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Preface

Objectives

The last years have seen a thriving research activity on cooperative control and
motion coordination. This interest is motivated by the growing possibilities
enabled by robotic networks in the monitoring of natural phenomena and the
enhancement of human capabilities in hazardous and unknown environments.

Our first objective with this book is to present a coherent introduction
to basic distributed algorithms for robotic networks. This emerging discipline
sits at the intersection of different areas such as distributed algorithms, par-
allel processing, control, and estimation. Our second objective is to provide
a self-contained, broad exposition of the notions and tools from these ar-
eas that are relevant in cooperative control problems. These concepts include
graph-theoretic notions (connectivity, adjacency and Laplacian matrices), dis-
tributed algorithms from computer science (leader election, basic tree com-
putations) and from parallel processing (averaging algorithms, convergence
rates), and geometric models and optimization (Voronoi partitions, proximity
graphs). Our third objective is to put forth a model for robotic networks that
helps to rigorously formalize coordination algorithms running on them. We
illustrate how computational geometry plays an important role in modeling
the interconnection topology of robotic networks. We draw on classical notions
from distributed algorithms to provide complexity measures that characterize
the execution of coordination algorithms. Such measures allow us to quantify
the algorithm performance and implementation costs. Our fourth and last
objective is to present various algorithms for coordination tasks such as con-
nectivity maintenance, rendezvous, and deployment. We put special emphasis
on analyzing the correctness of the algorithms and providing measures of their
complexity.

The thematic variety of the exposition is also present in the proofs of the
main results of the book. The technical treatment combines control-theoretic
tools such as Lyapunov functions and invariance principles with techniques
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from computer science and parallel processing such as induction and message
counting.

Intended audience

The intended audience of this book are first- and second-year graduate stu-
dents in control and robotics from Computer Science, Electrical Engineering,
Mechanical Engineering, and Aerospace Engineering. A familiarity with basic
concepts from analysis, linear algebra, dynamical systems, and control theory
is assumed. The writing style of the book is mathematical: we have aimed at
being precise in the introduction of the notions, the statement of the results,
and the formal description of the algorithms. This is complemented by nu-
merous examples, exercises, and a special effort carried throughout the book
at motivating the introduction of concepts and giving intuitive explanations
behind the results.

Researchers in the fields of control theory and robotics who are not aware
of the literature on distributed algorithms will also benefit from the book.
The book uses notions with a clear computer-science flavor such as syn-
chronous networks, complexity measures, basic tree computations, and linear
distributed iterations, and integrates them into the study of robotic networks.
Likewise, researchers in the fields of distributed algorithms and automata the-
ory who are not aware of robotic networks and distributed control will also
find the book useful. The numerous connections that can be drawn between
the classical study of distributed algorithms and the present book provide a
friendly roadmap to step into the field of controlled coordination of robotic
networks.

Book outline

Chapter 1 presents a broad introduction to distributed algorithms on syn-
chronous networks. We start by presenting basic matrix notions and a primer
on graph theory that makes special emphasis on linear algebraic aspects such
as adjacency and Laplacian matrices. After this, we introduce the notion of
synchronous networks, and present time, communication, and space complex-
ity notions. We examine these notions in basic algorithms such as broadcast,
tree computation, and leader election. The chapter ends with a thorough
treatment of linear iterations and averaging algorithms.

Chapter 2 presents basic geometric notions that are relevant in motion
coordination. Robotic networks have a spatial component which is not always
present in synchronous networks as studied in computer science. Geomet-
ric objects such as polytopes, Voronoi partitions, and geometric centers play
an important role in modeling the interaction of robotic networks with the
physical environment. Proximity graphs allow us to rigorously formalize the
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interconnection topology of a network of robotic agents, and characterize the
spatially-distributed character of coordination algorithms. This notion is a
natural translation of the notion of distributed algorithms treated in the pre-
vious chapter. The chapter concludes with a detailed discussion on concepts
from geometric optimization and multicenter functions.

Chapter 3 introduces a model for a group of robots that synchronously
communicate/sense locally, process information, and move. We describe the
physical components of the robotic network and introduce a formal notion of
motion coordination algorithm as a control and communication law. General-
izing the notions introduced in Chapter 1, we introduce the notion of task and
of time, communication, and space complexity. We illustrate these concepts
by means of a simple and insightful example of a group of robots moving on
a circle.

Chapter 4 analyzes in detail two coordination tasks: connectivity main-
tenance and rendezvous. The objective of “connectivity maintenance” is to
establish local rules that allow agents to move without losing the connectivity
of the overall networks. The objective of “rendezvous” is to establish local
rules that allow agents to agree on a common spatial location. We present
coordination algorithms that achieve these tasks, making use of the geometric
concepts introduced in the previous chapters. Furthermore, we provide results
on the correctness and complexity of these algorithms.

Chapter 5 considers deployment problems. The “deployment problem” ob-
jective is to establish local rules that allow agents to achieve optimal network
configurations in an environment of interest. Here, optimality is defined using
the multicenter functions from geometric optimization introduced in Chap-
ter 2. We present coordination algorithms that achieve these tasks, character-
izing their correctness and complexity.

The reader will note that, as the discussion progresses, the selection of
topics emphasizes problems in which we have been directly involved. There
are exciting topics that have been considered in the literature and are not
presented here in depth, albeit we briefly discuss a number of them throughout
the exposition. In this, our first effort, we decided to tackle the problems we
knew better, postponing the rest for the future. We hope the reader will
appreciate the result and share, while reading it, some of the fun we had
writing it.

How to use this book as a text

Our experience and opinion is that this text can be used for a quarter- or
semester-long course on “Distributed Control” or on “Robotic Networks.”
Such a course could be taught in an Engineering or in a Computer Science
department. We taught such a course at our respective institutions over a
10 weeks, 3 hours a week, period, skipping some material and some proofs

ix

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

(e.g., skipping combinatorial optimization in Chapter 1, some of the multi-
center functions and the nonconvex geometry treatment in Chapter 2, and
the relative-sensing model in Chapter 3). With proofs and more complete
treatment, we estimate the material might require 45 hours of lecture time.

Finally, the complete latest version of the manuscript, as well as supple-
mentary material such as slides and software, is freely avaiable on the internet
at:

http://coordinationbook.info
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1

An introduction to distributed algorithms

Graph theory, distributed algorithms and linear distributed algorithms are a
fascinating scientific subject. In this chapter we provide a broad introduction
to distributed algorithms by reviewing some preliminary graphical concepts
and by studying some simple algorithms. In Section 1.1, we review some basic
notation and state a few useful facts from matrix theory. In Section 1.2, we
review basic notions of dynamical systems and convergence theorems based
on invariance principles. In Section 1.3 we provide a primer on graph theory
with a particular emphasis on algebraic aspects such as the properties of adja-
cency and Laplacian matrices associated to a weighted digraph. In Section 1.4
we finally introduce the notion of synchronous network and of distributed al-
gorithm. We introduce various complexity notions and study them in simple
example problems such as the broadcast problem, the tree computation prob-
lem, and the leader election problem. Finally, in Section 1.5 we discuss linear
distributed algorithms. We focus on linear algorithms defined by sequences of
stochastic matrices and review the results on their convergence properties.

1.1 Elementary concepts and notation

We let x ∈ S denote a point x belonging to a set S. If S is finite, we let
|S| denote the number of its elements. For a set S, we let P(S) and F(S)
denote the set of subsets of S and the set of finite subsets of S, respectively.
The empty set is denoted by ∅. The interior and the boundary of a set S are
denoted by int(S) and ∂S, respectively. If A is a subset of or equal to S, then
we write A ⊂ S. If A is a strict subset of S, then we write A ( S. We describe
subsets of S defined by specific conditions via the notation

{x ∈ S | condition(s) on x}.

Given two sets S1 and S2, we let S1 ∪S2, S1 ∩S2, and S1×S2 denote the union,
intersection and Cartesian product of S1 and S2, respectively. For convenience,
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we will interchangeably denote the intersection of a collection of sets Sa, with
a ∈ A by ∩a∈A Sa or by ∩{Sa | a ∈ A}. We let

∏

i∈{1,...,n} Si denote the
Cartesian product of sets S1, . . . , Sn and adopt analogous notations for union
and intersection. We denote by Sn the Cartesian product of n copies of the
same S. The diagonal set diag(Sn) of Sn is given by diag(Sn) = {(s, . . . , s) ∈
Sn | s ∈ S}. The set S1 \ S2 contains all points in S1 that do not belong to
S2.

We let N and Z≥0 denote the set of natural numbers and of non-negative
integers, respectively. We let R, R>0, R≥0 and C denote the set of real num-
bers, strictly positive real numbers, non-negative real numbers, and complex
numbers, respectively. The sets Rd, Cd, and Sd ⊂ Rd+1 are the d-dimensional
Euclidean space, the d-dimensional complex space, and the d-dimensional
sphere, respectively. The tangent space of Rd, denoted by TRd, is the set
of all vectors tangent to Rd. Note that TRd can be identified with Rd ×Rd by
mapping a vector v tangent to Rd at x ∈ Rd to the pair (x, v). Likewise, TSd

is the set of all vectors tangent to Sd, and can be identified with Sd ×Rd. The
Euclidean space Rd contains the vectors 0d = (0, . . . , 0), 1d = (1, . . . , 1) and
the standard basis e1 = (1, 0, . . . , 0), . . . ,ed = (0, . . . , 0, 1). Given a < b, we
let [a, b] and ]a, b[ denote the closed interval and the open interval between a
and b, respectively.

Given two sets S and T , we let f : S → T denote a map from S to T ,
i.e., a unique way of associating an element of T to an element of S. Given
f : S → T and S1 ⊂ S, we let f(S1) denote the image set {f(s) | s ∈ S1}.
Given f : S → T and g : T → U , we let f ◦ g : S → U , f ◦ g (s) = f(g(s)),
denote the composition of f and g. The map idS : S → S is the identity
map on S. Given f : S → R, the support of f is the set of elements s such
that f(s) 6= 0. The indicator function 1S : S → R associated with S is given
by 1S(q) = 1 if q ∈ S, and 1S(q) = 0 if q 6∈ S. Given two sets S and T , a
set-valued map, denoted by h : S ⇉ T , associates to an element of S a subset
of T . Given a map f : S → T , the inverse map f−1 : T ⇉ S is defined by

f−1(t) = {s ∈ S | f(s) = t}.

If f is a real-valued function, then f−1(x), for any x ∈ R, is a level set of f .
In a topological space X, a (continuous) curve C is the image of a con-

tinuous map γ : [a, b] → X. The map γ is called a parameterization of C.
We usually identify a parameterization with the curve it defines. Note that,
without loss of generality, we can take a = 0 and b = 1. A curve connects
two points p and q if γ(0) = p and γ(1) = q. The length of a continuous and
piecewise continuously differentiable curve γ is

length(γ) =

∫ 1

0

‖γ̇(t)‖2dt.

A curve γ : [0, 1] → X is not self-intersecting if γ is injective on (0, 1). A
curve is closed if γ(0) = γ(1). A set S ⊂ X is path connected if any two
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points in S can be joined by a curve. A set S ⊂ X is simply connected if it is
path connected and any non self-intersecting closed curve can be continuously
deformed to a point in the set, i.e., for any injective continuous map γ :
[0, 1] → S that satisfies γ(0) = γ(1), there exist p ∈ S and a continuous map
H : [0, 1]× [0, 1] → S such that H(t, 0) = γ(t) and H(t, 1) = p for all t ∈ [0, 1].
Informally, a simply connected set is a set that consists of a single piece and
does not have any holes.

We also introduce the so-called Bachmann-Landau symbols. For f, g : N →
R, we say that f ∈ O(g) (respectively, f ∈ Ω(g)) if there exist n0 ∈ N and
K ∈ R>0 (respectively, k ∈ R>0) such that |f(n)| ≤ K|g(n)| for all n ≥ n0

(respectively, |f(n)| ≥ k|g(n)| for all n ≥ n0). If f ∈ O(g) and f ∈ Ω(g), then
we use the notation f ∈ Θ(g).

1.1.1 Distance functions

A function dist : S × S → R≥0 defines a distance on a set S if it satisfies: (i)
dist(x, y) = 0 if and only if x = y, (ii) dist(x, y) = dist(y, x) for all x, y ∈ S,
and (iii) dist(x, y) ≤ dist(x, z)+dist(z, y), for all x, y, z ∈ S. The pair (S,dist)
is usually called a metric space.

