the body angular velocities as Ωa = (0, 0, θ̇1), a ∈ {1, 2}.

We next need the inertia tensors. The motion is planar, and b3 is orthogonal to the

plane of motion, so b3 is a principal axis for the inertia tensor of each body. Let J1

and J2 denote the principal inertias. As with the planar body example above, the

remaining principal axes and principal inertias are not relevant. Now one simply

grinds out the kinetic energy metric, using the formulae

KE =
1
2
m1‖ṙ1‖2R3 +

1
2
m2‖ṙ2‖2R3 +

1
2
GR3(Ic,1(Ω1),Ω1) +

1
2
GR3(Ic,2(Ω2),Ω2)

and

Gij =
∂2KE
∂vi∂vj

.

After the dust settles one has

(J1 +
1
4

(m1 + 4m2)`21)dθ1 ⊗ dθ1 +
1
2
m2`1`2 cos(θ1 − θ2)dθ1 ⊗ dθ2

+
1
2
m2`1`2 cos(θ1 − θ2)dθ2 ⊗ dθ1 + (J2 +

1
4
m2`

2
2)dθ2 ⊗ dθ2. �

Andrew D. Lewis Queen’s University



Math 439 Lecture Notes Lecture 22

Kinetic energy and Riemannian metrics (cont’d)

s3

s2

s1

φr

θ

b3

b1b2

Example 7.8 (Rolling disk (cont’d))
We have Q = R2 × S1 × S1,

and coordinates (x, y, θ, φ) as indicated

in the figure. As usual, the key ingredient is the

map Π1 : Q→ SO(3)× R3. Here we reap the

rewards of our careful attention to defining the

configuration manifold, and we see that in coordinates Π1 is given by

(x, y, θ, φ) 7→



























cosφ cos θ − sinφ cos θ sin θ

cosφ sin θ − sinφ sin θ − cos θ

sinφ cosφ 0









︸ ︷︷ ︸

R

, (x, y, r)
︸ ︷︷ ︸

r



















.

This then gives, by a direct computation, Ω = (sinφθ̇,− cosφθ̇, φ̇).

We need the inertia tensor. It is reasonable to assume that b3 is an axis of symmetry

for the body. Therefore, it is a principal axis, and the remaining two principal inertias

are equal. Thus we have

Ic =









Jspin 0 0

0 Jspin 0

0 0 Jroll









,

for Jspin, Jroll > 0. Now we simply calculate

KE =
1
2
m‖ṙ‖2R3 +

1
2
GR3(Ic(Ω),Ω)

and

Gij =
∂2KE
∂vi∂vj

.

The result is

G = mdx⊗ dx+mdy ⊗ dy + Jspindθ ⊗ dθ + Jrolldφ⊗ dφ.

Note that the spin and roll kinetic energies decouple. Would you have guess this? �
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7.7. Changes of coordinate for covector fields and Riemannian metrics

• We have seen how basis vector fields and components of vector fields change when

coordinates change. Let’s do the same for covector fields and Riemannian metrics

• To deduce the change of coordinates formulae for covector fields, we use the fact

that they act on vector fields, and we know the change of coordinate formulae for

vector fields.

• Thus let (q1, . . . , qn) and (q̃1, . . . , q̃n) be coordinates for Q, and let α and X be a

covector field and a vector field, respectively. We shall write

X = Xi ∂

∂qi
= X̃i ∂

∂q̃i
α = αidqi = α̃idq̃i.

• We know that

X̃i =
∂q̃i

∂qj
Xj ,

∂

∂q̃i
=
∂qj

∂q̃j
∂

∂qj
.

• We also know that α(X) = αiX
i = α̃iX̃

i.

• We therefore compute

αiX
i = αi

∂qi

∂q̃j
X̃j = α̃jX̃

j ,

from which we deduce that α̃j = ∂qi

∂q̃j αi.

• We also know that

α = αidqi = α̃j
∂q̃j

∂qi
dqi = α̃jdq̃j ,

from which we deduce that dq̃j = ∂q̃j

∂qi dqi. Note that this is just how the

coordinate change should work, if you think of the dq’s as being “infinitesimals.”

• Recall that the mnemonic for the change of coordinate formula for vector fields is

that the components should change like velocity changes using the Chain Rule.

• Is there a similar rule for the components of a covector field?

• To answer this question, recall that we had considered the object which in

coordinates had components ( ∂f∂q1 , . . . ,
∂f
∂qn ).
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• We had decided that these components did not obey the transformation rule for

vector fields, and so they could not be the components of a vector field. However,

we do have
∂f

∂q̃i
=
∂qj

∂q̃i
∂f

∂qj
,

simply by the Chain Rule.

• This then gives us two things.

1. The object with components ( ∂f∂q1 , . . . ,
∂f
∂qn ) is a covector field, since its

components obey the right transformation rule for covector fields. This

covector field we call the differential of f .

2. The mnemonic for the transformation rule for the components of a covector is

that they change like the partial derivatives of a function using the Chain Rule.

• Now we consider how the bases and components of a Riemannian metric act with

respect to changes of coordinates.

• We consider coordinates (q1, . . . , qn) and (q̃1, . . . , q̃n) and a Riemannian G for

which we can thus write

G = Gijdqi ⊗ dqj = G̃k`dq̃k ⊗ dq̃`.

• We wish to compute the change of coordinate formulae for the components G̃k`
for got the basis vectors (for the set of bilinear maps) dq̃k ⊗ dq̃`.

• The change of coordinate rule for the basis vectors in inherited from that for

covector fields. Precisely,

dq̃k ⊗ dq̃` =
(∂q̃k

∂qi
dqi
)

⊗
(∂q̃`

∂qj
dqj
)

=
∂q̃k

∂qi
∂q̃`

∂qj
dqi ⊗ dqj .

• Note that we have implicitly used the fact that the tensor product ⊗ is linear.

• The rule for change of components is now inherited from the change of bases. We

have

G = Gijdqi ⊗ dqj = Gij
∂qi

∂q̃k
∂qj

∂q̃`
dq̃k ⊗ dq̃`,

from which we deduce that

G̃k` =
∂qi

∂q̃k
∂qj

∂q̃`
Gij .
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Kinetic energy and Riemannian metrics (cont’d)

• Let us look at some examples that illustrate the change of coordinate formulae for

covector fields and Riemannian metrics.

Example 7.9 Take Q = R2 and let (x, y) and (r, θ) be Cartesian and polar

coordinates, respectively. Define f : Q→ R by f(x, y) = x2 + y2. We wish to see

how the covector field df , the differential of f , looks in both sets of coordinates.

There are two ways to do this. First, one can write the function in both sets of

coordinates, and then take the differential. This is very easy. In Cartesian

coordinates the local representative of f is (x, y) 7→ x2 + y2, so that

df = 2xdx+ 2ydy. In polar coordinates the local representative of the function is

(r, θ) 7→ r2, so that df = 2rdr + 0dθ.

We can also compute, using the change of coordinate formulae, the components or

the basis covector fields, in one coordinate system given those in the other. Let us

illustrate how this goes, first using the change of coordinate rule for components of

covector fields. We write

df = αxdx+ αydy = αrdr + αθdθ,

where we wish to compute αr and αθ in terms of αx = 2x and αy = 2y. We have

αr =
∂x

∂r
αx +

∂y

∂r
αy = (cos θ)(2r cos θ) + (sin θ)(2r sin θ) = 2r

αθ =
∂x

∂θ
αx +

∂y

∂θ
αy = (−r sin θ)(2r cos θ) + (r cos θ)(2r sin θ) = 0.

Thus df = 2rdr + 0dθ, as desired.

We can also use the change of coordinate rule for the basis. This calculation goes as

follows:

df = αxdx+ αydy

= (2r cos θ)
(∂x

∂r
dr +

∂x

∂θ
dθ
)

+ (2r sin θ)
(∂y

∂r
dr +

∂y

∂θ
dθ
)

= (2r cos θ)
(

cos θdr − r sin θdθ
)

+ (2r sin θ)
(

sin θdr + r cos θdθ
)

= 2rdr + 0dθ,

again, as expected. �
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Example 7.10 Let us now consider the Riemannian metric for a particle of mass

m moving in a plane. The configuration manifold is Q = R2. If we use Cartesian

coordinates, the kinetic energy is KE = 1
2m(ẋ2 + ẏ2), so giving the kinetic energy

metric as

G = mdx⊗ dx+mdy ⊗ dy.

We wish to compute the representation of this Riemannian metric in polar

coordinates. To do so, we use the change of basis formula for the basis vectors used

in representing a Riemannian metric. One can also use the change of coordinates

formula for components, but the basis vector method is often the most “natural.” In

any case, we compute

G = mdx⊗ dx+mdy ⊗ dy

= m
(∂x

∂r
dr +

∂x

∂θ
dθ
)

⊗
(∂x

∂r
dr +

∂x

∂θ
dθ
)

+m
(∂y

∂r
dr +

∂y

∂θ
dθ
)

⊗
(∂y

∂r
dr +

∂y

∂θ
dθ
)

= m
(

cos θdr − r sin θdθ
)

⊗
(

cos θdr − r sin θdθ
)

+m
(

sin θdr + r cos θdθ
)

⊗
(

sin θdr + r cos θdθ
)

= m cos2 θdr ⊗ dr +mr2 sin2 θdθ ⊗ dθ

−mr sin θ cos θ(dr ⊗ dθ + dθ ⊗ dr)

+m sin2 θdr ⊗ dr +mr2 cos2 θdθ ⊗ dθ

+mr sin θ cos θ(dr ⊗ dθ + dθ ⊗ dr)

= mdr ⊗ dr +mr2dθ ⊗ dθ.