Some relevant examples of distance functions include

Lp-distance on Rd: for p ∈ [1,+∞[, consider the Lp-norm on Rd defined by

‖x‖p = (
∑d

i=1 |xi|p)1/p. For p = +∞, consider the L∞-norm on Rd defined
by ‖x‖∞ = maxi∈{1,...,d} |xi|. Any of these norms defines naturally a Lp-

distance in Rd by distp(x, y) = ‖y − x‖p. In particular, the most widely
used is the Euclidean distance, corresponding to p = 2. Unless otherwise
noted, it is always understood that Rd is endowed with this notion of
distance. We will also use the L1- and the L∞-distances. Finally, it is
convenient to define the norm ‖z‖C of a complex number z ∈ C to be the
Euclidean norm of z regarded as a vector in R2;

Geodesic distance on Sd: Another example is the notion of geodesic dis-
tance on Sd. This is defined as follows. For x, y ∈ Sd, distg(x, y) is the
length of the shortest curve in Sd connecting x and y. We will use this
notion of distance in dimensions d = 1 and d = 2. On the unit circle S1,
by convention, let us define positions as angles measured counterclock-
wise from the positive horizontal axis. Then, the geodesic distance can be
expressed as

distg(x, y) = min{distc(x, y),distcc(x, y)}, x, y ∈ S1,

where distc(x, y) = (x−y) mod 2π is the clockwise distance and distcc(x, y) =
(y− x) mod 2π is the counterclockwise distance. Here the clockwise dis-
tance between two angles is the path length from an angle to the other
traveling clockwise, and x mod 2π is the remainder of the division of x by
2π. On the sphere S2, the geodesic distance can be computed as follows.
Given x, y ∈ S2, one considers the great circle determined by x and y.
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Then, the geodesic distance between x and y is exactly the length of the
shortest arc in the great circle connecting x and y;

Cartesian product distance on Rd1 × Sd2 : Consider Rd1 endowed with an
Lp-distance, p ∈ [1,+∞], and Sd2 endowed with the geodesic distance.
Then, one can define the Cartesian product distance on Rd1 × Sd2 by
(distp,distg)((x1, y1), (x2, y2)) = distp(x1, x2) + distg(y1, y2) for (x1, y1),
(x2, y2) ∈ Rd1 × Sd2 . Unless otherwise noted, it is always understood that
Rd1 × Sd2 is endowed with the Cartesian product distance (dist2,distg).

Given a metric space (S,dist), the open and closed ball of center x ∈ S
and radius ε ∈ R>0 are defined by, respectively,

B(x, ε) = {y ∈ S | dist(x, y) < ε},
B(x, ε) = {y ∈ S | dist(x, y) ≤ ε}.

Consider a point x ∈ X and a set S ⊂ X. A neighborhood of a point x ∈ X is
a subset of X that contains an open ball centered at x. A neighborhood of a
set Y ⊂ X is a subset of X that, for each point y ∈ Y , contains an open ball
centered at y.

The open lune associated to x, y ∈ S is B(x,dist(x, y))∩B(y,dist(x, y)).
These notions are illustrated in Figure 1.1 for the Euclidean distance on the
plane.

Fig. 1.1. Open balls (dashed lines), closed ball (solid line), and open lune for the
Euclidean distance on the plane.

The distance between a point x ∈ S and a set W ∈ P(S) is the infimum
of all distances between x and each of the points in W . Formally, we set

dist(x,W ) = inf{dist(x, y) | y ∈W}.

The diameter of a set is the maximum distance between any two points in
the set. Formally, we set diam(S) = sup{dist(x, y) | x, y ∈ S}. With a slight
abuse of notation, we often use diam(P ) to denote diam({p1, . . . , pn}) for
P = (p1, . . . , pn) ∈ (Rd)n.

4

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

1.1.2 Matrix theory

For ease of reference we present here some basic results from Horn and Johnson
[1985] and Meyer [2001]. We let Rn×m and Cn×m denote the set of n × m
real and complex Given a real matrix A and a complex matrix U , we let
AT and U∗ denote the transpose of A and the conjugate transpose matrix
of U , respectively. For a square matrix A, we write A > 0, resp. A ≥ 0, if
A is symmetric positive definite, resp. symmetric positive semidefinite. For
a real matrix A, we let kernel(A) and rank(A) denote the kernel and rank
of A, respectively. Given a vector v, we let diag(v) denote the square matrix
whose diagonal elements are equal to the component v and whose off-diagonal
elements are zero.

Matrix sets

A matrix A ∈ Rn×n with entries aij , i, j ∈ {1, . . . , n}, is

(i) orthogonal if AAT = In, and is special orthogonal if it is orthogonal with
det(A) = +1. The set of orthogonal matrices is a group;1

(ii) nonnegative (resp., positive) if all its entries are nonnegative (resp., posi-
tive);

(iii) row-stochastic (or stochastic for brevity) if it is nonnegative and
∑n

j=1 aij =
1, for all i ∈ {1, . . . , n}; in other words, A is row-stochastic if

A1n = 1n;

(iv) doubly stochastic if it is row-stochastic and column-stochastic, where we
say that A is column-stochastic if 1T

nA = 1T
n ;

(v) a permutation matrix if A has precisely one entry equal to one in each
row, one entry equal to one in each column, and all other entries equal to
zero. The set of permutation matrices is a group;

(vi) irreducible if, for any nontrivial partition J ∪K of the index set {1, . . . , n},
there exists j ∈ J and k ∈ K such that ajk 6= 0.

Remark 1.1 (Properties of irreducible matrices). The property of irre-
ducibility depends only upon the patterns of zeros and nonzero elements of
the matrix. Also, note the following equivalent definition of irreducibility. A
matrix A ∈ Rn×n is irreducible if it is not reducible, and is reducible if either

(i) n = 1 and A = 0, or

1 A set G with a binary operation, denoted by G × G ∋ (a, b) 7→ a ⋆ b ∈ G, is a
group if (i) a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G (associativity property); (ii)
there exists e ∈ G such that a⋆e = e⋆a = a for all a ∈ G (existence of an identity
element); and (iii) there exists a−1 ∈ G such that a ⋆ a−1 = a−1 ⋆ a = e for all
a ∈ G (existence of inverse elements).
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(ii) there exists a permutation matrix P ∈ Rn×n and a number r ∈ {1, . . . , n−
1} such that PTAP is block upper triangular with diagonal blocks of
dimensions r × r and (n− r) × (n− r). •
The scalars µ1, . . . , µk are convex combination coefficients if µi ≥ 0, for

i ∈ {1, . . . , k}, and
∑k

i=1 µi = 1. A convex combination of vectors is a linear
combination of the vectors with convex combination coefficients. A subset U
of a vector space V is convex if the convex combination of any two elements
of U takes value in U . For example, the set of stochastic matrices and the set
of doubly stochastic matrices are convex.

Theorem 1.2 (Birkhoff–Von Neumann). A square matrix is doubly stochas-
tic if and only if it is a convex combination of permutation matrices.

Next, we review two families of relevant matrices with useful properties.
Toeplitz matrices are square matrices with equal entries along each diagonal
parallel to the main diagonal. In other words, a Toeplitz matrix is a matrix
of the form




















t0 t1
. . .

. . .
. . . tn−2 tn−1

t−1 t0 t1
. . .

. . .
. . . tn−2

. . . t−1 t0 t1
. . .

. . .
. . .

. . .
. . . t−1 t0 t1

. . .
. . .

. . .
. . .

. . . t−1 t0 t1
. . .

t−n+2
. . .

. . .
. . . t−1 t0 t1

t−n+1 t−n+2
. . .

. . .
. . . t−1 t0




















.

An n×n Toeplitz matrix is determined by its first row and column, hence by
2n− 1 scalars.

Circulant matrices are square Toeplitz matrices where each two subsequent
row vectors vi and vi+1 have the following two properties: the last entry of
vi is the first entry of vi+1 and the first (n − 1) entries of vi are the second
(n − 1) entries of vi+1. In other words, a circulant matrix is a matrix of the
form




















c0 c1
. . .

. . .
. . . cn−2 cn−1

cn−1 c0 c1
. . .

. . .
. . . cn−2

. . . cn−1 c0 c1
. . .

. . .
. . .

. . .
. . . cn−1 c0 c1

. . .
. . .

. . .
. . .

. . . cn−1 c0 c1
. . .

c2
. . .

. . .
. . . cn−1 c0 c1

c1 c2
. . .

. . .
. . . cn−1 c0




















.
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A circulant matrix is determined by its first row, hence by n scalars. The
transpose of a circulant matrix is circulant. Given two n×n circulant matrices
C1 and C2, one can show that C1 + C2 and C1C2 are circulant and that
C1C2 = C2C1.

Eigenvalues, singular values and induced norms

We require the reader to be familiar with the notion of eigenvalue and of simple
eigenvalue (i.e., an eigenvalue with algebraic and geometric multiplicity equal
to 1). The set of eigenvalues of a matrix A ∈ Rn×n is called its spectrum and
is denoted by spec(A) ⊂ C. The singular values of the matrix A ∈ Rn×n are
the positive square roots of the eigenvalues of ATA.

We begin with a well-known property of the spectrum of a matrix.

Theorem 1.3 (Geršgorin Disks). Let A be an n× n matrix. Then

spec(A) ⊂
⋃

i∈{1,...,n}

{

z ∈ C
∣
∣ ‖z − aii‖C ≤

n∑

j=1,j 6=i

|aij |
}

.

Next, we review a few facts about normal matrices and their singular
values.

Lemma 1.4 (Normal matrices). For a matrix A ∈ Rn×n, the following
statements are equivalent:

(i) A has a complete orthonormal set of eigenvectors,
(ii) ATA = AAT , and
(iii) A is unitarily similar to a diagonal matrix, i.e., there exists a unitary2

matrix U such that U∗AU is diagonal.

If these properties hold, then the matrix A is called normal.

Lemma 1.5 (The singular values of a normal matrix). If a normal ma-
trix has eigenvalues {λ1, . . . , λn}, then its singular values are {|λ1|, . . . , |λn|}.
It is well known that real symmetric matrices are normal, are diagonalizable
by orthogonal matrices, and have real eigenvalues. Additionally, circulant ma-
trices are normal.

We conclude defining the notion of induced norm of a matrix. For p ∈
N∪{∞}, the p-induced norm of A ∈ Rn×n is

‖A‖p = max{‖Ax‖p | ‖x‖p = 1}.
One can see that

‖A‖1 = max
j∈{1,...,n}

n∑

i=1

|aij |, ‖A‖∞ = max
i∈{1,...,n}

n∑

j=1

|aij |,

‖A‖2 = max{σ | σ is a singular value of A}.
2 A complex matrix U ∈ Cn×n is unitary if U−1 = U∗.
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Spectral radius and convergent matrices

The spectral radius of a matrix A ∈ Rn×n is

ρ(A) = max{‖λ‖C | λ ∈ spec(A)}.

In other words, ρ(A) is the radius of the smallest disk centered at the origin
that contains the spectrum of A.

Lemma 1.6 (Induced norms and spectral radius). For any square ma-
trix A and in any norm p ∈ N∪{∞}, ρ(A) ≤ ‖A‖p.

We will often deal with matrices with an eigenvalue equal to 1 and all
other eigenvalues strictly inside the unit disk. Accordingly, we generalize the
notion of spectral radius as follows. For a square matrix A with ρ(A) = 1, we
define the essential spectral radius

ρess(A) = max{‖λ‖C | λ ∈ spec(A) \ {1}}. (1.1)

Next, we consider matrices with useful convergence properties.

Definition 1.7 (Convergent and semi-convergent matrices). A matrix
A ∈ Rn×n is

(i) semi-convergent if limℓ→+∞Aℓ exists, and
(ii) convergent if it is semi-convergent and limℓ→+∞Aℓ = 0.

These two notions are characterized as follows.

Lemma 1.8 (Convergent and semi-convergent matrices). The square
matrix A is convergent if and only if ρ(A) < 1. Furthermore, A is semi-
convergent if and only if the following three properties hold

(i) ρ(A) ≤ 1,
(ii) ρess(A) < 1, that is, 1 is an eigenvalue and 1 is the only eigenvalue on the

unit circle, and
(iii) the eigenvalue 1 is semisimple, i.e., it has equal algebraic and geometric

multiplicity (possibly larger than one).

In other words, A is semi-convergent if and only if there exists a nonsin-
gular matrix T such that

A = T

[
Ik 0
0 B

]

T−1,

where Ik is the k × k identity matrix, k ∈ {1, . . . , n}, and B ∈ R(n−k)×(n−k)

is convergent, that is, ρ(B) < 1. With this notation, we have ρess(A) = ρ(B)
and the algebraic and geometric multiplicity of the eigenvalue 1 is k.
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Perron-Frobenius theory

Positive and nonnegative matrices have useful spectral properties. The first
statement in the following theorem amounts to the original Perron’s Theorem
for positive matrices; the second statement is the extension due to Frobenius
for nonnegative matrices.

Theorem 1.9 (Perron-Frobenius Theorem). If the square matrix A is
positive, then

(i) ρ(A) > 0,
(ii) ρ(A) is an eigenvalue, it is simple, and ρ(A) is larger than the magnitude

of any other eigenvalue, and
(iii) ρ(A) has an eigenvector with positive components.

Furthermore, if the square matrix A is nonnegative and irreducible, then

(i) ρ(A) > 0,
(ii) ρ(A) is an eigenvalue, and it is simple, and
(iii) ρ(A) has an eigenvector with positive components.

Note that, in general, the spectral radius of a nonnegative irreducible matrix
does not need to be the only eigenvalue of maximum magnitude. For example,

the matrix

[
0 1
1 0

]

has eigenvalues {1,−1}. It is useful, therefore, to introduce

a sharper characterization of nonnegative irreducible matrices.

Definition 1.10 (Primitive matrix). A nonnegative square matrix A is
primitive if there exists k ∈ N such that Ak is positive.

It is easy to see that if a matrix is reducible, then it cannot be primitive; or
in other words, if A is primitive, then it must be irreducible. The second part
of the Perron-Frobenius Theorem 1.9 can now be sharpened as follows.

Theorem 1.11 (Perron-Frobenius for primitive matrices). If a non-
negative matrix is primitive, then its spectral radius is its only eigenvalue of
maximum magnitude.

We conclude this section by noting the following convergence properties.
If A is positive or A is nonnegative and primitive, then Lemma 1.8 guarantees
that ρ(A)−1A is semi-convergent.

1.2 State machines and dynamical systems

Here, we introduce three classes of dynamical and control systems: (i) state
machines or discrete-time discrete-space dynamical systems, (ii) discrete-time
continuous-space control systems, and (iii) continuous-time continuous-space
control systems.
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We begin with our specific definition of state machine. A (deterministic,
finite) state machine is a tuple (X,U,X0, f), where X is a finite set called
the state space, U is a finite set called the input space, X0 ⊂ X is the set
of allowable initial states, and f : X × U → X is the evolution map. Given
an input sequence u : Z≥0 → U , the state machine evolution x : Z≥0 → X
starting from x(0) ∈ X0 is given by

x(ℓ+ 1) = f(x(ℓ), u(ℓ)), ℓ ∈ Z≥0.

More general definitions of state machines can be found in the literature, e.g.,
see [Sipser, 2005], but the one presented here will be enough of our purposes.
We will often refer to a state machine as a processor.

Note that, in a state machine, both the state and the input spaces are
finite or discrete. Often times, we will find it useful to consider systems that
evolve in continuous space and that are time-dependent. Let us then provide
two additional definitions in the next paragraphs.

A (time-dependent) discrete-time continuous-space control system is a tu-
ple (X,U,X0, f), where X is d-dimensional space chosen among Rd, Sd, and
the Cartesian products Rd1 ×Sd2 , for some d1 +d2 = d, U is a compact subset
of Rm containing 0m, X0 ⊂ X and f : Z≥0 × X × U → X is a continuous
map. As before, the individual objects X, U , X0 and f are termed state space,
input space, allowable initial states and evolution map, respectively. Given an
input sequence u : Z≥0 → U , the evolution x : Z≥0 → X of the dynamical
system starting from x(0) ∈ X0 is given by

x(ℓ+ 1) = f(ℓ, x(ℓ), u(ℓ)), ℓ ∈ Z≥0.

A (time-dependent) continuous-time continuous-space control system is a
tuple (X,U,X0, f), where X is d-dimensional space chosen among Rd, Sd, and
the Cartesian products Rd1 ×Sd2 , for some d1 +d2 = d, U is a compact subset
of Rm containing 0m, X0 ⊂ X and f : R≥0 ×X ×U → TX is a smooth map.
The individual objects X, U , X0 and f are termed state space, input space,
allowable initial states and control vector field, respectively. Given an input
function u : R≥0 → U , the evolution x : R≥0 → X of the dynamical system
starting from x(0) ∈ X0 is given by

ẋ(t) = f(t, x(t), u(t)), t ∈ R≥0.

We often consider the case when the control vector field can be written as
f(t, x, u) = f0(t, x) +

∑m
a=1 fa(t, x)ua, for some smooth maps f0, f1, . . . , fm :

R≥0 ×X → TX. Each of these individual maps is called a (time-dependent)
vector field, and f is said to be a control-affine vector field. The control vector
field f is driftless if f(t, x,0m) = 0 for all x ∈ X and t ∈ R≥0.

Finally, the term dynamical system denotes a control system that is not
subject to any external control action; this terminology is applicable both
in discrete and continuous time. Furthermore, we will sometimes neglect to
define a specific set of allowable initial states; in this case we mean that any
point in the state space is allowable as initial condition.
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1.2.1 Stability and attractivity notions

In this section we consider a continuous-space dynamical system (X, f). We
first consider the discrete-time case and later we briefly present the analogous
continuous-time case. We study dynamical systems that are time-invariant.
In discrete-time, a time-invariant system is simply described by an evolution
map of the form f : X → X.

Definition 1.12 (Equilibrium point). A point x∗ ∈ X is an equilibrium
point for the time-invariant dynamical system (X, f) if the constant curve
x : Z≥0 → X, defined by x(ℓ) = x∗ for all ℓ ∈ Z≥0, is an evolution of the
system.

It is immediate to see that a point x∗ is an equilibrium point if and only if
f(x∗) = x∗. We denote the set of equilibrium points of the dynamical system
by Equil(X, f).

Definition 1.13 (Trajectories and sets). Let (X, f) be a time-invariant
dynamical system and let W be a subset of X.

(i) W is positively invariant for (X, f) if each evolution with initial condition
in W remains in W for all subsequent times.

(ii) A trajectory x : Z≥0 → X approaches a set W ⊂ X if, for every neigh-
borhood Y of W , there exists a time ℓ0 > 0 such that x(ℓ) takes values in
Y for all subsequent times ℓ ≥ ℓ0. In such a case, we write x(ℓ) → W as
ℓ→ +∞.

In formal terms, W is positively invariant if x(0) ∈ W implies x(ℓ) ∈ W for
all ℓ ∈ Z≥0, where x : Z≥0 → X is the evolution of (X, f) starting from x(0).

Definition 1.14 (Stability and attractivity notions). For a time-invariant
dynamical system (X, f), a set S is

(i) stable if, for any neighborhood Y of S, there exists a neighborhood W of
S such that every evolution of (X, f) with initial condition in W remains
in Y for all subsequent times;

(ii) unstable if it is not stable;
(iii) locally attractive if there exists a neighborhood Y of S such that every

evolution with initial condition in Y approaches the set S; and
(iv) locally asymptotically stable if it is stable and locally attractive.

Remark 1.15 (Continuous-time dynamical systems). It is straightfor-
ward to extend the previous definitions to the setting of continuous-time
continuous-space dynamical systems. These notions are illustrated in Fig-
ure 1.2. •
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Fig. 1.2. Illustrations of stability, asymptotic stability, and instability.

1.2.2 Invariance principles

In this section we present various versions of the LaSalle-Invariance Principle,
see [Khalil, 2002, LaSalle, 1986].

Given a discrete-time time-invariant continuous-space dynamical system
(X, f) and a set W ⊂ X, a function V : X → R is non-increasing along f in
W if V (f(x)) ≤ V (x) for all x ∈W .

Theorem 1.16 (LaSalle Invariance Principle for discrete-time dy-
namical systems). Let (X, f) be a (discrete-time continuous-space) time-
independent dynamical system. Assume that

(i) there exists a set W ⊂ X that is positively invariant for (X, f);
(ii) there exists a function V : X → R that is non-increasing along f on W ;
(iii) all evolutions of (X, f) with initial conditions in W are bounded; and
(iv) f and V are continuous on W .

Let M denote the largest positively invariant set contained in {p ∈W | V (f(p)) =
V (p)}. Then there exists c ∈ R such that all evolutions with initial conditions
in W approach the set M ∩ V −1(c).

Next, we present the continuous-time version of the invariance principle.
In other words, we now assume that (X, f) is a continuous-time time-invariant
continuous-space dynamical system.

We begin by revisiting the notion of non-increasing function. Given a con-
tinuously differentiable function V : X → R, the Lie derivative of V along f ,
denoted by LfV : X → R, is defined by

LfV (x) =
d

dt
V (γ(t))

∣
∣
∣
t=0

,

where the trajectory γ : ] − ε, ε[ → X satisfies γ̇(t) = f(γ(t)) and γ(0) = x. If
X = Rd, then we can write x in components (x1, . . . , xd) and we can give the
following explicit formula for the Lie derivative:

LfV (x) =
d∑

i=1

∂V

∂xi
(x)fi(x).
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Similar formulas can be obtained for more general state spaces. Next, given
a set W ⊂ X, a function V : X → R is non-increasing along f in W if
LfV (x) ≤ 0 for all x ∈W .

Finally, we are ready to state the invariance principle for continuous-time
systems.

Theorem 1.17 (LaSalle Invariance Principle for continuous-time dy-
namical systems). Let (X, f) be a (continuous-time continuous-space) time-
independent dynamical system. Assume that

(i) there exists a set W ⊂ X that is positively invariant for (X, f);
(ii) there exists a function V : X → R that is non-increasing along f on W ;
(iii) all evolutions of (X, f) with initial conditions in W are bounded; and
(iv) f and V are continuously differentiable3 on W .

Let M denote the largest positively invariant set contained in {p ∈W | LfV (p) =
0}. Then there exists c ∈ R such that all evolutions with initial conditions in
W approach the set M ∩ V −1(c).

1.2.3 Notions and results for set-valued systems

Next, we focus on a more sophisticated version of the LaSalle Invariance Prin-
ciple for more general dynamical systems, that is, dynamical systems described
by set-valued maps that allow for non-deterministic evolutions. To do so, we
need to present numerous notions including set-valued dynamical systems,
closedness properties, and weak positive invariance.

Specifically, a discrete-time continuous-space set-valued dynamical system
(in short, set-valued dynamical system) is determined by a tuple (X,X0, T ),
where X is a d-dimensional space chosen among Rd, Sd, and the Cartesian
products Rd1 × Sd2 , for some d1 + d2 = d, X0 ⊂ X and T : X ⇉ X is a
set-valued map. We assume that T assigns to each point x ∈ X a nonempty
set T (x) ⊂ X. The individual objects X, X0 and T are termed state space,
allowable initial states and evolution map, respectively. An evolution of the
dynamical system (X,X0, T ) is any trajectory x : Z≥0 → X satisfying

x(ℓ+ 1) ∈ T (x(ℓ)), ℓ ∈ Z≥0.

In particular, a (time-invariant) discrete-time continuous-space dynamical sys-
tem (X,X0, f) can be seen as a discrete-time continuous-space set-valued dy-
namical system (X,X0, T ), where the evolution set-valued map is just the
singleton-valued map x 7→ T (x) = {f(x)}.

Next, we introduce a notion of continuity for set-valued maps. The evolu-
tion map T is said to be closed at x ∈ X if, for any sequences {xk | k ∈ Z≥0}
and {yk | k ∈ Z≥0} such that

3 It suffices that f be locally Lipschitz and V be continuously differentiable.
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lim
k→+∞

xk = x, lim
k→+∞

yk = y and yk ∈ T (xk),

it holds that y ∈ T (x). The evolution set-valued map T is closed at W ⊂ X
if for any x ∈W , T is closed at x. Note that a continuous map f : X → X is
closed when viewed as a singleton-valued map.

(i) A set C ⊂ X is weakly positively invariant with respect to T if, for any
x ∈ C, there exists y ∈ C such that y ∈ T (x).

(ii) A set C ⊂ X is strongly positively invariant with respect to T if T (x) ⊂ C
for any x ∈ C.