It is important to note that the tensor product ⊗ is linear with respect to scalar

multiplication, but is not commutative. Thus, for example, dr ⊗ dθ 6= dθ ⊗ dr. �

• Now we are ready to actually do something.
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8. The Euler–Lagrange equations

• We now turn, at last, to the following important question:

Question: Given an interconnected mechanical system with configuration manifold

Q and kinetic energy metric G, what are the equations of motion for the system?

• Answers:

1. The Newton–Euler equations, i.e., F = ma and M = Jω̇.

2. The “Euler–Lagrange equations.”

• We assume the reader knows about the first answer, we will come to understand

the second answer, but we will (unfortunately) not come to understand why the

two answers are equivalent.

• But we first make a small diversion to understand the natural context for the

Euler–Lagrange equations.

8.1. The setup for the Euler–Lagrange equations

• We shall say a few words about the calculus of variations. We shall not be overly

precise here, since this is not really a course on the calculus of variations.

Problem 8.1 Let L : TQ→ R be a C∞-function (called a Lagrangian), let

qa, qb ∈ Q, and let a < b ∈ R. We seek the curve γ : [a, b]→ Q that minimizes the

function AL, defined on the set C2([a, b], qa, qb) of C2-curves defined on [a, b], and

satisfying γ(a) = qa and γ(b) = qb, defined by

AL(γ) =
∫ b

a

L(γ′(t)) dt. �

• The problem has the following solution.

Theorem 8.2 (Necessary conditions for minimization) If a curve
γ ∈ C2([a, b], qa, qb) minimizes AL, then, for any chart (U, φ) with the property
that the image of γ intersects U, the representation t 7→ q(t) of γ in that chart
must satisfy

d
dt

( ∂L

∂vi

)

− ∂L

∂qi
= 0, i ∈ {1, . . . , n},

at (t, q(t), q̇(t)) for each t with the property that γ(t) ∈ U.
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• The equations
d
dt

( ∂L

∂vi

)

− ∂L

∂qi
= 0, i ∈ {1, . . . , n},

are the Euler–Lagrange equations.

• Although the form we give for the equations is the standard form, it is actually not

clear. The clear version, for which the standard version is an abbreviation, is, using

the Chain Rule,

∂2L

∂vi∂vj
q̈j +

∂2L

∂vi∂qj
q̇j − ∂L

∂qi
= 0, i ∈ {1, . . . , n}.

• The Euler–Lagrange equations are to Problem 8.1 what the condition the

condition “derivative equals zero” is to the problem “find the minimum of a

differentiable function f : Rn → R.” That is to say, the Euler–Lagrange equations

are a necessary, but not sufficient, condition for a solution of the minimization

problem stated in Problem 8.1.

The Euler–Lagrange equations (cont’d)

• For an interconnected mechanical system with configuration manifold Q and

kinetic energy metric G, its Lagrangian is the function LG : TQ→ R defined by

LG(vq) = 1
2G(vq, vq).

• The following theorem is the essential one connecting the Euler–Lagrange

equations with Newtonian mechanics. Recall that Πa : Q→ SO(3)× R3 gives the

position of the ath body at a configuration in Q.

Theorem 8.3 Consider an interconnected mechanical system comprised of rigid
bodies (B1, µ1), . . . , (Bk, µk), having configuration space Q, and having kinetic
energy metric G. For a curve γ : I → Q the following are equivalent:

(i) the motion of the bodies, t 7→ Πa ◦γ(t), satisfies the Newton–Euler equations;

(ii) γ satisfies the Euler–Lagrange equations for the Lagrangian LG.
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• We therefore need to understand the Euler–Lagrange equations for Lagrangians of

the form LG. The most direct (and ugly) way to do this is by a coordinate

calculation. See the text for slicker versions.

• We choose coordinates (q1, . . . , qn), and write the Lagrangian in these coordinates

as LG = 1
2Gjkv

jvk. We then grind:

d
dt

(∂LG
∂q̇i

)

− ∂LG
∂qi

=
d
dt
(

Gij q̇j
)

− 1
2
∂Gjk
∂qi

q̇j q̇k

= Gij q̈j +
∂Gij
∂qk

q̇j q̇k − 1
2
∂Gjk
∂qi

q̇j q̇k.

Let us denote

Aijk =
∂Gij
∂qk

− 1
2
∂Gjk
∂qi

,

and work on the term Aijk q̇
j q̇k. We first write

Aijk = 1
2 (Aijk +Aikj)
︸ ︷︷ ︸

A+
ijk

+ 1
2 (Aijk −Aikj)
︸ ︷︷ ︸

A−ijk

.

Note that A−ijk = −A−ikj . Therefore,

A−ijk q̇
j q̇k = −A−ikj q̇

j q̇k = −A−ijk q̇
j q̇k,

where the last step is just a renaming of the summation index. Thus A−ijk q̇
j q̇k = 0

and so Aijk q̇
j q̇k = A+

ijk q̇
j q̇k. We then compute

A+
ijk =

1
2
∂Gij
∂qk

− 1
4
∂Gjk
∂qi

+
1
2
∂Gik
∂qj

− 1
4
∂Gkj
∂qi

= 1
2

(∂Gij
∂qk

+
∂Gik
∂qj

− ∂Gjk
∂qi

)

.

The Euler–Lagrange equations now look like

Gij q̈j +
1
2

(∂Gij
∂qk

+
∂Gik
∂qj

− ∂Gjk
∂qi

)

q̇j q̇k = 0.

To get these in their final form, we multiply this equation by G`i, where we recall

that G`i are the components of the inverse of the matrix with components Gij .
We then have

q̈` +
1
2
G`i
(∂Gij
∂qk

+
∂Gik
∂qj

− ∂Gjk
∂qi

)

︸ ︷︷ ︸

G
Γ`jk

q̇j q̇k = 0.
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• The punchline is thus:

q̈i +
G

Γijk q̇
j q̇k = 0, i ∈ {1, . . . , n}

G

Γijk =
1
2
Gi`
(∂G`j
∂qk

+
∂G`k
∂qj

− ∂Gjk
∂q`

)

, i, j, k ∈ {1, . . . , n}.

• There are (at least) two important things to note about these equations:

1. We have spent significant time understanding what it takes to compute G.

Indeed, in some sense, much of the course to this point has been understanding

what G is, mathematically and physically, and understanding how to compute

it. What we have seen is that, once you have the forward kinematic maps

Πa : Q→ SO(3)× R3, and the inertia tensors of the bodies, the computation

of G is algorithmic. Thus the computation of the equations of motion is also

algorithmic, since they come to us in simple terms of the metric G.

2. The equations q̈i +
G

Γijk q̇
j q̇k = 0 are “the geodesic equations for the Levi-Civita

affine connection associated to G.”

• We now have to understand the words in the last statement.

9. Affine connections

• To define the notion of an affine connection, we need the following simple idea.

Definition 9.1 If X is a vector field on Q and if f is a function on Q, then the Lie

derivative of f with respect to X is the function LXf on Q defined by

LXf(q) = 〈df(q);X(q)〉 . �

• In coordinates we have

df =
∂f

∂qi
dqi, X = Xi ∂

∂qi

=⇒ LXf = Xi ∂f

∂qi
.

• This might be familiar to you as “the directional derivative of f with respect to

X.”

• Interpretation: LXf = 0 if and only if f is constant along integral curves of X.
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Affine connections (cont’d)

• We may now define what we mean by an affine connection. The definition seems

strange, and the subsequent development will be seem like it is going nowhere.

The thing to keep in mind is that we are trying to explain the equation

q̈i +
G

Γijk q̇
j q̇k = 0.

• Before we begin, it is useful to recall that if X ∈ Γ∞(TQ) and if f ∈ C∞(Q),

then fX is a vector field, and it is defined by (fX)(q) = f(q)X(q).

Definition 9.2 An affine connection on a manifold Q assigns to vector fields X

and Y on Q a vector field ∇XY , called the covariant derivative of Y with

respect to X, and the assignment must satisfy the following rules:

(i) the map (X,Y ) 7→ ∇XY is R-bilinear;

(ii) ∇fXY = f(∇XY ) for X,Y ∈ Γ∞(TQ) and f ∈ C∞(Q);

(iii) ∇XfY = f(∇XY ) + (LXf)Y for X,Y ∈ Γ∞(TQ) and f ∈ C∞(Q). �

• To get some idea of what an affine connection is, let us consider trying to

represent a given affine connection ∇ in coordinates (q1, . . . , qn).

• Note that ∇ ∂

∂qj

∂
∂qk

is, by definition, a vector field. Therefore, for some functions

Γijk, i ∈ {1, . . . , n}, we can write

∇ ∂

∂qj

∂

∂qk
= Γijk

∂

∂qi
.