A point x0 is said to be a fixed point of T if x0 ∈ T (x0). A continuous function
V : X → R is non-increasing along T in W ⊂ X if V (y) ≤ V (x) for all x ∈W
and y ∈ T (x).

We finally state and prove a general version of the invariance principle.

Theorem 1.18 (LaSalle Invariance Principle for set-valued discrete-
time dynamical systems). Let (X,X0, T ) be a (discrete-time continuous-
space) set-valued dynamical system. Assume that

(i) there exists a set W ⊂ X that is strongly positively invariant for (X,X0, T );
(ii) there exists a function V : X → R that is non-increasing along T on W ;
(iii) all evolutions of (X,X0, T ) with initial conditions in W are bounded; and
(iv) T is nonempty and closed at W and V is continuous on W .

Let M denote the largest weakly positively invariant set contained in {p ∈
W | ∃p′ ∈ T (p) such that V (p′) = V (p)}. Then there exists c ∈ R such that
all evolutions with initial conditions in W approach the set M ∩ V −1(c).

Proof. Let γ be any evolution of (X,X0, T ) starting from W . Let Ω(γ) ⊂W
denote the ω-limit set4 of the sequence γ = {γ(ℓ) | ℓ ∈ Z≥0}. First, let us
prove that Ω(γ) is weakly positively invariant. Let z ∈ Ω(γ). Then there exists
a subsequence {γ(ℓm) | m ∈ Z≥0} of γ such that lim

m→+∞
γ(ℓm) = z. Consider

the sequence {γ(ℓm + 1) | m ∈ Z≥0}. Since this sequence is bounded, it has
a convergent subsequence. For ease of notation, we use the same notation to
refer to it, i.e., there exits y such that lim

m→+∞
γ(ℓm + 1) = y. By definition,

y ∈ Ω(γ). Moreover, using the fact that T is closed, we deduce that y ∈ T (z).
Therefore Ω(γ) is weakly positively invariant.

Now, consider the sequence V ◦ γ = {V (γ(ℓ)) | ℓ ∈ Z≥0}. Since γ is
bounded and V is non-increasing along T on W , the sequence V ◦ γ is de-
creasing and bounded from below, and therefore convergent. Let c ∈ R sat-
isfy lim

ℓ→+∞
V (γ(ℓ)) = c. Next, we prove that the value of V on Ω(γ) is con-

stant and equal to c. Take any z ∈ Ω(γ). Accordingly, there exists a subse-

4 The ω-limit set of a sequence γ = {γ(ℓ) | ℓ ∈ Z≥0} is the set of points y for which
there exists a subsequence {γ(ℓm) | m ∈ Z≥0} of γ such that lim

m→+∞
γ(ℓm) = y.
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quence {γ(ℓm) | m ∈ Z≥0} such that lim
m→+∞

γ(ℓm) = z. Since V is continuous,

lim
m→+∞

V (γ(ℓm)) = V (z). From lim
ℓ→+∞

V (γ(ℓ)) = c, we conclude that V (z) = c.

Finally, Ω(γ) being weakly positively invariant and V being constant on
Ω(γ) imply that

Ω(γ) ⊂ {z ∈ X | ∃y ∈ T (z) such that V (y) = V (z)}.

Therefore, we conclude that lim
ℓ→+∞

dist(γ(ℓ),M ∩ V −1(c)) = 0, where M is

the largest weakly positively invariant set contained in {p ∈ W | ∃p′ ∈
T (p) such that V (p′) = V (p)}. �

1.2.4 Notions and results for time-dependent systems

In this final subsection we consider time-dependent discrete-time dynamical
systems and discuss uniform stability and convergence notions. We begin with
some uniform boundedness, stability and attractivity definitions.

In what follows, given a time-dependent discrete-time dynamical system
(X,X0, f), an evolution with initial condition in W at time ℓ0 ∈ Z≥0 is a
trajectory x : [ℓ0,+∞[ → X of the dynamical system (X,X0, f) defined by
the initial condition x(ℓ0) = x0, for some x0 ∈ W . In other words, for time-
dependent systems we will often consider trajectories that begin at time ℓ0
not necessarily equal to 0.

Definition 1.19 (Uniformly bounded evolutions). A time-dependent
discrete-time dynamical system (X,X0, f) has uniformly bounded evolutions
if, given any bounded set Y , there exists a bounded set W such that every
evolution with initial condition in Y at any time ℓ0 ∈ Z≥0, remains in W for
all subsequent times ℓ ≥ ℓ0.
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Definition 1.20 (Uniform stability and attractivity notions). For a
time-dependent discrete-time dynamical system (X,X0, f), the set S is

(i) uniformly stable for (X,X0, f) if, for any neighborhood Y of S, there exists
a neighborhood W of S such that every evolution with initial condition
in W at any time ℓ0 ∈ Z≥0, remains in Y for all subsequent times ℓ ≥ ℓ0.

(ii) uniformly locally attractive for (X,X0, f) if there exists a neighborhood
Y of S such that every evolution with initial condition in Y at any time
ℓ0, approaches the set S in the following time-uniform manner:

for all ℓ0 ∈ Z≥0, for all x0 ∈ Y , and for all neighborhoods W
of S, there exists a single τ0 ∈ Z≥0 such that the evolution x :
[ℓ0,+∞[ → X defined by x(ℓ0) = x0, takes value in W for all
times ℓ ≥ ℓ0 + τ0; and

(iii) uniformly locally asymptotically stable if it is uniformly stable and uni-
formly locally attractive.

With the same notation in the definition, the set S is (non-uniformly)
locally attractive if for all ℓ0 ∈ Z≥0, x0 ∈ Y , and neighborhoods W of S, the
evolution x : [ℓ0,+∞[ → X defined by x(ℓ0) = x0, takes value in W for all
times ℓ ≥ ℓ0 + τ0(ℓ0), for some τ0(ℓ0) ∈ Z≥0.

To establish uniform stability and attractivity results we will overapprox-
imate the evolution of the time-dependent dynamical system by considering
the larger set of evolutions of an appropriate set-valued dynamical system.
Given a time-dependent evolution map f : Z≥0 ×X → X, define a set-valued
overapproximation map Tf : X ⇉ X by

Tf (x) = {f(ℓ, x) | ℓ ∈ Z≥0}.

Lemma 1.21 (Overapproximation Lemma). Consider a time-dependent
discrete-time dynamical system (X,X0, f).

(i) If x : [ℓ0,+∞[ → X is an evolution of the dynamical system (X, f), then
y : Z≥0 → X defined by y(ℓ) = x(ℓ+ ℓ0) is an evolution of the set-valued
overapproximation system (X,Tf ).

(ii) If the set S is locally attractive for the set-valued overapproximation system
(X,Tf ), then it is uniformly locally attractive for (X, f).

In other words, every evolution of the time-dependent dynamical system
from any initial time is an evolution of the set-valued overapproximation sys-
tem and, therefore, the set of trajectory of the set-valued overapproximation
system contains the set of trajectory of the original time-dependent system.
Uniform attractivity is a consequence of attractivity for the time-invariant
set-valued overapproximation.
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1.3 Graph theory

We take the following basic definitions from [Cormen et al., 2001, Godsil and
Royle, 2001, Biggs, 1994].

A directed graph, in short digraph, of order n is a pair G = (V,E) where
V is a set with n elements called vertices (or nodes) and E is a set of ordered
pair of vertices called edges. In other words, E ⊆ V ×V . We call V and E the
vertex set and edge set, respectively. When convenient, we let V (G) and E(G)
denote the vertices and edges of G, respectively. For u, v ∈ V , the ordered
pair (u, v) denotes an edge from u to v. For a digraph G = (V,E), the reverse
digraph rev(G) has vertex set V and edge set rev(E) composed of all edges in
E with reversed direction. A digraph G = (V,E) is complete if E = V × V .

An undirected graph, in short graph, consists of a vertex set V and of a
set E of unordered pairs of vertices. For u, v ∈ V and u 6= v, the set {u, v}
denotes an unordered edge. A digraph is undirected if (v, u) ∈ E anytime
(u, v) ∈ E. It is possible and convenient to identify an undirected digraph with
the corresponding graph; vice-versa, the directed version of a graph (V,E) is
the digraph (V ′, E′) with the property that (u, v) ∈ E′ if and only if {u, v} ∈
E. In what follows, our convention is to allow self-loops in both graphs and
digraphs.

A digraph (V ′, E′) is a subgraph of a digraph (V,E) if V ′ ⊂ V and E′ ⊂ E;
additionally, a digraph (V ′, E′) is a spanning subgraph if it is a subgraph and
V ′ = V . The subgraph of (V,E) induced by V ′ ⊂ V is the digraph (V ′, E′),
where E′ contains all edges in E between two vertices in V ′. A clique (V ′, E′)
of a digraph (V,E) is a subgraph of (V,E) which is complete, i.e., such that
E′ = V ′ × V ′. Note that a clique is fully determined by its set of vertices,
and hence, there is no loss of precision in denoting it by V ′. A maximal clique
V ′ of an edge of a digraph is a clique of the digraph with the following two
properties: it contains the edge, and any other subgraph of the digraph that
strictly contains (V ′, V ′ × V ′) is not a clique. For two digraphs G = (V,E)
and G′ = (V ′, E′), the intersection and union of G and G′ are defined by

G∩G′ = (V ∩V ′, E ∩E′),

G∪G′ = (V ∪V ′, E ∪E′).

Analogous definitions may be given for graphs.
In a digraph G with an edge (u, v) ∈ E, u is called an in-neighbor of v,

and v is called an out-neighbor of u. We let N in
G (v), respectively N out

G (v),
denote the set of in-neighbors, respectively the set of out-neighbors, of v in
the digraph G. We will drop the subscript when the graph G is clear from the
context. The in-degree and out-degree of v are the cardinality of N in(v) and
N out(v), respectively. A digraph is topologically balanced if each vertex has
the same in- and out-degrees.

Likewise, u and v are neighbors in a graph G if {u, v} is an undirected
edge. We let NG(v) denote the set of neighbors of v in the undirected graph
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G. As in the directed case, we will drop the subscript when the graph G is
clear from the context. The degree of v is the cardinality of N (v).

1.3.1 Connectivity notions

Let us now review some basic connectivity notions for digraphs and graphs.
We begin with the setting of undirected graphs because of its simplicity.

A path in a graph is an ordered sequence of vertices such that any two
consecutive vertices in the sequence are an edge of the graph. A graph is
connected if there exists a path between any two vertices. If a graph is not
connected, then it is composed of multiple connected components, i.e., multiple
connected subgraphs. A cycle is a non-trivial path that starts and ends at the
same vertex. A graph is acyclic if it contains no cycles. A connected acyclic
graph is a tree. Trees have interesting properties: for example, G = (V,E) is a
tree if and only if G is connected and |E| = |V |− 1. Alternatively, G = (V,E)
is a tree if and only if G is acyclic and |E| = |V | − 1.

Next, we generalize these notions to the case of digraphs. A directed path
in a digraph is an ordered sequence of vertices such that any two consecutive
vertices in the sequence are a directed edge of the digraph. A cycle in a
digraph is a non-trivial directed path that starts and ends at the same vertex.
A digraph is acyclic if it contains no cycles. In an acyclic graph, every vertex
of in-degree 0 is named source, and every vertex of out-degree 0 is named sink.
Every acyclic digraph has at least one source and at least one sink.

A directed graph is aperiodic if there exists no k > 1 that divides the
length of every cycle of the graph. In other words, a digraph is aperiodic if
the greatest common divisor of the lengths of its cycles is one. Figure 1.3
shows an example of a periodic and an aperiodic digraph.

(a) (b)

Fig. 1.3. (a) Periodic and (b) aperiodic digraphs

A vertex of a digraph is globally reachable if it can be reached from any
other vertex by traversing a directed path. A digraph is strongly connected
if every vertex is globally reachable. The decomposition of a digraph into its
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strongly connected components and the notion of condensation digraph are
discussed in Exercise E1.6.

A directed tree (sometimes called a rooted tree) is an acyclic digraph with
the following property: there exists a vertex, called the root, such that any
other vertex of the digraph can be reached by one and only one directed path
starting at the root. In a directed tree, every in-neighbor of a vertex is called
a parent and every out-neighbor is called a child. Two vertices with the same
parent are called siblings. A successor of a vertex u is any other node that can
be reached with a directed path starting at u. A predecessor of a vertex v is
any other node such that a directed path exists starting at it and reaching v.
A directed spanning tree, or simply a spanning tree, of a digraph is a spanning
subgraph that is a directed tree. Clearly, a digraph contains a spanning tree if
and only if the reverse digraph contains a globally reachable vertex. A forest is
a graph that can be written as the disjoint union of trees. A (directed) chain is
a directed tree with exactly one source and one sink. A (directed) ring digraph
is the cycle obtained by adding to the edge set of a chain a new edge from its
sink to its source. Figure 1.4 illustrates some of these notions.