• This then defines n3 functions Γijk, i, j, k ∈ {1, . . . , n}, called the Christoffel

symbols for ∇ in the given coordinates.

• We wish to show that the affine connection is uniquely determined in a given set

of coordinates by its Christoffel symbols. To show this, consider vector fields

X = Xi ∂
∂qi and Y = Y i ∂

∂qi , and compute

∇XY = ∇Xj ∂

∂qj
Y k

∂

∂qk

= XjY k∇ ∂

∂qj

∂

∂qk
+Xj(L ∂

∂qj
Y k)

∂

∂qk

=
(∂Y i

∂qj
Xj + ΓijkX

jY k
) ∂

∂qi
.
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• In the preceding computation, we have simply applied the defining properties of an

affine connection. A good way to understand what an affine connection does is to

understand the preceding computation. Notwithstanding that. . .

• Punchline: An affine connection is uniquely determined in a set of coordinates by

its Christoffel symbols.

• Pushing on, let us define the covariant derivative in a different context. Given a

curve γ : I → Q, a vector field along γ is a map Y : I → TQ having the

property that Y (t) ∈ Tγ(t)Q. Thus Y assigns a tangent vector to each point along

the curve γ.

• Let Y be a vector field along a curve γ. We wish to define the covariant derivative

of Y with respect to γ. We will soon see why we wish to do this.

• Since we only know how to compute the covariant derivative of a vector field with

respect to another vector field, we need to convert our data of a vector field along

a curve to something we can work with.

• We let X be a vector field for which γ is an integral curve. Thus X(γ(t)) = γ′(t).

We do not care about the values of X at points off γ.

• We let Ȳ be a vector field with the property that Ȳ (γ(t)) = Y (t). We do not care

about the values of Ȳ off γ.

• We now define the covariant derivative of Y with respect to γ to be the vector

field ∇γ′(t)Y (t) along γ defined by

∇γ′(t)Y (t) = (∇X Ȳ )(γ(t)).

• One should check that this definition makes sense, in that it is independent of

choices made for X and Ȳ . Also, one should check that X and Ȳ , having the

desired properties, even exist. All this can be done.

• Let’s see what this looks like in coordinates.

∇γ′(t)Y (t) = (∇X Ȳ )(γ(t))

=
(∂Ȳ i

∂qj
Xj + ΓijkX

j Ȳ k
)∣

∣

∣

q=γ(t)

∂

∂qi

=
(∂Ȳ i

∂qj
q̇j(t) + Γijk q̇

j(t)Y (t)
) ∂

∂qi

=
(

Ẏ i(t) + Γijk q̇
j(t)Y k(t)

) ∂

∂qi
.

In the last step, we used the Chain Rule.
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• The special case when Y (t) = γ′(t) is of particular interest.

Definition 9.3 A geodesic for an affine connection ∇ is a curve γ satisfying

∇γ′(t)γ′(t) = 0. �

• In coordinates, a geodesic simply second satisfies the second-order differential

equation q̈i + Γijk q̇
j q̇k = 0, i ∈ {1, . . . , n}.

• This is beginning to really look like what we want, which you recall, is

q̈i +
G

Γijk q̇
j q̇k = 0, i ∈ {1, . . . , n}.

• The question now boils down to, “Are the functions
G

Γijk, i, j, k ∈ {1, . . . , n}, the

Christoffel symbols for some affine connection?”

Theorem 9.4 If G is a Riemannian metric on Q, then there exists a unique

affine connection
G

∇, called the Levi-Civita connection for G, for which the
Christoffel symbols are exactly

G

Γijk =
1
2
Gi`
(∂G`j
∂qk

+
∂G`k
∂qj

− ∂Gjk
∂q`

)

, i, j, k ∈ {1, . . . , n}.

• There are more elegant characterisations of the Levi-Civita connection than we

give. See the text for these.
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Affine connections (cont’d)

• Let’s see if we can do computations using affine connections.

Example 9.5 We take Q = R2, and consider a particle of mass m = 1 moving in

this plane. The kinetic energy metric in Cartesian coordinates is

G = dx⊗ dx+ dy ⊗ dy,

and in polar coordinates is

G = dr ⊗ dr + r2dθ ⊗ dθ,

the latter from Example 7.10. Thus we have

Gxx = Gyy = 1, Gxy = Gyx = 0

Gxx = Gyy = 1, Gxy = Gyx = 0,

and

Grr = 1, Gθθ = r2, Grθ = Gθr = 0

Grr = 1, Gθθ =
1
r2
, Grθ = Gθr = 0.

We see that since the metric components are zero in Cartesian coordinates, the

resulting Christoffel symbols are zero.

For polar coordinates, we won’t go in detail through all the computations, but will

only work out the nonzero Christoffel symbols. These turn out to be

Γrθθ =
1
2
Grr

(∂Gθr
∂θ

+
∂Gθr
∂θ
− ∂Gθθ

∂r

)

+
1
2
Grθ

(∂Gθθ
∂θ

+
∂Gθθ
∂θ
− ∂Gθθ

∂θ

)

= −r.

and

Γθrθ = Γθθr =
1
2
Gθr

(∂Grr
∂θ

+
∂Gθr
∂r
−∂Grθ

∂r

)

+
1
2
Gθθ

(∂Grθ
∂θ

+
∂Gθθ
∂r
−∂Grθ

∂θ

)

=
1
r
.

With these computations, we easily compute the geodesic equations to be

ẍ = 0, ÿ = 0

in Cartesian coordinates, and

r̈ − rθ̇2 = 0, θ̈ +
2
r
ṙθ̇ = 0.

Note that geodesics are straight lines, and that the differential equations for straight

lines are complicated in polar coordinates. �
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• Now we offer some physical interpretations of the geodesic equations, or, more

generally, the expression ∇γ′(t)γ′(t).

γ′(t)

G
∇γ′(t)γ

′(t)

γ(t)

Example 9.6 (Geometric acceleration)
We claim that the quantity ∇γ′(t)γ′(t)
has a natural interpretation as acceleration.

Let us justify this with an example.

Consider the curve γ : R→ R2 defined by

γ(t) = (cos t, sin t). This is a circle. The

velocity along this curve has the usual

expression as

γ′(t) = ((cos t, sin t), (− sin t, cos t)), and is as

shown in the figure. This agrees with the usual

notion of velocity. What about acceleration? A näıve computation would be

“γ′′(t)”= ((cos t, sin t), (− cos t,− sin t)). This makes sense to us, since we were

taught that the acceleration along a circular trajectory of constant velocity should

point toward the center of the circle.

In order for this definition of acceleration to make sense, it should be the same in any

set of coordinates. Let us, therefore, represent the situation in polar coordinates. The

local representative of γ in polar coordinates is t 7→ (1, t). The local representative

for the velocity γ′ is then t 7→ ((1, t), (0, 1)). This agrees with our Cartesian

coordinate calculation, since this is simply a tangent vector of unit length tangent to

the circle. How about acceleration. Well, our näıve computation would give the local

representative of “γ′′(t)” as t 7→ ((1, t), (0, 0)). Thus the näıve acceleration is zero in

polar coordinates, but nonzero in Cartesian coordinates. Clearly this is inconsistent.

The conclusion we must draw is that this näıve acceleration, obtained by simply

twice differentiating coordinates with respect to time, is actually senseless.

We claim that this is all made better be instead thinking of acceleration as

∇γ′(t)γ′(t), where we take ∇ to be the Levi-Civita connection associated with the

standard Riemannian metric on R2. To see this, we determine that the local

representative of ∇γ′(t)γ′(t) in Cartesian coordinates is

t 7→ ((cos t, sin t), (− cos t,− sin t)), i.e., the same as the näıve acceleration, since

the Christoffel symbols are zero in Cartesian coordinates. In polar coordinates we

compute the local representative of ∇γ′(t)γ′(t) to be t 7→ ((1, t), (1, 0)). Now this

agrees with what we have in Cartesian coordinates!

Punchline: Be careful when you say that acceleration is the second derivative of

position with respect to time! �
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• Another physical interpretation of geodesics, at least for Levi-Civita connections,

involves minimization of length.

• Let G be a Riemannian metric on Q and let γ : [a, b]→ Q be a curve. The length

of γ is given by

`G(γ) =
∫ b

a

√

G(γ′(t), γ′(t)) dt.

• Given q1, q2 ∈ Q define the Riemannian distance between q1 and q2 by

dG(q1, q2) = inf{`G(γ) | γ : [0, 1]→ Q is piecewise C1,

and γ(0) = q1 and γ(1) = q2}.

• We then have the following characterization of curves that minimize distance.

Theorem 9.7 (Distance minimizing properties of geodesics) Let G be a
Riemannian metric on Q. If γ : [a, b]→ Q is a piecewise C1-curve having the

property that `G(γ) = dG(q1, q2), then γ is a geodesic for
G

∇.

10. Force

• We wish to do to the concept of force that which we have done to all other

mechanical concepts: we wish to “geometrize” it.

• To do this, we should first come to a clear understanding of what a force is in

Newtonian mechanics.

` × f

f

f
`

10.1. Forces and torques in Newtonian mechanics

• We consider a single rigid body (B, µ), which we suppose

to be undergoing a motion specified by t 7→ (R(t), r(t)).

• We consider a force f applied at some point in the body,

and a pure torque τ .

• The idea of torque as a vector should be interpreted thusly.

The torque is of magnitude ‖τ‖R3 and applied about the

axis τ using the right-hand rule.

• A force f applied at some point in the body is equivalent to the same force f

applied at the center of mass, along with a torque `×f , where ` is the vector from

the center of mass to the point in the body where the force is applied (see figure).
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• Therefore, without loss of generality, we assume that forces are applied at the

center of mass of the body.

• We also suppose that forces are written relative to the spatial frame, not the body

frame.

• Forces and torques give rise to the notion of work and power. We suppose that

the force f and the torque τ are functions of time, and we denote by ω the

spatial angular velocity of the body at time t.

• The translational work done by f along the motion is

Wtran(f) =
∫

I

〈〈f(t), ṙ(t)〉〉R3 dt,

and the rotational work done by τ along the motion is defined by

Wrot(τ ) =
∫

I

〈〈τ (t),ω(t)〉〉R3 dt,

where I ⊂ R is the interval on which the motion is defined.

• We are also interested in power, which, you will recall, is the time derivative of

work.

• Thus, the translational power and the rotational power for the force f and

the torque τ by

Ptran(f)(t) = 〈〈f(t), ṙ(t)〉〉R3 , Prot(τ )(t) = 〈〈τ (t),ω(t)〉〉R3 ,

respectively.

10.2. Force in Lagrangian mechanics

• We use the idea of power as our “in” to defining force for an interconnected

mechanical system comprised of bodies (B1, µ1), . . . , (Bk, µk) with configuration

manifold Q.

• A motion of the system is specified by a curve γ : I → Q, and this gives rise to

motions t 7→ (Ra(t), ra(t)) = Πa ◦γ(t) ∈ SO(3)× R3 of each of the k bodies,

where Πa are the forward kinematic maps.
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• We compute

d
dt

(Πa ◦γ(t)) = Tγ(t)Πa(γ′(t)) = (Ṙa(t), ṙa(t)),

where you recall that TΠa : TQ→ T(SO(3)× R3) is the derivative (i.e., that

which in coordinates is the Jacobian of Πa).

• Now we define prtran : T(SO(3)× R3)→ R3 and prrot : T(SO(3)× R3)→ R3 are

defined by

prtran(R, r, Ṙ, ṙ) = ṙ, prrot(R, r, Ṙ, ṙ) = (ṘRT )
∨
,

where ·∨ is the inverse of the map ·̂, which, you recall, converts a skew-symmetric

3× 3 matrix into an element of R3.

• Thus prtran ◦TΠa(γ′(t)) is the velocity of the center of mass of the ath body as

we undergo the motion defined by γ, and prrot ◦TΠa(γ′(t)) is the spatial angular

velocity of the ath body.

• For each a ∈ {1, . . . , k}, we note that the expression

GR3(fa(t),prtran ◦TΠa(γ′(t))) +GR3(τ a(t),prrot ◦TΠa(γ′(t))) (10)

is a linear function of γ′(t) ∈ Tγ(t)Q.

• Linear functions on Tγ(t)Q are, by definition, elements of T∗γ(t)Q. Therefore, (10)
defines an element Ffa,τa(t) of T∗γ(t)Q.

• The total external force at time t is then the element F (t) ∈ T∗γ(t)Q given by

F (t) =
∑k
a=1 Ffa,τa(t).

• We will see how this rather abstract construction works in practice when we get to

the examples.

10.3. Euler–Lagrange equations with forces

• Now that we know what a force is in Lagrangian mechanics, we need to

understand how it comes into the equations of motion.
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• We understand this in the Newtonian world, or at least we are supposed to. Let’s

make sure we do.

• Consider a single rigid body (B, µ) undergoing a motion t 7→ (R(t), r(t)) and

subject to a force f applied to the center of mass and a pure torque τ .

• The spatial linear momentum is mṙ(t) and the spatial angular

momentum is Ic(ω(t)), where Ic is the inertia tensor about the center of mass,

and ω(t) = Ṙ(t)RT (t) is the spatial angular velocity.

• The motion of the system is prescribed by the Newton–Euler equations,

which we have alluded to, but not stated. They are these:

d
dt

(p(t)) = f(t),
d
dt

(µ(t)) = τ (t).

• Note that, if the external force and torque are zero, then the spatial linear and

angular momenta are constant along the motion.

• Now we need to see how the Newton–Euler equations translate into the

Lagrangian framework.

Theorem 10.1 Let (B1, µ1), . . . , (Bk, µk) be an interconnected mechanical
system with configuration manifold Q, and let G be the kinetic energy
Riemannian metric. Suppose that the ath body is subject to an external force fa
applied at the center of mass, and to a pure torque τ a, and let F be the
corresponding total external force. For a curve γ on Q, the following statements
are equivalent:

(i) the curve Πa ◦γ on SO(3)× R3 describes a motion of the ath rigid body,
a ∈ {1, . . . , k}, for the system according to the Newton–Euler equations;

(ii)
G

∇γ′(t)γ′(t) = G] ◦F (γ′(t)).

• The way to interpret the equation
G

∇γ′(t)γ′(t) = G] ◦F (γ′(t)) is

“acceleration = mass−1 × force,” analogously with

“force = mass× acceleration” as per Newton.

• This makes sense because (1) we have argued that
G

∇γ′(t)γ′(t) can be interpreted

as acceleration, and (2) since G stands represents the inertial properties of the
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system, and since the components of G] are the inverse of the components of G,

G] can be thought of as mass−1.

Force (cont’d)

• Let us see how the preceding discussion is handled in examples.

• In each example, we will produce the equations of motion
G

∇γ′(t)γ′(t) = G] ◦F (γ′(t)), which in coordinates are

q̈i +
G

Γijk q̇
j q̇k = GijFj , i ∈ {1, . . . , n}. (11)

b1

b2F 1

φ

h

F 2

Example 10.2 (Planar rigid body (cont’d)) The

system has configuration manifold Q = S1 × R2, and we

denote by (θ, x, y) the coordinates we have been using all

along. We consider a force F (cos(θ + φ), sin(θ + φ), 0)
applied at a point a distance h from the center of mass

along the body b1-axis, and a pure torque τ(0, 0, 1). The

force gives rise to a force F (cos(θ + φ), sin(θ + φ), 0)
applied at the center of mass and a torque F (0, 0,−h sinφ). We denote the

Lagrangian versions of these, which we wish to compute, by F 1 and F 2. As with

much of what we do, the forward kinematic map is key. We have previously
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computed this map, in our coordinates, to have the local representative

(x, y, θ) 7→

















cos θ − sin θ 0

sin θ cos θ 0

0 0 1









, (x, y, 0)









.

We may then easily compute the spatial angular velocity to be ω = θ̇(0, 0, 1). The

coordinate expression for the power generated by the force and the torque, acting

together on a tangent vector vq with components (ẋ, ẏ, θ̇), is then computed to be

F cos(θ + φ)ẋ+ F sin(θ + φ)ẏ − Fh sinφθ̇ + τ θ̇,

using the formulae for translational and rotational power. We now note that this is

the same as F 1(vq) + F 2(vq), where

F 1 = F
(

cos(θ + φ)dx+ sin(θ + φ)dy − h sinφdθ
)

, F 2 = τdθ.

The total external force is then F = F 1 + F 2, which gives a covector field on Q.

The components of F might depend on time, position, or velocity.

Now let us determine the equations of motion, which we know to be

G

∇γ′(t)γ′(t) = G] ◦F (γ′(t)). We have

G = mdx⊗ dx+mdy ⊗ dy + Jdθ ⊗ dθ.

It is now just a matter of doing calculations. Since the components of the kinetic

energy metric are constant in our chosen coordinates, the Christoffel symbols are

zero. The matrix representative for G are

[G] =









m 0 0

0 m 0

0 0 J









,

meaning that the matrix representative of G] is

[G]] =









1
m 0 0

0 1
m 0

0 0 1
J









.

The components of F are

(F cos(θ + φ), F sin(θ + φ), τ − Fh sinφ).

Andrew D. Lewis Queen’s University



Math 439 Lecture Notes Lecture 28

Thus the equations of motion, following (11), are simply

ẍ = 1
mF cos(θ + sinφ), ÿ = 1

mF sin(θ + sinφ), θ̈ = 1
J (τ − Fh sinφ).

The way we are thinking of things at the moment, the coefficients F and τ of the

force and the torque are given, and we are charged with computing the resulting

motion of the body. When we come to talk about control theory, we will be

interested in designing F and τ to produce a motion with desired properties. �

θ1

θ2

ag

F 1

F 2

s2

s1

b1,1

b1,2

b2,1

b2,2

Example 10.3 (Two-link manipulator (cont’d))
The system has configuration manifold

Q = S1 × S1 with coordinates (θ1, θ2). We

consider a torque τ1(0, 0, 1) applied to link 1,

corresponding to a torque provided by a motor

at the base of the link. We also have a torque

applied to the connection between the links. This will apply a torque τ2(0, 0, 1) to

link 2 and a torque −τ2(0, 0, 1) to the second link. The corresponding Lagrangian

forces we denote by F 1 and F 2, respectively. Again, the forward kinematic maps are

key. We had computed these to be have local representatives

(θ1, θ2) 7→ (Ra, ra), a ∈ {1, 2},

where

Ra =









cos θa − sin θa 0

sin θa cos θa 0

0 0 1









, a ∈ {1, 2},

and where

r1 = ( 1
2`1 cos θ1,

1
2`1 sin θ1, 0),

r2 = (`1 cos θ1 + 1
2`2 cos θ2, `1 sin θ1 + 1

2`2 sin θ2, 0).