Fig. 1.4. From left to right, tree, directed tree, chain, and ring digraphs.

The proof of the following result is given in Section 1.7.1.

Lemma 1.22 (Connectivity in topologically balanced digraphs). Let
G be a digraph. The following statements hold:

(i) if G is strongly connected, then it contains a globally reachable vertex and
a spanning tree; and

(ii) if G is topologically balanced and contains either a globally reachable vertex
or a spanning tree, then G is strongly connected and is Eulerian.5

We conclude this section with a result from [Moreau, 2005, Lin et al.,
2005]. Given a digraph G = (V,E), an in-neighbor of a nonempty set of nodes
U is a node v ∈ V \ U for which there exists an edge (v, u) ∈ E for some
u ∈ U .

Lemma 1.23 (Disjoint subsets and spanning trees). Given a digraph G
with at least two nodes, the following two properties are equivalent:

5 A graph is Eulerian if it has a cycle that visits all the graph edges exactly once.
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(i) G has a spanning tree, and
(ii) for any pair of nonempty disjoint subsets U1, U2 ⊂ V , either U1 has an

in-neighbor or U2 has an in-neighbor.

U1

U2

(a)

U1

U2

(b)

Fig. 1.5. Illustration of Lemma 1.23. The root of the spanning tree is plotted in
gray. In (a), the root is outside the sets U1 and U2. Because these sets are non-
empty, there exists a directed path from the root to a vertex in each one of these
sets. Therefore, both U1 and U2 have in-neighbors. In (b), the root is contained in
U1. Because U2 is non-empty, there exists a directed path from the root to a vertex
in U2, and therefore U2 has in-neighbors. The case when the root belongs to U2 is
treated analogously.

We postpone the proof to Section 1.7.1. The result is illustrated in Fig-
ure 1.5. We can also state the result in terms of global reachability: G has a
globally reachable node if and only if for any pair of nonempty disjoint subsets
U1, U2 ⊂ V , either U1 has an out-neighbor or U2 has an out-neighbor. We let
the reader give a proper definition of out-neighbor of a set.

1.3.2 Weighted digraphs

A weighted digraph is a triplet G = (V,E,A) where V = {v1, . . . , vn} and
E are a digraph and where A ∈ Rn×n

≥0 is a weighted adjacency matrix with
the following properties: for i, j ∈ {1, . . . , n}, the entry aij > 0 if (vi, vj)
is an edge of G, and aij = 0 otherwise. In other words, the scalars aij , for
all (vi, vj) ∈ E, are a set of weights for the edges of G. Note that edge set is
uniquely determined by the weighted adjacency matrix and it can be therefore
omitted. When convenient, we denote the adjacency matrix of a weighted
digraph G by A(G). Figure 1.6 shows an example of a weighted digraph.

A digraph G = (V,E) can be naturally thought of as a weighted digraph
by defining the weighted adjacency matrix A ∈ {0, 1}n×n as

aij =

{

1, if (vi, vj) ∈ E,

0, otherwise,
(1.2)
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Fig. 1.6. A weighted digraph.

where V = {v1, . . . , vn}. The adjacency matrix of a graph is the adjacency
matrix of the directed version of the graph. Reciprocally, given a weighted
digraph G = (V,E,A), we refer to the digraph (V,E) as the unweighted ver-
sion of G and to its associated adjacency matrix as the unweighted adjacency
matrix. A weighted digraph is undirected if aij = aji for all i, j ∈ {1, . . . , n}.
Clearly, G is undirected if and only if A(G) is symmetric.

A number of the concepts introduced for digraphs remain equally valid
for the case of weighted digraphs, including the connectivity notions and the
definitions of in- and out-neighbors.

Finally, we generalize the notions of in- and out-degree to weighted di-
graphs. In a weighted digraph G = (V,E,A) with V = {v1, . . . , vn}, the
weighted out-degree and the weighted in-degree of vertex vi are defined by,
respectively,

dout(vi) =

n∑

j=1

aij , and din(vi) =

n∑

j=1

aji.

The weighted digraph G is weight-balanced if dout(vi) = din(vi) for all vi ∈ V .
The weighted out-degree matrix Dout(G) and the weighted in-degree matrix
Din(G) are the diagonal matrices defined by

Dout(G) = diag(A1n), and Din(G) = diag(AT 1n).

That is, (Dout(G))ii = dout(vi) and (Din(G))ii = din(vi), respectively.

1.3.3 Distances on digraphs and weighted digraphs

We first present a few definitions for unweighted digraphs. Given a digraph G,
the (topological) length of a directed path is the number of the edges composing
it. Given two vertices u and v in the digraph G, the distance from u to v,
denoted distG(u, v), is the smallest length of any directed path from u to v,
or +∞ if there is no directed path from u to v, that is,

distG(u, v) = min
(
{length(p) | p is a directed path from u to v}∪{+∞}

)
.
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Given a vertex v of a digraph G, the radius of v in G is the maximum of all
the distances from v to any other vertex in G, that is,

radius(v,G) = max{distG(v, u) | u ∈ G}.

If T is a directed tree and v is its root, then the depth of T is radius(v, T ).
Finally, the diameter of the digraph G is

diam(G) = max{distG(u, v) | u, v ∈ V }.

These definitions lead to the following simple results:

(i) radius(v,G) ≤ diam(G) for all vertices v of G;
(ii) G contains a spanning tree rooted at v if and only if radius(v,G) < +∞;
(iii) G is strongly connected if and only if diam(G) < +∞.

The definitions of path length, distance between vertices, radius of a vertex,
and diameter of a digraph can be easily applied to undirected graphs.

Next, we consider weighted digraphs. Given two vertices u and v in the
weighted digraph G, the weighted distance from u to v, denoted wdistG(u, v),
is the smallest weight of any directed path from u to v, or +∞ if there is no
directed path from u to v, that is,

wdistG(u, v) = min
(
{weight(p) | p is a directed path from u to v}∪{+∞}

)
.

Here, the weight of a subgraph of a weighted digraph is the sum of the weights
of all the edges of the subgraph. Note that when a digraph is thought of as a
weighted digraph (with the unweighted adjacency matrix (1.2)), the notions
of weight and weighted distance correspond to the usual notions of length
and distance, respectively. We leave it the reader to provide the definitions of
weighted radius, weighted depth, and weighted diameter.

1.3.4 Graph algorithms

In this section we present a few algorithms defined on graphs. We only present
high-level descriptions and we refer to [Cormen et al., 2001] for detailed dis-
cussion on implementation and efficiency issues.

Breadth-first spanning tree

Let v be a vertex of a digraph G with radius(v,G) < +∞. A breadth-first
spanning (BFS) tree of G with respect to v, denoted TBFS, is a spanning
directed tree rooted at v that contains a shortest path from v to every other
vertex of G. (Here, a shortest path is one with shortest topological length.)
Let us provide the algorithm BFS that, given a digraph G of order n and a
vertex v with radius(v,G) < +∞, computes a BFS tree TBFS rooted at v.
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[Informal description] Initialize a subgraph to contain only the root v.
Repeat radius(v,G) times the following instructions: attach to the sub-
graph all out-neighbors of the subgraph as well as a single connecting
edge for each out-neighbor. The final subgraph is the desired directed
tree.

The algorithm is formally stated as follows.

function BFS(G, v)

1: (V1, E1) := ({v}, ∅)
2: for k = 2 to radius(v,G) do
3: find all vertices w1, . . . , wm not in Vk−1 that are out-neighbors

of some vertex in Vk−1 and, for j ∈ {1, . . . ,m}, let ej be an edge
connecting a vertex in Vk−1 to wj

4: Vk := Vk−1 ∪{w1, . . . , wm}
5: Ek := Ek−1 ∪{e1, . . . , em}
6: return (Vn, En)

Note that the output of this algorithm is not necessarily unique, since the
choice of edges at step 3: in the algorithm is not unique. Figure 1.7 shows an
execution of the BFS algorithm.

Fig. 1.7. Execution of the BFS algorithm. In the leftmost frame, vertex v is colored
in red. The other frames correspond to incremental additions of vertices and edges
as specified by the function BFS. The output of the algorithm is a BFS tree of
the digraph. The BFS tree is represented in the last frame with vertices and edges
colored in red.

Some properties of the BFS algorithm are characterized as follows.

Lemma 1.24 (BFS tree). For a digraph G with a vertex v, any digraph T
computed by the BFS algorithm, T ∈ BFS(G, v), has the following properties:

(i) T is a directed tree with root v;
(ii) T contains a shortest path from v to any other vertex reachable from v

inside G, that is, if there is a path in G from v to w, then w ∈ T and
distG(v, w) = distT (v, w);

(iii) if G contains a spanning tree rooted at v, then T is spanning too, and
therefore, T is a BFS tree of G.

We leave the proof to the reader. The key property of the algorithm is that
(Vk, Ek), k ∈ {1, . . . , n}, is a sequence of directed trees with the property that
(Vk, Ek) ⊂ (Vk+1, Ek+1), for k ∈ {1, . . . , n− 1}.
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Depth-first spanning tree

Next, we define the algorithm DFS that, given a digraphG and a vertex v with
radius(v,G) < +∞, computes what we term a depth-first spanning (DFS) tree
TDFS rooted at v.

[Informal description] Visit all nodes of the graph recording the trav-
eled edges to form the desired tree. Visit the nodes in the following
recursive way: (1) as long as a node has an unvisited child, visit it,
(2) when the node has no more unvisited children, then return to its
parent (and recursively attempt to visit its unvisited children).

The algorithm is formally stated as a recursive procedure as follows.

function DFS(G, v)

1: (Vvisited, Evisited) := ({v}, ∅)
2: DFS-Visit(G, v)
3: return (Vvisited, Evisited)

function DFS-Visit(G,w)

1: for u out-neighbor of w do
2: if u does not belong to Vvisited then
3: Vvisited := Vvisited ∪{u}
4: Evisited := Evisited ∪{(w, u)}
5: DFS-Visit(G, u)

Note that the output of this algorithm is not necessarily unique, since the
order in which the vertices are chosen in step 1: of DFS-Visit is not unique.
Any digraph T computed by the DFS algorithm, T ∈ DFS(G, v), is a directed
spanning tree with root v. Figure 1.8 shows an execution of the algorithm.

Fig. 1.8. Execution of the DFS algorithm. In the top leftmost frame, vertex v is
colored in red. The other frames correspond to incremental additions of vertices and
edges as specified by the function DFS. The output of the algorithm is a DFS tree
of the digraph. The DFS tree is represented in the last frame with vertices and edges
colored in red.

Some properties of the DFS algorithm are characterized as follows.
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Lemma 1.25 (DFS tree). For a digraph G with a vertex v, any digraph T
computed by the DFS algorithm, T ∈ DFS(G, v), has the following properties:

(i) T is a directed tree with root v;
(ii) if G contains a spanning tree rooted at v, then T is spanning too.

Note that both BFS and DFS trees are uniquely defined once a lexico-
graphic order is introduced for the children of a node.

Shortest-paths tree in weighted digraphs via Dijkstra’s algorithm

Finally, we focus on weighted digraphs and on the notion of weighted path
length. Given a weighted digraph G of order n with weighted adjacency matrix
A and a vertex v with radius(v,G) < +∞, a shortest-paths tree of G with
respect to v, denoted Tshortest-paths, is a spanning directed tree rooted at v
that contains a (weighted) shortest path from v to every other vertex of G.
This tree differs from the BFS tree defined above because here the path length
is measured using the digraph weights.

We now provide the algorithm Dijkstra that, given a digraph G of order
n and a vertex v with radius(v,G) < +∞, computes a shortest-paths tree
Tshortest-paths rooted at v.

[Informal description] Incrementally construct a tree that contains
only shortest paths. At each round, add to the tree (1) the node that
is closest to the source and is not yet in the tree, and (2) the edge cor-
responding to the shortest path. The weighted distance to the source
(required to perform step (1)) is computed via an array of distance
estimates that is updated as follows: when a node is added to the tree,
the distance estimates of all its out-neighbors are updated.