The coordinate representations for the spatial angular velocities of the two links are

easily computed to be ω1 = θ̇1(0, 0, 1) and ω2 = θ̇2(0, 0, 1). Now one applies the

definition of translational power (which is zero in this case) and rotational power to

get the expression τ1θ̇1 + τ2(θ̇2 − θ̇1) for the power supplied to the system by the

forces. This is equivalent to F 1(vq) + F 2(vq), where

F 1 = τ1dθ1, F 2 = τ2(dθ2 − dθ1),

and where vq = (θ̇1, θ̇2). The total external force is then F = F 1 + F 2.

Next, we compute the equations of motion, using (11). We had computed the

kinetic energy metric to have the coordinate representation
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(J1 +
1
4

(m1 + 4m2)`21)dθ1 ⊗ dθ1 +
1
2
m2`1`2 cos(θ1 − θ2)dθ1 ⊗ dθ2

+
1
2
m2`1`2 cos(θ1 − θ2)dθ2 ⊗ dθ1 + (J2 +

1
4
m2`

2
2)dθ2 ⊗ dθ2.

Now there is no nice way to do the calculations in (11). The Christoffel symbols are

ugly, the components of G] are ugly. It’s just ugly, and this is not even a

complicated example. But the advantage to what we are doing is that the process

can be automated by a smybolic manipulation program. The equations with no

external forces are given in the text, and the equations with external forces are

straightforward, but lengthy, modifications of these. �

10.4. Forces, generally speaking

• The preceding considerations indicate how one can convert Newtonian

formulations of force into Lagrangian formulations of force.

• Let us provide the general definition of a force in Lagrangian mechanics, so we can

see how it is abstracted geometrically.

Definition 10.4 A force on a configuration manifold Q is a map

F : R× TQ→ T∗Q with the property that F (t, vq) ∈ T∗qQ. �

• Thus a force assigns to each time, position, and velocity, a force, by which it is

meant a cotangent vector at that configuration. Forces depending on time might

be things like user-supplied external force. Commonly encountered forces that are

dependent on velocity are viscous dissipation forces, which are proportional to

velocity.

• Forces that do not depend on time are called time-independent.

10.5. Potential forces

• A very special sort of force often arises in applications, and this is the potential

force.

• A potential force is one of the form F (t, vq) = −dV (q), for a function V on Q,

called the potential energy function.
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• Potential forces have certain interesting properties.

Proposition 10.5 If F is a force that is time-independent, the following
statements are equivalent:

(i) F is a potential force;

(ii) for any C0-curve γ : [0, T ]→ Q having the property that γ(0) = γ(T ),
∫ T

0

〈F (γ′(t)); γ′(t)〉 dt = 0.

• The way to read the second part of the proposition is: “F does no work on closed

curves.”

Example 10.6 Consider a planar single-link robot with one end fixed to ground,

and a motor that supplies a unit torque to the link. That Q = S1 and we denote by

θ the usual angular coordinate. The torque in the Newtonian setting is (0, 0, 1), and

in the Lagrangian framework is F = dθ. This seems like a potential force, since in

coordinates it is the differential of the function θ. However, consider the closed curve

γ defined by [0, 2π] 3 t 7→ (cos t, sin t) ∈ Q. We compute
∫ 2π

0

〈F (γ′(t)); γ′(t)〉 dt =
∫ 2π

0

〈

dθ; ∂
∂θ

〉

dt = 2π.

Thus the work done around this closed curve is not zero! So this is not a potential

force. The seeming contradiction is resolved by noting that θ is not a continuous

function on Q. �

• A common potential force is the gravitational force exerted on a body. In the

Newtonian setting, this force has magnitude mag, where m is the mass of the

body and ag is the acceleration due to gravity, and is applied to the center of mass

in the direction of the gravitational field.

Example 10.7 (Two-link manipulator (cont’d)) We suppose that gravity

acts in the direction of −s2. Thus the Newtonian representation of the gravitational

force on link a is −maag(0, 1, 0). The power exerted by the gravitational force on

the ath link is then −maag ẏa(t), where ya is the velocity of the center of mass of

the ath link. Thus ya is the second component of the vector ra describing the

position of the center of mass of link a. Let us think of ya as being a function on Q.

The force on Q corresponding to the gravitational force is

Fg = −m1agdy1 −m1agdy2.

Indeed, with Fg defined in this way, we have

〈Fg; γ′(t)〉 = −m1agdy1(γ′(t))−m2agdy2(γ′(t)) = −m1ag ẏ1 −m2ag ẏ2,
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which is the desired expression for the Lagrangian force. Moreover, it is clear that

Fg = −dV where V = m1agy1 +m2agy2. Thus Fg is a potential force. Given

expressions for y1 and y2 as previously computed, we have

V (θ1, θ2) = 1
2m1ag`1 sin θ1 +m2ag`1 sin θ1 + 1

2m2`2 sin θ2.

and

Fg = −
(

1
2m1`1ag cos θ1 +m2`1ag cos θ1

)

dθ1 − 1
2m2`2ag cos θ2dθ2. �

11. An introduction to control theory for mechanical systems

• We now turn over a new page, and talk about control theory.

Definition 11.1 A simple mechanical control system is a 4-tuple

(Q,G, V,F = {F 1, . . . , Fm}), where

(i) Q is the configuration manifold,

(ii) G is the kinetic energy Riemannian metric,

(iii) V is the potential function, and

(iv) F 1, . . . , Fm are covector fields on Q called input forces. �

• The equations governing a simple mechanical control system are

G

∇γ′(t)γ′(t) = −G] ◦dV (γ(t))
︸ ︷︷ ︸

uncontrolled dynamics

+
m
∑

a=1

ua(t)G] ◦F a(γ(t))

︸ ︷︷ ︸

control force

. (12)
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• The idea is that if we do not provide a control force, then the system will evolve

corresponding to the Riemannian metric G and potential function V .

• However, if we do provide control forces, then there are various sorts of control

theoretic problems we can talk about. Here are some.

1. Stabilization: Given a configuration q0, we wish to design the controls

u1, . . . , um as functions of state (i.e., position and velocity) so that the system

with these controls possesses q0 as a stable equilibrium point. If you have had

an introductory course in linear system theory, this is probably the problem you

studied most of the time.

2. Trajectory tracking: Given a reference trajectory γref : I → Q, find controls that

follow the reference trajectory as closely as possible.

3. Controllability: Given configurations q1, q2 ∈ Q, does there exist controls

ua : [0, T ]→ R, a ∈ {1, . . . ,m}, such that, if at time 0 the system is at rest at

q1, then at time T the system is at rest at q2. Again, those having an

introductory linear systems course will have encountered controllability for

linear systems. As we shall see, controllability for nonlinear systems is much

harder.

4. Motion planning: Here, one wishes not only to assert the existence of controls

steering the system from q1 to q2, as in the controllability problem, but to find

these controls.

Andrew D. Lewis Queen’s University



Math 439 Lecture Notes Lecture 30

11.1. Linearization of simple mechanical control systems

• Let us consider, for a moment, the stabilization problem. If one wishes to stabilize

the configuration q0, the first thing one normally does is linearize, and check to see

if the linearization is controllable.

• First we need the notion of an equilibrium configuration. Recall that an

equilibrium configuration is one where, if the system starts there, it stays there.

Definition 11.2 A controlled equilibrium configuration for a simple

mechanical control system (Q,G, V,F = {F 1, . . . , Fm}) is a pair

(q0, u0) ∈ Q× Rm with the property that

dV (q0) =
m
∑

a=1

u0,aF
a(q0). �

• Note that (q0, u0) is a controlled equilibrium configuration if and only if

t 7→ (q0, u0) satisfies (12).

• Note that (q0, 0) is a controlled equilibrium configuration if and only if

dV (q0) = 0.

Example 11.3 (Two-link manipulator (cont’d)) Let us consider our two-link

manipulator example with coordinates (θ1, θ2). We suppose that the system has an

input torque only at the base of the first link. Let us see what the controlled

equilibria are. First we look for controlled equilibria of the form (q0, 0). One can

check that the points q0 that satisfy dV (q0) = 0 have coordinate values (π2 ,
π
2 ),

(π2 ,−
π
2 ), (−π2 ,

π
2 ), (−π2 ,−

π
2 ). These are depicted as below.

s2

s1
qup/up

s2

s1
qup/down

s2

s1

qdown/up

s2

s1

qdown/down

These could also have been guessed on physical grounds, I suppose. If we allow
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equilibria with nonzero control, then, provided that the control force u0 can be

chosen sufficiently large, any configuration having coordinate values (θ1,0,
π
2 ) or

(θ1,0,−π2 ) is possible, where θ1,0 is arbitrary. �

• Let us simplify matters in the sequel by assuming that we are interested only in

controlled equilibrium configurations of the form (q0, 0), i.e., those for which

dV (q0) = 0.