The algorithm is formally stated as follows.

function Dijkstra
(
(V,E,A), v

)

1: Tshortest-paths := ∅
% Initialize estimated distances and estimated parent nodes:

2: for u ∈ V do

3: dist(u) :=

{

0, u = v,

+∞, otherwise.

4: parent(u) := u
% Main loop to grow the tree and update estimates:

5: while (Tshortest-paths does not contain all vertices) do
6: find vertex u outside Tshortest-paths with smallest dist(u)
7: add to Tshortest-paths the vertex u
8: if u 6= v, add to Tshortest-paths the edge (parent(u), u)
9: for each node w that is an out-neighbor of u do

10: if dist(w) > dist(u) + auw then
11: dist(w) := dist(u) + auw
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12: parent(w) := u
13: return Tshortest-paths

Note that the output of this algorithm is not necessarily unique, since the
choice of vertex at step 6: in the algorithm is not unique. Figure 1.9 shows
an execution of the Dijkstra’s algorithm.

Fig. 1.9. Execution of the Dijkstra’s algorithm on the weighted digraph plotted in
Figure 1.6. In the top leftmost frame, vertex v is colored in gray. The other frames
correspond to incremental additions of vertices and edges as specified by the function
Dijkstra. The output of the algorithm is a shortest-paths tree of the digraph rooted
at v. This tree is represented in the last frame with vertices and edges colored in
gray.

The following properties of the Dijkstra’s algorithm mirrors those of the
BFS algorithm in Lemma 1.24.

Lemma 1.26 (Dijkstra’s algorithm). For a weighted digraph G with a ver-
tex v, any digraph T computed by the Dijkstra algorithm, T ∈ Dijkstra(G, v),
has the following properties:

(i) T is a directed tree with root v;
(ii) T contains a shortest path from v to any other vertex reachable from v

inside G, that is, if there is a path in G from v to w, then w ∈ T and
wdistG(v, w) = wdistT (v, w);

(iii) if G contains a spanning tree rooted at v, then T is spanning too, and
therefore, T is a shortest-paths tree of G.

On combinatorial optimization problems

We conclude this section on graph algorithms with a brief mention of classic
problems from combinatorial optimization. Standard references on combina-
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torial optimization include [Korte and Vygen, 2005, Vazirani, 2001]. Given
a weighted directed graph G, classical combinatorial optimization problems
include:

Minimum-weight spanning tree: A minimum-weight spanning tree (MST)
of G, denoted TMST, is a spanning tree with the minimum possible weight.
In order for the MST to exist, G must contain a spanning tree. If all the
weights of the individual edges are different, then the MST is unique;

Traveling salesperson problem: A traveling salesperson tour (TSP) of G,
denoted TTSP, is a cycle that passes through all the nodes of the digraph
and has the minimum possible weight. In order for the TSP to exist, G
must contain a cycle through all nodes;

Multicenter optimization problems: Given a weighted digraph with ver-
tices V = {v1, . . . , vn} and a set U = {u1, . . . , uk} ⊂ V , the weighted
distance from v ∈ V to the set U is the smallest weighted distance
from v to any vertex in {u1, . . . , uk}. We now consider the cost functions
Hmax,HΣ : V k → R defined by

Hmax(u1, . . . , uk) = max
i∈{1,...,n}

min
h∈{1,...,k}

wdistG(vi, uh),

HΣ(u1, . . . , uk) =
n∑

i=1

min
h∈{1,...,k}

wdistG(vi, uh).

The k-center problem and the k-median problem consist of finding a set
of vertices {u1, . . . , uk} that minimizes the k-center function Hmax and
the k-median function HΣ , respectively. We refer to [Vazirani, 2001] for
a discussion of the k-center and k-median problems (as well as the more
general uncapacited facility location problem) over complete undirected
graphs with edge costs satisfying the triangle inequality.

The Euclidean versions of these combinatorial optimization problems refer to
the situation where one considers a weighted complete digraph whose vertex
set is a point set in Rd, d ∈ N, and whose weight map assigns to each edge
the Euclidean distance between the two nodes connected by the edge.

1.3.5 Algebraic graph theory

The study of matrices defined by digraphs is called algebraic graph theory;
e.g., see [Godsil and Royle, 2001, Biggs, 1994]. In this section we expose two
topics. First, we study the equivalence between properties of graphs and of
their associated adjacency matrices. We also specify how to associate a digraph
to a nonnegative matrix. Second, we introduce and characterize the Laplacian
matrix of a weighted digraph.

We begin by studying adjacency matrices. Note that the adjacency matrix
of a weighted digraph is nonnegative and, in general, not stochastic. The
following lemma expands on this point.
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Lemma 1.27 (Weight-balanced digraphs and doubly stochastic ad-
jacency matrices). Let G be a weighted digraph of order n with weighted
adjacency matrix A and weighted out-degree matrix Dout. Define the matrix

F =

{

D−1
outA, if each out-degree is strictly positive,

(In +Dout)
−1(In +A), otherwise.

Then

(i) F is row-stochastic, and
(ii) F is doubly stochastic if G is weight-balanced and the degree is constant

for all vertices.

Proof. Consider first the case when each vertex has an outgoing edge so that
Dout is invertible. We first note that diag(v)−1v = 1n, for each v ∈ (R\{0})n.
Therefore

(
D−1

outA
)
1n = diag(A1n)−1

(
A1n

)
= 1n,

which proves (i). Furthermore, if Dout = Din = dIn for some d ∈ R≥0, then

(
D−1

outA
)T

1n =
1

d

(
AT 1n

)
= D−1

in

(
AT 1n

)
= diag(AT 1n)−1

(
AT 1n

)
= 1n,

which proves (ii). Finally, if (V,E,A) does not have outgoing edges at each
vertex, then apply the statement to the weighted digraph (V,E ∪{(i, i) | i ∈
{1, . . . , n}}, A+ In). �

The next result characterizes the relationship between the adjacency ma-
trix and directed paths in the digraph.

Lemma 1.28 (Directed paths and powers of the adjacency matrix).
Let G be a weighted digraph of order n with weighted adjacency matrix A,
with unweighted adjacency matrix A0,1 ∈ {0, 1}n×n, and possibly with self-
loops. For all i, j, k ∈ {1, . . . , n},
(i) the (i, j) entry of Ak

0,1 equals the number of directed paths of length k
(including paths with self-loops) from node i to node j, and

(ii) the (i, j) entry of Ak is positive if and only if there exists a directed path
of length k (including paths with self-loops) from node i to node j.

Proof. The second statement is a direct consequence of the first. The first
statement is proved by induction. The statement is clearly true for k = 1.
Next, we assume the statement is true for k ≥ 1 and we prove it for k + 1.
By assumption, the entry (Ak)ij equals the number of directed paths from i
to j of length k. Note that each path from i to j of length k+ 1 identifies (1)
a unique node ℓ such that (i, ℓ) is an edge of G and (2) a unique path from ℓ
to j of length k. We write Ak+1 = AAk in components as
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(Ak+1)ij =

n∑

ℓ=1

Aiℓ(A
k)ℓj .

Therefore, it is true that the entry (Ak+1)ij equals the number of directed
paths from i to j of length k + 1. This concludes the induction argument. �

The following proposition characterizes in detail the relationship between
various connectivity properties of the digraph and algebraic properties of the
adjacency matrix. The result is illustrated in Figure 1.10.

1

2

3

Fig. 1.10. Illustration of Proposition 1.29. Even though vertices 2 and 3 are globally
reachable, the digraph is not strongly connected because vertex 1 has no in-neighbor
other than itself. Therefore, the associated adjacency matrix is reducible.

Proposition 1.29 (Connectivity properties of the digraph and pos-
itive powers of the adjacency matrix). Let G be a weighted digraph of
order n with weighted adjacency matrix A. The following statements are equiv-
alent:

(i) G is strongly connected,
(ii) A is irreducible, and

(iii)
∑n−1

k=0 A
k is positive.

Furthermore, let j ∈ {1, . . . , n}. The following two statements are equivalent:

(iv) the jth node of G is globally reachable, and

(v) the jth column of
∑n−1

k=0 A
k has positive entries.

Similarly, if each node of G has a self-loop, then the following two statements
are equivalent:

(vi) the jth node of G is globally reachable, and
(vii) the jth column of An−1 has positive entries.

Proof. (ii) =⇒ (i) We aim to show that there exist directed paths from any
node to any other node. Fix i ∈ {1, . . . , n} and let Ri ⊂ {1, . . . , n} be the set
of nodes that belong to directed paths originating from node i. Denote the
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unreachable nodes by Ui = {1, . . . , n} \ Ri. We argue that Ui cannot contain
any element, because if it does, then Ri ∪Ui is a nontrivial partition of the
index set {1, . . . , n} and irreducibility implies the existence of a non-zero entry
ajk with j ∈ Ri and k ∈ Ui. Therefore Ui = ∅, and all nodes are reachable
from i. The converse statement (i) =⇒ (ii) is proved similarly.

(i) =⇒ (iii) If G is strongly connected, then there exists a directed path
of length k ≤ n − 1 connecting any node i to any other node j. Hence, by
Lemma 1.28(ii), the entry (Ak)ij is strictly positive. This immediately implies
the statement (iii). The converse statement (iii) =⇒ (i) is proved similarly.

(vii) =⇒ (vi) Suppose there exists j ∈ {1, . . . , n} such that (An−1)ij >
0, for all i ∈ {1, . . . , n}. Pick i ∈ {1, . . . , n} and, by definition of matrix
multiplication, write

(An−1)ij =
∑

j1,...,jn−2∈{1,...,n}
aij1aj1j2 · · · ajn−2j . (1.3)

Because (An−1)ij is strictly positive and because all terms in the summation
are nonnegative, at least one of the terms in the summation is strictly pos-
itive. That is, there exist k1, . . . , kn−2 ∈ {1, . . . , n} such that all aik1

, ak1k2
,

. . . , akn−2j are strictly positive. Therefore, (i, k1), (k1, k2), . . . , (kn−2j) is a
directed path and so node j is globally reachable.

(vi) =⇒ (vii) Suppose node j is globally reachable. Pick i ∈ {1, . . . , n}
and let (i, k1), (k1, k2), . . . , (km, j) be a directed path from i to j of length
m ≤ n − 1. Therefore, we know aik1

, ak1k2
, . . . , akmj are strictly positive.

Additionally, we know ajj is strictly positive because G has self loops at each
node. Finally, for arbitrary i ∈ {1, . . . , n} we compute

(An−1)ij =
∑

j1,...,jn−2∈{1,...,n}
aij1aj1j2 · · · ajn−2j

≥ aik1
ak1k2

· · · akmj ajj · · · ajj
︸ ︷︷ ︸

n−m−1 times

> 0.

This concludes our proof that fact (vii) is equivalent to fact (vi). In the interest
of brevity we do not include the analogous proof of the equivalence between
fact (iv) and fact (v). �

Next, we characterize the relationship between irreducible aperiodic di-
graphs and primitive matrices (recall Definition 1.10).

Proposition 1.30 (Strongly connected and aperiodic digraph and
primitive adjacency matrix). Let G be a weighted digraph of order n with
weighted adjacency matrix A. The following two statements are equivalent:

(i) G is strongly connected and aperiodic;
(ii) A is primitive, i.e., there exists k ∈ N such that Ak is positive.
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This concludes our study of adjacency matrices associated to weighted di-
graphs. Next, we emphasize how all results obtained so far have analogues that
hold when the original object is a nonnegative matrix, instead of a weighted
digraph.

Remark 1.31 (From a nonnegative matrix to its associated digraphs).
Given a nonnegative n × n matrix A, its associated weighted digraph is the
weighted digraph with nodes {1, . . . , n}, and weighted adjacency matrix A.
The unweighted version of this weighted digraph is called the associated di-
graph. The following statements are analogues of the previous lemmas:

(i) if A is stochastic, then its associated digraph has weighted out-degree
matrix equal to In;

(ii) if A is doubly stochastic, then its associated weighted digraph is weight-
balanced and, additionally, both in-degree and out-degree matrices are
equal to In;

(iii) A is irreducible if and only if its associated weighted digraph is strongly
connected. •

Finally, to conclude this section, we study a third relevant matrix associ-
ated to a digraph, called the Laplacian matrix. The Laplacian matrix of the
weighted digraph G is

L(G) = Dout(G) −A(G).