• Next we wish to linearise about such an equilibrium.

• To see how to do this, let us write (12) in coordinates, after multiplying the

equation by G[:

G`iq̈i +G`i
G

Γijk q̇
j q̇k = −∂V

∂q`
+

m
∑

a=1

uaF
a
` . (13)

• To linearize, we take, in coordinates, q(t) = q0 + θ(t) and u(t) = u+ µ(t). Thus

(q0, 0) is the controlled equilibrium configuration, and (θ(t), µ(t)) is the deviation

of the configuration and the control from the equilibrium.

• To do linearize in a careful way, we would substitute these expressions for q(t) and

µ(t) into (13), and then Taylor expand about (q0, 0). Let us make some

observations that allow us to record the results of these computations without

actually having to do them:

1. the term G`i(q(t))q̈i(t) is linear in q̈(t), and so will yield G`i(q0)θ̈i(t) upon

linearization;

2. the term G`i(q(t))
G

Γijk(q(t))q̇j q̇k is quadratic in q̇(t), and so will vanish upon

linearization;

3. the term − ∂V
∂q`

(q(t)) is linearized in the standard manner, and yields

∂2V
∂q`∂qi

(q0)θi upon linearization;

4. the term
∑m
a=1 uaF

a
` (q(t)) is linear in u, and so yields

∑m
a=1 uaF

a
` (q0) upon

linearization.

• By understanding the above comments, you will have demonstrated a pretty good

understanding of the process of linearization.
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• Recall that the symmetric matrix with components ∂2V
∂q`∂qi

(q0) is called the

Hessian of V at q0. It is actually the matrix representation of a symmetric

bilinear map on Tq0Q, and this map we denote by HessV (q0).

• We have thus demonstrated that the linearization in coordinates is

G`i(q0)θ̈i(t) +
∂2V

∂q`∂qi
θi(t) =

m
∑

a=1

uaF
a
` (q0).

• In coordinate independent notation, the linearization has the form

M [(ẍ(t)) +K[(x(t)) = F (u(t)), (14)

where

1. t 7→ x(t) is a curve in Tq0Q,

2. M = G(q0),

3. K = HessV (q0),

4. and F ∈ L(Rm; T∗q0Q) is defined by F (u) =
∑m
a=1 uaF

a
` (q0).

• Punchline: After linearization of (12) at a controlled equilibrium (q0, 0), we arrive

at a second-order linear equation on Tq0Q given by (14).

• Now let us analyze (14).

• In stabilization theory using linearization, one requires that the linearization be

controllable (or more generally, stabilizable, but let’s stick with the slightly less

general requirement of controllable).

• So we should check the controllability of the linear system (14).

• First we convert it to a first-order system so we can use the standard theory of

controllability. We have

ẍ(t) +M ] ◦K[(x(t)) = M ] ◦F (u(t))

=⇒





ẋ(t)

v̇(t)



 =





0 idV

−M ] ◦K[ 0





︸ ︷︷ ︸

A





x(t)

v(t)



+





0

M ] ◦F





︸ ︷︷ ︸

B

u.
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• The Kalman Rank Condition says that the linear system (14) is controllable if and

only if the linear map
[

B AB · · · A2n−1B
]

has maximal rank.

• A straightforward computation yields

[

B AB · · · A2n−1B
]

=





0 B0 0 A0 ◦B0 · · · 0 An−1
0

◦B0

B0 0 A0 ◦B0 0 · · · An−1
0

◦B0 0



 ,

where A0 = −M ] ◦K[ and B0 = M ] ◦F .

• This directly gives the following result.

Theorem 11.4 The linear system (14) is controllable if and only if the rank of
the linear map

[

B0 A0B0 · · · An−1
0 B0

]

is maximal, where A0 = −M ] ◦K[ and B0 = M ] ◦F .

• There is an interesting special case, that when V = 0. This is not uncommon in

applications.

Corollary 11.5 If (Q,G, V = 0,F = {F 1, . . . , Fm}) is a simple mechanical
control system with zero potential, then

(i) for any q0 ∈ Q, (q0, 0) is a controlled equilibrium configuration and

(ii) the linearization at a controlled equilibrium configuration (q0, 0) is
controllable if and only if spanR

{

F 1(q0), . . . , Fm(q0)
}

= T∗q0Q, i.e., if and
only if the system is fully actuated.

• If V = 0 and the system is not fully actuated, then stabilization of controlled

equilibria (q0, 0) is hard. For example, for such a system, it is not possible to

design the controls to be continuous functions of the state (i.e., of position and

velocity) that will render q0 asymptotically stable.

• In fact, nothing you have encountered in your control courses to this point will

enable you to stabilize such equilibria.
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12. Motion planning for affine connection control systems

• We consider simple mechanical control systems (Q,G, V = 0,F = {F 1, . . . , Fm})
with zero potential, which is then governed by the equations

G

∇γ′(t)γ′(t) =
∑

a=1

ua(t)G] ◦F a(γ(t)). (15)

• In actuality, there is no reason why we cannot consider a generalization of (15). In

particular, we can consider a general affine connection ∇ and, rather than forces

F 1, . . . , Fm, consider vector fields Y1, . . . , Ym.

Definition 12.1 An affine connection control system is a triple

(Q,∇,Y = {Y1, . . . , Ym}) where

(i) Q is a manifold,

(ii) ∇ is an affine connection on Q,

(iii) Y1, . . . , Ym are vector fields on Q. �

• The governing equations are

∇γ′(t)γ′(t) =
m
∑

a=1

ua(t)Ya(γ(t)). (16)

• The special case in (15) occurs when ∇ =
G

∇ and Ya = G] ◦F a, a ∈ {1, . . . ,m}.

• In this course, we will not encounter physical systems for which the extra

generality is useful. However, there are such systems, one being the rolling disk

that we have encountered previously.

• However, it is no more difficult to consider the general case, and you can keep the

special case of (15) in mind if it is comforting.

12.1. The controllability problem for affine connection control systems

• We shall briefly consider the general controllability problem for an affine

connection control system Σ = (Q,∇,Y ).
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• A controlled trajectory for Σ is a pair (γ, u) where u : [0, T ]→ Rm is Lebesgue

integrable, and where γ : [0, T ]→ Q is such that (16) is satisfied.

• Define

RΣ,Q(q0, T ) = {γ(T ) | (γ, u) is a controlled trajectory and γ′(0) = 0q0} ,

RΣ,Q(q0,≤ T ) =
⋃

t∈[0,T ]

RΣ,Q(q0, t).

• Thus RΣ,Q(q0, T ) is the set of configurations reachable from q0 in time T starting

with zero initial velocity, and RΣ,Q(q0,≤ T ) is set of configurations reachable from

q0 in time at most T starting with zero initial velocity.

Definition 12.2 Σ is

(i) configuration accessible if there exists T > 0 such that

int(RΣ,Q(q0,≤ t)) 6= ∅ for t ∈ ]0, T ], and is

(ii) is small-time locally configuration controllable (STLCC) from q0 if

there exists T > 0 such that q0 ∈ int(RΣ,Q(q0,≤ t)) for t ∈ ]0, T ]. �

• Here’s a pictorial representation of the distinction between configuration

accessibility and configuration controllability:

q0

RΣ,Q(q0,≤ T )

q0

RΣ,Q(q0,≤ T )

q0

RΣ,Q(q0,≤ T )

On the left, the system is not configuration accessible since the reachable set has

empty interior, in the middle the system is configuration accessible since the

reachable set has nonempty interior, but is not configuration controllable since q0

is not in the interior of the reachable set, on the right, the system is configuration

controllable.

• We will not say much in general about configuration accessibility or configuration

controllability. Let us content ourselves with this.

1. Configuration accessibility of affine connection control systems is comparatively

easy; see Theorem 7.36.

2. Configuration controllability is hard. Very hard, in fact. See Section 7.3.3 and

Chapter 8 in the text for some results.
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• We shall sidestep this difficult problem, and directly look at what seems like a

harder problem, the motion planning problem.

• It turns out that, for affine connection control systems, there is a class of systems,

containing many interesting physical examples, for which the motion planning

problem has a comparatively easy solution.

• This requires introducing a simpler class of problems that, on the surface, have no

relationship with affine connection control systems.

12.2. Driftless systems

Definition 12.3 A driftless system is a pair (Q,X = {X1, . . . , Xm}) where

(i) Q is a manifold and

(ii) X1, . . . , Xm are vector fields on Q. �

• The equations governing a driftless system are

γ′(t) =
m
∑

a=1

ũaXa(γ(t)). (17)

• For a driftless system Σ = (Q,X ) we have controllability notions mirroring those

we gave for affine connection control systems.

• A controlled trajectory for Σ is a pair (γ, u) where u : [0, T ]→ Rm is Lebesgue

integrable, and where γ : [0, T ]→ Q is such that (17) is satisfied.

• Define

RΣ(q0, T ) = {γ(T ) | (γ, u) is a controlled trajectory and γ(0) = q0} ,

RΣ(q0,≤ T ) =
⋃

t∈[0,T ]

RΣ(q0, t).