Laplacian matrices have numerous remarkable properties; two elegant surveys
are [Mohar, 1991, Merris, 1994]. Here we present only a few basic properties
directly relevant to later developments. We begin with some immediate con-
sequences of the definitions above:

(i) L(G)1n = 0n, that is, 0 is an eigenvalue of L(G) with eigenvector 1n,
(ii) G is undirected if and only if L(G) is symmetric, and
(iii) L(G) equals the Laplacian matrix of the digraph obtained by adding to

or removing from G any self-loop with arbitrary weight.

Further properties are established as follows.

Theorem 1.32 (Properties of the Laplacian matrix). Let G be a weighted
digraph of order n. The following statements hold:

(i) all eigenvalues of L(G) have nonnegative real part (thus, if G is undirected,
then L(G) is symmetric positive semidefinite);

(ii) if G is strongly connected, then rank(L(G)) = n− 1, that is, 0 is a simple
eigenvalue of L(G);

(iii) G contains a globally reachable vertex if and only if rank(L(G)) = n− 1;
(iv) the following three statements are equivalent:

a) G is weight-balanced,
b) 1T

nL(G) = 0T
n , and
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c) L(G) + L(G)T is positive semidefinite.

Proof. We begin with statement (i). Let lij , for i, j ∈ {1, . . . , n}, be the entries
of L(G). Note that lii =

∑n
j=1,j 6=i aij ≥ 0 and lij = −aij ≤ 0 for i 6= j. By the

Geršgorin Disks Theorem 1.3, we know that each eigenvalue of L(G) belongs
to at least one of the disks

{

z ∈ C
∣
∣ ‖z − lii‖C ≤

n∑

j=1,j 6=i

|lij |
}

=
{

z ∈ C
∣
∣ ‖z − lii‖C ≤ lii

}

.

These disks contain the origin 0n and complex numbers with positive real
part. This concludes the proof of statement (i).

Regarding statement (ii), note that Dout(G) is invertible because G
is strongly connected. Define the two matrices Ā = Dout(G)−1A(G) and
L̄ = Dout(G)−1L(G) and note that they satisfy L̄ = In − Ā. Since Dout(G)
is diagonal, the matrices A(G) and Ā have the same pattern of zeros and
positive entries. This observation and the assumption that G is strongly con-
nected imply that Ā is nonnegative and irreducible. By the Perron-Frobenius
Theorem 1.9, the spectral radius ρ(Ā) is a simple eigenvalue. Furthermore,
one can verify that Ā is row-stochastic (see Lemma 1.27) and that, therefore,
its spectral radius is 1 (see Exercise E1.2). In summary, we conclude that 1 is
a simple eigenvalue of Ā, that 0 is a simple eigenvalue of L̄, that L̄ has rank
n− 1, and that L(G) has rank n− 1.

Regarding statement (iii), we first prove that rank(L(G)) = n− 1 implies
the existence of a globally reachable vertex. By contradiction, let G contain
no globally reachable vertex. Then, by Lemma 1.23, there exist two nonempty
disjoint subsets U1, U2 ⊂ V (G) without any out-neighbor. After a permutation
of the vertices, the adjacency matrix can be partitioned in the following blocks:

A(G) =





A11 0 0
0 A22 0
A31 A32 A33



 .

Here, A12 and A13 vanish because U1 does not have any out-neighbor, and
A21 and A23 vanish because U2 does not have any out-neighbor. Note that
D11 − A11 and D22 − A22 are the Laplacian matrices of the graphs defined
by restricting G to the vertices in U1 and in U2, respectively. Therefore, the
eigenvalue 0 has geometric multiplicity at least 2 for the matrix Dout(G) −
A(G). This contradicts the assumption that rank(L(G)) = n− 1.

Next, still regarding statement (iii), we prove that the existence of a glob-
ally reachable vertex implies rank(L(G)) = n− 1. Without loss of generality,
we assume that G contains self-loops at each node (so that Dout is invert-
ible). Let R be the set of globally reachable vertices; let r ∈ {1, . . . , n} be its
cardinality. If r = n, then the graph is strongly connected and statement (ii)
implies rank(L(G)) = n−1. Assume therefore r < n. Renumber the vertices so
that R is the set of the first r vertices. After this permutation, the adjacency
matrix and Laplacian matrix can be partitioned in the following blocks:
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A(G) =

[
A11 0
A21 A22

]

, and L(G) =

[
L11 0
L21 L22

]

.

Here, A12 ∈ Rr×(n−r) vanishes because there can be no out-neighbor of R
otherwise that out-neighbor would be a globally reachable vertex in V \ R.
Note that the rank of L11 ∈ Rr×r is exactly r−1 since the digraph associated
to A11 is strongly connected. To complete the proof it suffices to show that
the rank of L22 ∈ R(n−r)×(n−r) is full. Note that the same block partition
applies to the matrices Ā = D−1

outA and L̄ = D−1
outL considered in the proof of

statement (ii) above. With this block decomposition, we compute

Ān−1 =

[
Ān−1

11 0
Ā21(n− 1) Ān−1

22

]

,

for some matrix Ā21(n− 1) that depends upon Ā11, Ā21 and Ā22. Because a
globally reachable node in G is globally reachable also in the digraph associ-
ated to Ā, Proposition 1.29(vii) implies that Ā21(n− 1) is positive. This fact,
combined with the fact that Ā and hence Ān−1 are row-stochastic, implies
that Ān−1

22 has maximal row sum (that is, ∞-induced norm) strictly less than
1. Hence, the spectral radius of Ān−1

22 and of Ā22 are strictly less than 1. Since
Ā22 has spectral radius strictly less than 1, the matrix L̄22 = In−r − Ā22, and
in turn the matrix L22, have full rank.

Regarding statement (iv), the equivalence between (iv)a and (iv)b is
proved as follows. Because

∑n
j=1 lij = dout(vi) − din(vi) for all i ∈ {1, . . . , n},

it follows that 1T
nL(G) = 0T

n if and only if Dout(G) = Din(G). Next, we
prove that (iv)b implies (iv)c. Suppose that L(G)T 1n = 0T

n and consider the
system γ̇(t) = −L(G)γ(t), γ(0) = x0, together with the positive definite func-
tion V : Rn → R defined by V (x) = xTx. We compute the Lie derivative of
the function V along the vector field x 7→ −L(G)x as V̇ (x) = −2xTL(G)x.
Note that V̇ (x) ≤ 0, for all x ∈ Rn, is equivalent to L(G) + L(G)T ≥ 0.
Because 1T

nL(G) = 0T
n and L(G)1n = 0n, it is immediate to establish that

exp(−L(G)t), t ∈ R, is a doubly stochastic matrix. From Theorem 1.2 we
know that, if we let {Pα} be the set of n × n permutation matrices, then
there exist time-dependent convex combination coefficients

∑

α λα(t) = 1,
λα(t) ≥ 0, such that exp(−L(G)t) =

∑

α λα(t)Pα. By the convexity of V and
its invariance under coordinate permutations, for any x ∈ Rn, we have

V (exp(−L(G)t)x) = V (
∑

α

λα(t)Pαx)

≤
∑

α

λα(t)V (Pαx) =
∑

α

λα(t)V (x) = V (x) .

In other words, V (exp(−L(G)t)x) ≤ V (x) for all x ∈ Rn, which implies
V̇ (x) ≤ 0, for all x ∈ Rn. Finally, we prove that (iv)c implies (iv)b. By
assumption, −xT (L(G) + L(G)T )x = −2xTL(G)x ≤ 0 for all x ∈ Rn. In
particular, for any small ε > 0 and x = 1n − εL(G)T 1n,
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−(1T
n − ε1T

nL(G))L(G)(1n − εL(G)T 1n) = ε‖L(G)T 1n‖2
2 +O(ε2) ≤ 0,

which is possible only if L(G)T 1n = 0T
n . �

1.4 Distributed algorithms on synchronous networks

Here we introduce a synchronous network as a group of processors with
the ability to exchange messages and perform local computations. What we
present is a basic classic model studied extensively in the distributed algo-
rithms literature. Our treatment is directly adopted with minor variations
from the texts by Lynch [1997] and Peleg [2000].

1.4.1 Physical components and computational models

Loosely speaking, a synchronous network is a group of processors, or nodes,
that possess a local state, exchange messages along the edges of a digraph, and
compute an update to their local state based on the received messages. Each
processor alternates the two tasks of exchanging messages with its neighboring
processors and of performing a computation step. Let us begin by describing
what constitutes a network.

Definition 1.33 (Network). The physical component of a synchronous net-
work S is a digraph (I, Ecmm), where

(i) I = {1, . . . , n} is called the set of unique identifiers (UIDs), and
(ii) Ecmm is a set of directed edges over the vertices {1, . . . , n}, called the

communication links. •
In general, the set of unique identifiers does not need to be n consec-

utive natural numbers, but we take this convention for simplicity. The set
Ecmm models the topology of the communication service among the nodes:
for i, j ∈ {1, . . . , n}, processor i can send a message to processor j if the
directed edge (i, j) is present in Ecmm. Note that, unlike the standard treat-
ments in Lynch [1997] and Peleg [2000], we do not assume the digraph to be
strongly connected; the required connectivity assumption will be specified on
a case by case basis.

Next, we discuss the state and the algorithms that each processor possesses
and executes, respectively. By convention, we let the superscript [i] denote any
quantity associated with the node i.

Definition 1.34 (Distributed algorithm). A distributed algorithm DA for
a network S consists of the sets:

(i) A, a set containing the null element, called the communication alphabet ;
elements of A are called messages;

(ii) W [i], i ∈ I, called the processor state sets;
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(iii) W
[i]
0 ⊆W [i], i ∈ I, sets of allowable initial values;

and of the maps:

(i) msg[i] : W [i] × I → A, i ∈ I, called message-generation functions;

(ii) stf[i] : W [i] × An →W [i], i ∈ I, called state-transition functions.

If W [i] = W , msg[i] = msg, and stf[i] = stf for all i ∈ I, then DA is said to be

uniform and is described by a tuple (A,W, {W [i]
0 }i∈I ,msg, stf). •

Now, with all elements in place, we can explain in more detail how a
synchronous network executes a distributed algorithm. The state of processor

i is a variable w[i] ∈W [i], initially set equal to an allowable value in W
[i]
0 . At

each time instant ℓ ∈ Z≥0, processor i sends to each of its out-neighbors j in
the communication digraph (I, Ecmm) a message (possibly the null message)
computed by applying the message-generation function msg[i] to the current
values of its state w[i] and to the identity j. Subsequently, but still at time
instant ℓ ∈ Z≥0, processor i updates the value of its state w[i] by applying the

state-transition function stf[i] to the current value of its state w[i] and to the
messages it receives from its in-neighbors. Note that, at each round, the first
step is transmission and the second one is computation.

Definition 1.35 (Network evolution). Let DA be a distributed algorithm

for the network S. The evolution of (S,DA) from initial conditions w
[i]
0 ∈W

[i]
0 ,

i ∈ I, is the collection of trajectories w[i] : Z≥0 →W [i], i ∈ I, satisfying

w[i](ℓ) = stf[i](w[i](ℓ− 1), y[i](ℓ)) ,

where w[i](−1) = w
[i]
0 , i ∈ I, and where the trajectory y[i] : Z≥0 → An

(describing the messages received by processor i) has components y
[i]
j (ℓ), for

j ∈ I, given by

y
[i]
j (ℓ) =

{

msg[j](w[j](ℓ− 1), i), if (j, i) ∈ Ecmm,

null, otherwise.

We let ℓ 7→ w(ℓ) = (w[1](ℓ), . . . , w[n](ℓ)) denote the collection of trajectories.•

We conclude this section with two sets of remarks. We first discuss some
aspects of our communication model that have a large impact on the subse-
quent development. We then collect a few general comments about distributed
algorithms on networks.

Remarks 1.36 (Aspects of the communication model).

(i) The network S and the algorithm DA are referred to as synchronous be-
cause the communications between all processors takes place at the same
time for all processors.
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(ii) Communication is modeled as a so-called “point to point” service: a pro-
cessor can specify different messages for different out-neighbors and knows
the processor identity corresponding to any incoming message.

(iii) Information is exchanged between processors as messages, i.e., elements
of the alphabet A; the message null indicates no communication. Mes-
sages might encode logical expressions such as true and false, or finite-
resolution quantized representations of integer and real numbers.