• Thus RΣ(q0, T ) is the set of configurations reachable from q0 in time T , and

RΣ(q0,≤ T ) is set of configurations reachable from q0 in time at most T .

Definition 12.4 Σ is

(i) accessible if there exists T > 0 such that int(RΣ(q0,≤ t)) 6= ∅ for t ∈ ]0, T ],
and is

(ii) is small-time locally controllable (STLC) from q0 if there exists T > 0
such that q0 ∈ int(RΣ(q0,≤ t)) for t ∈ ]0, T ]. �
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Motion planning for affine connection control systems (cont’d)

• Unlike affine connection control systems, the matter of controllability for driftless

systems is comparatively easy.

• To understand this, we introduce a fun new tool.

• Recall that a vector field X can be used to differentiate a function via

LXf = Xi ∂f
∂qi . The map f 7→ LXf is

1. R-linear and

2. satisfies LX(fg) = fLXg + gLXf .

It is additionally true that, to any such operation on infinitely differentiable

functions, there is a vector field for which the operation is Lie differentiation with

respect to that vector field.

• Given vector fields X and Y , one can verify that

f 7→ LXL Y f −L Y LXf

satisfies the properties above. Therefore, there is associated to this operation a

vector field. We denote this vector field by [X,Y ], and call it the Lie bracket of

X and Y .

[X,Y ](q)
ΦX

0,
√

t

ΦY
0,
√

t

Φ−X

0,
√

t

Φ−Y

0,
√

t

• In coordinates,

[X,Y ] =
(∂Y i

∂qj
Xj − ∂Xi

∂qj
Y j
) ∂

∂qi
.

• A telling characterization of the Lie

bracket is the following.

Proposition 12.5 Let X,Y ∈ Γ∞(TQ) and
let q ∈ Q. Define a curve γ at q by

γ(t) = Φ−Y√
t
◦Φ−X√

t
◦ΦY√

t
◦ΦX√

t
(q).

Then γ is differentiable and γ′(0) = [X,Y ](q).

Example 12.6 Take Q = R3, and X = ∂
∂y and Y = ∂

∂x + y ∂
∂z . We compute

[X,Y ] = ∂
∂z . Let us see if we can illustrate Proposition 12.5 “by hand.” The
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differential equations corresponding to the vector fields X and Y are

ẋ = 0

ẏ = 1

ż = 0

and

ẋ = 1

ẏ = 0

ż = y,

respectively. Using these differential equations, one can readily compute

ΦX√
t
(0, 0, 0) = (0,

√
t, 0)

ΦY√
t
(0,
√
t, 0) = (

√
t,
√
t, t)

Φ−X√
t

(
√
t,
√
t, t) = (

√
t, 0, t)

Φ−Y√
t

(
√
t, 0, t) = (0, 0, t).

Thus

[X,Y ](0, 0, 0) =
d
dt

∣

∣

∣

t=0
Φ−Y√

t
◦Φ−X√

t
◦ΦY√

t
◦ΦX√

t
(0, 0, 0),

just as claimed. �

• The Lie bracket tells us that by switching back and forth between flowing along X

and Y , we can move in a direction that is possibly aligned with neither X and Y .

(Think about parallel parking your car.)

• Let us see how this is related to driftless systems.

• We consider a two-input driftless system for simplicity:

γ′(t) = u1(t)X1(t) + u2(t)X2(t).

• Consider the following control defined on [0, 4
√
T ]:

(u1(t), u2(t)) =



























(1, 0), t ∈ [0,
√
T [ ,

(0, 1), t ∈ [
√
T , 2
√
T [ ,

(−1, 0), t ∈ [2
√
T , 3
√
T [ ,

(0,−1), t ∈ [3
√
T , 4
√
T ].

• Note that for the first
√
T seconds we follow the integral curve of X1, for the

second
√
T seconds we follow the integral curve of X2, for the third

√
T seconds

we follow the integral curve of −X1, and for the fourth
√
T seconds we follow the

integral curve of −X2.
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• Proposition 12.5 then says that at time 4
√
T the system will have moved, to

lowest order, in the direction of [X1, X2].

• This has clear implications in terms of controllability: points in the direction of

[X1, X2](q) should lie in the reachable set.

• One can show (less directly than above) that points in the direction of

[X1, [X1, X2]](q) and [X2, [X1, X2]](q) also lie in the reachable set.

• Most generally, one can show that, for a driftless system

(Q,X = {X1, . . . , Xm}), any point lying in the direction of an arbitrary iterated

Lie bracket lies in the reachable set.

• For this reason we define Lie(∞)(X)q to be the subspace of TqQ generated by all

iterated Lie brackets of the vector fields X1, . . . , Xm.

• A useful computational fact is that it is sufficient to consider brackets of the form

[Xa1 , [Xa2 , . . . , [Xak−1 , Xak ]]].

• The following theorem characterize controllability for driftless systems.

Theorem 12.7 For a driftless system Σ = (Q,X ), the following statements are
equivalent:

(i) Σ is accessible from q0;

(ii) Σ is STLC from q0;

(iii) Lie(∞)(X)q0 = Tq0Q.

Example 12.8 Take Q = R3, and X1 = ∂
∂y and X2 = ∂

∂x + y ∂
∂z . We had

computed [X1, X2] = ∂
∂z . Thus, for every q = (x, y, z) ∈ Q, we have

Lie(∞)(X)q = TqQ. Therefore, the driftless system is STLC from every point in Q.
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Motion planning for affine connection control systems (cont’d)

12.3. Reducing motion planning for affine connection control systems to

motion planning for driftless systems

• We have seen that controllability for driftless systems, controllability is easier than

it is for affine connection control systems.

• The same assertion holds for motion planning. The motion planning problem for

driftless systems is not trivial, but it is a problem that possible is solvable.

• Therefore, if we can reduce the motion planning problem for a given affine

connection control systems to one for a driftless system, we will have accomplished

something.

Problem 12.9 Given an affine connection control system

Σdyn = (Q,∇,Y = {Y1, . . . , Ym}) and a driftless system

Σkin = (Q,X = {X1, . . . , Xm̃), are there relationships between the controlled

trajectories:

∇γ′(t)γ′(t) =
m
∑

a=1

uadyn(t)Ya(γ(t)) ⇐ ? ⇒ γ′(t) =
m̃
∑

α=1

uαkinXα(γ(t)).

• Note that typically there will be no useful relationships between an affine

connection control system and a driftless system.

• There are some restrictions that immediately apply. Let us make some observations

along this line. To do so, for each q ∈ Q, define subspaces Yq and Xq of TqQ by

Yq = spanR {Y1(q), . . . , Ym(q)} , Xq = spanR {X1(q), . . . , Xm̃(q)} .

1. If (γ, ukin) is a controlled trajectory for Σkin, then γ′(t) ∈ Xγ′(t). Thus the only

trajectories of Σdyn that can appear as trajectories of Σkin are those whose

velocities lie in X.

2. The trajectories of Σdyn are smoother than those of Σkin.

• Let us illustrate this second point explicitly.
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Example 12.10 We take the World’s Simplest Example, a particle of mass m

moving on a line, and subject to a control force. Thus Q = R (with coordinate (x)),

G = mdx⊗ dx, and F 1 = dx. The equation for the associated affine connection

control system is

ẍ(t) =
udyn(t)
m

.

Thus the input vector field is Y1 = 1
m

∂
∂x . We take the driftless system (Q, {X1})

with X1 = ∂
∂x . The equation for the driftless system is

ẋ(t) = ukin(t).

Consider a controlled trajectory for Σkin with

ukin(t) =







1, t ∈ [0, 1
2 ],

−1, t ∈ ] 1
2 , 1].

.

If x(0) = 0 then the resulting trajectory is

γ(t) =







t, t ∈ [0, 1
2 ],

1− t, t ∈ ] 1
2 , 1].

.

Question: Is there a control udyn for Σdyn so that (γ, udyn) is a controlled trajectory

for Σdyn?

Answer: No, because γ is not sufficiently differentiable. At t = 1
2 , the velocity is

discontinuous, and a discontinuity in velocity implies “infinite”

acceleration, i.e., “infinite” force.

To overcome this difficult, one can reparameterize γ so that γ′(t) = 0 at times t

where γ′ has a discontinuity. In doing so, the trajectory in Q will follow the same

path, but will do so with a different speed than γ. However, the reparameterized

path will be followable by a trajectory for the system with force as an input. �

• Thus we need to ensure that the controls for Σkin are sufficiently nice that any

controlled trajectories for Σkin are of a class that can be followed by controlled

trajectories of Σdyn.

• We let Ukin and Udyn be classes of inputs for driftless systems and affine

connection control systems, respectively, with the property that controls in Ukin

are “one integration smoother” than controls in Udyn.

• For example, if Udyn consists of locally integrable controls, then Ukin consists of

locally absolutely continuous controls, if you know what those words mean.
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12.4. Kinematically controllable systems

• We now consider more precisely a case when there is a relationship between an

affine connection control system and a driftless system.

• If γ : I → Q is a differentiable curve on Q, a reparameterization of I is a map

τ : J → I where J ⊂ R is another interval and where τ ′(t) > 0 for all t ∈ int(J).

The corresponding reparameterization of γ is the curve γ ◦ τ .

Definition 12.11 For an affine connection control system Σdyn = (Q,∇,Y ), a

decoupling vector field is a vector field X on Q having the property that, for

every integral curve γ of X, and every reparameterization τ of γ, there exists a

control udyn ∈ Udyn for which (γ ◦ τ, udyn) is a controlled trajectory for Σdyn. �

• The idea is that one can follow integral curves of a decoupling vector field, and do

so speeding up and slowing down as desired.

Motion planning for affine connection control systems (cont’d)

• It is easy to check if a given vector field is a decoupling vector field.

Theorem 12.12 A vector field X on Q is a decoupling vector field for the affine
connection control system (Q,∇,Y ) if and only if X(q) ∈ Yq and ∇XX(q) ∈ Yq

for each q ∈ Q.

• Note that if X is a decoupling vector field, then so is −X.

• It is not so easy to find decoupling vector fields, but there are some techniques

that give one some guidance. We refer to Chapter 8 in the text.

• Let us suppose that we have decoupling vector fields X1, . . . , Xm̃.

• Starting at q0 ∈ Q, construct a curve in Q by following the integral curve for Xa1

for time t1, then following the integral curve for Xa2 for time t2, and so on, up to

following the integral curve of Xak for time tk.

• Now reparameterize this curve so that, on each segment, one starts and stops with

zero velocity.
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• One can then follow the entire curve, since at the points where we switch

decoupling vector fields, the velocity is zero, and so we avoid discontinuities in

velocity.

• This suggests the following strategy for motion planning.

1. Find enough decoupling vector fields X1, . . . , Xm̃ so that the motion planning

problem can be solved for the driftless system (Q,X = {X1, . . . , Xm̃}).

2. Suppose that the solution to the driftless motion planning comes in the form of

a sequence of integral curves of the vector fields X1, . . . , Xm̃ as described

above.

3. Reparameterize each segment so that it starts and ends with zero velocity.

4. On each segment, find controls for Σdyn that follow the integral curve for the

driftless system.

• Based on this strategy, we have the following definition.

Definition 12.13 An affine connection control system Σdyn = (Q,∇,Y ) is

kinematically controllable if it possesses decoupling vector fields

X = {X1, . . . , Xm̃} for which the driftless system Σkin = (Q,X ) is controllable. �

s2

s1
Ospatial

b1

b2

Obody

F

h

Example 12.14 We consider the

planar rigid body that we talked about

back in the introductory lecture. The

configuration space is Q = S1×R2, and

we use coordinates (θ, x, y). The kinetic

energy metric has matrix representation

[G] =









J 0 0

0 m 0

0 0 m









.

The force is broken into two components, one along the body b1-axis, and one along

the body b2-axis. These forces are, after going through the usual process of
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conversion,

F 1 = cos θdx+ sin θdy, F 2 = −h
J

dθ − sin θdx+ cos θdy.

Converting these to vector fields Ya = G] ◦F a, a ∈ {1, 2}, gives

Y1 =
cos θ
m

∂

∂x
+

sin θ
m

∂

∂y
, Y2 = −h

J

∂

∂θ
− sin θ

m

∂

∂x
+

cos θ
m

∂

∂y
.

Let us look for decoupling vector fields. There is no sure way of doing this (well,

actually there is in this case, but never mind). We know that decoupling vector fields

must lie in the span of Y1 and Y2. So, for a lark, let us see if Y1 and Y2 are

decoupling. We should check to see whether ∇Y1Y1 and/or ∇Y2Y2 lie in the span of

Y1 and Y2. Let us compute. . .

∇Y1Y1 = 0, ∇Y2Y2 =
h cos θ
mJ

∂

∂x
+
h sin θ
mJ

∂

∂y
.

Note that both of these vector fields are indeed in the span of Y1 and Y2. Thus they

are both decoupling vector fields.

Let us see what the motion of the body looks like along integral curves of these

decoupling vector fields.

On the left is motion along Y1 and on the right is motion along Y2. Can we do

motion planning using these decoupling vector fields. We can eyeball the motions in

the above figure, and believe that this might seem feasible. Or, we can check for

kinematic controllability. Thus we should check whether the driftless system

(Q, {Y1, Y2}) is controllable. We compute

[Y1, Y2] = −h sin θ
mJ

∂

∂x
+
h cos θ
mJ

∂

∂y
.

One can readily verify that the three vector fields {Y1, Y2, [Y1, Y2]} are linearly

independent at each point in Q, so the system is indeed controllable. Thus

(Q,∇, {Y1, Y2}) is kinematically controllable. �
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12.5. Maximally reducible systems

• We have seen that motion planning for affine connection control systems, using

driftless systems, is possible, via the notion of kinematic controllability.

• However, kinematic controllability comes with a switching character, with lots of

starting and stopping. Can we improve on this?

Definition 12.15 An affine connection control system Σdyn = (Q,∇,Y ) is

maximally reducible to a driftless system Σkin = (Q,X ) if,

(i) for every controlled trajectory (γ, ukin) for Σkin, there exists a control udyn so

that (γ, udyn) is a controlled trajectory for Σdyn, and if,

(ii) for every controlled trajectory (γ, udyn) for Σdyn with the property that

γ′(0) ∈ spanR {X1(γ(0)), . . . , Xm̃(γ(0))}, there exists a control ukin so that

(γ, ukin) is a controlled trajectory for Σkin. �

• The first condition is that every trajectory of the driftless system can be followed

by a trajectory of the affine connection control system.

• The second condition must be interpreted more carefully. Note that it is

impossible that every trajectory of the affine connection be followable with a

trajectory of the driftless system. This is because the trajectories of the driftless

system are restricted to lie in the span of the vector fields {X1, . . . , Xm̃}, while

the velocities of the affine connection control system are unrestricted.

• Thus the second condition says, roughly, that every trajectory of the affine

connection control system that can possibly be followed, can in actuality be

followed by a trajectory of the driftless system.

• To characterize maximal reducibility, we introduce the symmetric product

between vector fields X and Y :

〈X : Y 〉 = ∇XY +∇YX.

Theorem 12.16 An affine connection control system Σdyn = (Q,∇,Y ) is
maximally reducible to a driftless system Σkin = (Q,X ) if and only if

(i) spanR {Y1(q), . . . , Ym(q)} = spanR {X1(q), . . . , Xm̃(q)} for each q ∈ Q, and

(ii) 〈Ya : Yb〉 (q) ∈ spanR {Y1(q), . . . , Ym(q)} for each a, b ∈ {1, . . . ,m} and q ∈ Q.
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• Note that an affine connection control system Σdyn is always maximally reducible

to essentially the same driftless system, i.e., one whose input vector fields have a

span equal to the span equal to the input vector fields for Σdyn. Thus, we can

simply say that Σdyn is maximally reducible if it is reducible to some driftless

system.

Example 12.17 Let us return to the planar body example, and check whether it is

maximally reducible. Here are some calculations:

〈Y1 : Y1〉 = 0, 〈Y1 : Y2〉 =
h sin θ
mJ

∂

∂x
− h cos θ

mJ

∂

∂y
,

〈Y2 : Y2〉 =
2h cos θ
mJ

∂

∂x
+

2h sin θ
mJ

∂

∂y
.

Note that while 〈Y1 : Y1〉 and 〈Y2 : Y2〉 lie in the span of the vector fields Y1 and Y2

(we have essentially already seen this with our decoupling vector field calculations,

since 〈X : X〉 = 2∇XX), 〈Y1 : Y2〉 does not. Therefore, this system is not

maximally reducible. The consequence of this for motion planning is that, if we wish

to use a driftless system as our basis for motion planning, we must live with the

start/stop nature of the motion. �

ψ

θ

r

F 1

F 2

Example 12.18 Let us look at a new

example, called “the robotic leg.” This system

is pinned to ground, and consists of a body, on

top of which sits an extensible leg with a mass

on the tip. This mass can be moved in and out.

There is also a torque that actuates the leg.

Let us quickly summarize the data. We have

Q = R+ × S1 × S1, coordinates (r, θ, ψ), a kinetic energy metric with matrix

representation

[G] =









m 0 0

0 mr2 0

0 0 J









,

giving rise to the nonzero Christoffel symbols Γrθθ = −r and Γθrθ = Γθθr = 1
r . The

input forces are F 1 = dθ − dψ and F 2 = dr, giving the input vector fields

Y1 =
1

mr2

∂

∂θ
− 1
J

∂

∂ψ
, Y2 =

1
m

∂

∂r
.
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We compute

〈Y1 : Y1〉 = − 2
m2r3

∂

∂r
, 〈Y1 : Y2〉 = 0, 〈Y2 : Y2〉 = 0.

We readily see that the system is maximally reducible. Furthermore,

[Y1, Y2] =
2

m2r3

∂

∂θ
,

from which we deduce that the associated driftless system is controllable. Note that

maximal reducibility allows us to follow not just the vector fields Y1 and Y2, but any

linear combination of them. This allows greater flexibility in the design of control

laws. �

Definition 12.19 An affine connection Σdyn = (Q,∇,Y ) is maximally

reducibly kinematically controllable (MR-KC) if it is maximally reducible,

and if the driftless system Σkin = (Q,Y ) is controllable. �
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