(iv) In some uniform algorithms, the messages between processors are the pro-
cessors’ states. In such cases, the corresponding communication alphabet
is A = W ∪{null} and the message generation function msgstd(w, j) = w
is referred to as the standard message-generation function. •

Remarks 1.37 (Advanced topics: Control structures and failures).

(i) Processors in a network have only partial information about the network
topology. In general, each processor only knows its own UID, and the UID
of its in- and out-neighbors. Sometimes we will assume that the processor
knows the network diameter. In some cases [Peleg, 2000] actively running
networks might depend upon “control structures,” i.e., structures that are
computed at initial time and are exploited in subsequent algorithms. For
example, routing tables might be computed for routing problems, “leader”
processors might be elected and tree structures might be computed and
represented in a distributed manner for various tasks, e.g., coloring or
maximal independent set problems. We present some sample algorithms
to compute these structures below.

(ii) A key issue in the study of distributed algorithms is the possible occur-
rence of failures. A network might experience intermittent or permanent
communication failures: along given edges a null message or an arbitrary
message might be delivered instead of the intended value. Alternatively, a
network might experience various types of processor failures: a processor
might transmit only null messages (i.e., the msg function returns null

always), a processor might quit updating its state (i.e., the stf function
neglects incoming messages and returns the current state value), or a pro-
cessor might implement arbitrarily modified msg and stf functions. The
latter situation, in which completely arbitrary and possibly malicious be-
havior is adopted by faulty nodes, is referred to as a Byzantine failure in
the distributed algorithms literature. •

1.4.2 Complexity notions

Here we begin our analysis of the performance of distributed algorithms. We
introduce a notion of algorithm completion and, in turn, we introduce the
classic notions of time, space, and communication complexity.

Definition 1.38 (Algorithm completion). We say that an algorithm ter-
minates when only null messages are transmitted and all processors states
become constants. •
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Remark 1.39 (Alternative termination notions).

(i) In the interest of simplicity, we have defined evolutions to be unbounded
in time and we do not explicitly require algorithms to actually have termi-
nation conditions, i.e., to be able to detect when termination takes place.

(ii) It is also possible to define the termination time as the first instant when
a given problem or task is achieved, independently of the fact that the
algorithm might continue to transmit data subsequently. •

Definition 1.40 (Time complexity). The (worst-case) time complexity of
a distributed algorithm DA on a network S, denoted TC(DA), is the maximum
number of rounds required by the execution of DA on S among all allowable
initial states until termination. •

Next, we quantify memory and communication requirements of distributed
algorithms. From an information theory viewpoint [Gallager, 1968], the infor-
mation content of a memory variable or of a message is properly measured
in bits. On the other hand, it is convenient to use the alternative notions of
“basic memory unit” and “basic message.” It is customary [Peleg, 2000] to as-
sume that a “basic memory unit” or a “basic message” contains log(n) bits so
that, for example, the information content of a robot identifier i ∈ {1, . . . , n}
is log(n) bits or, equivalently, one “basic memory unit.” Note that elements of
the processor state set W or of the alphabet set A might amount to multiple
basic memory units or basic messages; the null message has zero cost. Unless
specified otherwise, the following definitions and examples are stated in terms
of basic memory unit and basic messages.

Definition 1.41 (Space complexity). The (worst-case) space complexity
of a distributed algorithm DA on a network S, denoted by SC(DA), is the
maximum number of basic memory units required by a processor executing
DA on S among all processors and among all allowable initial states until
termination. •

Remark 1.42 (Space complexity conventions). By convention, each pro-
cessor knows its identity, i.e., it requires log(n) bits to represent its unique
identifier in a set with n distinct elements. We do not count this cost in the
space complexity of an algorithm. •

Next, we compute the communication complexity by counting basic mes-
sages.

Definition 1.43 (Communication complexity). The (worst-case) com-
munication complexity of a distributed algorithm DA on a network S, denoted
by CC(DA), is the maximum number of basic messages transmitted over the
entire network during the execution of DA among all allowable initial states
until termination. •
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We conclude this section by discussing ways of quantifying time, space
and communication complexity. The idea, borrowed from combinatorial op-
timization, is to adopt asymptotic “order of magnitude” measures. Formally,
complexity bounds will be expressed with respect to the Bachman-Laundau
symbols O, Ω and Θ defined in Section 1.1. Let us be more specific.

(i) We will say that an algorithm has time complexity of order Ω(f(n)) over
some network if, for all n, there exists a network of order n and initial
processor values such that the time complexity of the algorithm is greater
than a constant factor times f(n);

(ii) We will say that an algorithm has time complexity of order O(f(n)) over
arbitrary networks if, for all n, for all networks of order n and for all
initial processor values the time complexity of the algorithm is lower than
a constant factor times f(n);

(iii) We will say that an algorithm has time complexity of order Θ(f(n)) if its
time complexity is of order Ω(f(n)) over some network and O(f(n)) over
arbitrary networks at the same time.

Similar conventions will be used for space and communication complexity.
In many cases the complexity of an algorithm will typically depend upon

the number of vertices of the network. It is therefore useful to present a few
simple facts about these functions now. Over arbitrary digraphs S = (I, Ecmm)
of order n, we have

diam(S) ∈ Θ(n), |Ecmm(S)| ∈ Θ(n2) and radius(v,S) ∈ Θ(diam(S)),

where v is any vertex of S.

Remark 1.44 (Additional complexity notions). Numerous variations of
the proposed complexity notions are possible and may be of interest.

Global lower bounds: In the definition of lower bound, consider the logic
quantifier describing the role of the network. The lower bound statement
is “existential” rather than “global,” in the sense that the bound does not
hold for all graphs. As discussed in Peleg [2000], it is possible to define
also “global” lower bounds, i.e., lower bounds over all graphs, or lower
bounds over specified classes of graphs.

Average complexity notions: The proposed complexity notions focus on
the worst-case situation. It is also possible to define expected or average
complexity notions, where one is be interested in characterizing, for ex-
ample, the average number of rounds required or the average number of
basic messages transmitted over the entire network during the execution
of an algorithm among all allowable initial states until termination.

Problem complexity: It is possible to define complexity notions for prob-
lems, rather than algorithms, by considering, for example, the worst-case
optimal performance among all algorithms that solve the given problem,
or over classes of algorithms or classes of graphs. •
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1.4.3 Broadcast and BFS tree computation

In the following, we consider some basic algorithmic problems such as the sim-
ple one-to-all communication task, i.e., broadcasting, and the establishment
of some “control structures,” see Remarks 1.37, such as the construction of a
BFS spanning tree and the election of a leader.

Problem 1.45 (Broadcast). Assume that a processor, called the source, has
a message, called the token. Transmit the token to all others processors. •

Note that existence of a spanning tree rooted at the source is a necessary
requirement for the broadcast problem to be solvable. We begin by establishing
some analysis results for the broadcast problem.

Lemma 1.46 (Complexity lower bounds for the broadcast problem).
Let S be a network containing a spanning tree rooted at v. The broadcast
problem for S from the source v has communication complexity lower bounded
by n− 1 and time complexity lower bounded by radius(v,S).

In what follows, we shall solve the broadcast problem while simultaneously
also considering the following problem.

Problem 1.47 (BFS tree computation). Let S be a network containing
a spanning tree rooted at v. Compute a distributed representation for a BFS
tree rooted at v. •

We add two remarks on the BFS tree computation problem:

(i) By a distributed representation of a directed tree with bounded memory
at each node we mean the following: each child vertex knows the identity of
its parent and the root vertex knows it has no parents. A more informative
structure would require each parent to know the identity of its children;
this is easy to achieve on undirected digraphs.

(ii) The BFS tree computation has the same lower bounds as the broadcast
problem.

An elegant and classic solution to the broadcast and BFS tree computation
problems is given by the flooding algorithm. This algorithm implements the
same “breadth-first search” mechanism of the (centralized) BFS algorithm
characterized in Lemma 1.24.

[Informal description] The source broadcasts the token to its out-
neighbors. At each communication round, each node determines whether
it has received a non-null message from one of its in-neighbors. When
a non-null message is received, i.e., the token is received, the node
performs two actions. First, the node stores the token in the variable
data (this solves the Broadcast problem). Second, the node stores
the identity of one of the transmitting in-neighbors in the variable
parent (this solves the BFS tree computation problem). Specifically,
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if the message is received simultaneously from multiple in-neighbors,
then the node stores the smallest among the identities of the transmit-
ting in-neighbors. At the subsequent communication round, the node
broadcasts the token to its out-neighbors.

To formally describe the algorithm, we assume that the node with the
message to be broadcast is v = 1. Also, we assume that the token is a letter
of the Greek alphabet {α, . . . , ω}.

Synchronous Network: S = ({1, . . . , n}, Ecmm)
Distributed Algorithm: flooding

Alphabet: A = {α, . . . , ω}∪ null

Processor State: w = (parent, data, snd-flag), where

parent ∈ {1, . . . , n}∪ null, initially: parent[1] = 1,
parent[j] = null for all j 6= 1

data ∈ A, initially: data[1] = µ,
data[j] = null for all j 6= 1

snd-flag ∈ {false, true}, initially: snd-flag[1] = true,
snd-flag[j] = false for all j 6= 1

function msg(w, i)

1: if (parent 66= i) AND (snd-flag = true) then
2: return data

3: else
4: return null

function stf(w, y)

1: case
2: (data = null) AND (y contains only null messages):

% The node has not yet received the token
3: new-parent := null

4: new-data := null

5: new-snd-flag := false

6: (data = null) AND (y contains a non-null message):
% The node has just received the token

7: new-parent := smallest UID among transmitting in-neighbors
8: new-data := a non-null message
9: new-snd-flag := true

10: (data 6= null):
% If the node already has the token, then do not re-broadcast it

11: new-parent := parent

12: new-data := data

13: new-snd-flag := false

14: return (new-parent, new-data, new-snd-flag)

An execution of the flooding algorithm is illustrated in Figure 1.11.
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Fig. 1.11. Example execution of the flooding algorithm. The source is vertex 1.
(a) shows the network and (b) shows the BFS tree that results from the execution.

This algorithm can analyzed by induction: one can show that, for d ∈
{1, . . . , radius(v,S)}, every node at a distance d from the root receives a non-
null message at round d. A summary of results is given as follows.

Lemma 1.48 (Complexity upper bounds for the flooding algorithm).
For a network S containing a spanning tree rooted at v, the flooding al-
gorithm has communication complexity in Θ(|Ecmm|), time complexity in
Θ(radius(v,S)), and space complexity in Θ(1).

Remark 1.49. As presented, the flooding algorithm does not include a ter-
mination condition, i.e., the processors do not have a mechanism to detect
when the broadcast and tree computation are complete. If an upper bound on
the graph diameter is known, then it is easy to design a termination condition
based on this information; we do this in the next subsection. If no a priori
knowledge is available, then one can design more sophisticated algorithms
for networks with stronger connectivity properties. We refer to [Lynch, 1997,
Peleg, 2000] for a complete discussion about this. •

1.4.4 Leader election

Next, we formulate another interesting problem for a network.

Problem 1.50 (Leader election). Assume that all processors of a network
have a state variable, say leader, initially set to unknown. We say that a
leader is elected when one and only one processor has the state variable set
to true and all others have it set to false. Elect a leader. •

This is a task that is a bit more global in nature. We display here a solu-
tion that requires individual processors to know the diameter of the network,
denoted by diam(S), or an upper bound on it.
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[Informal description] At each communication round, each agent
sends to all its neighbors the maximum UID it has received up to
that time. This is repeated for diam(S) rounds. At the last round,
each agent compares the maximum received UID with its own, and
declares itself a leader if they coincide, or a non-leader otherwise.

The algorithm is called floodmax: the maximum UID in the network is
transmitted to other agents in an incremental fashion. At the first communi-
cation round, agents that are neighbors of the agent with the maximum UID
receive the message from it. At the next communication round, the neighbors
of these agents receive the message with the maximum UID. This process goes
on for diam(S) rounds to ensure that every agent receives the maximum UID.
Note that there are networks for which all agents receive the message with the
maximum UID in fewer communication rounds than diam(S). The algorithm
is formally stated as follows.

Synchronous Network: S = ({1, . . . , n}, Ecmm)
Distributed Algorithm: floodmax

Alphabet: A = {1, . . . , n}∪{null}
Processor State: w = (my-id, max-id, leader, round), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i
max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i
leader ∈ {false, true, unknown}, initially: leader[i] = unknown for all i
round ∈ {0, 1, . . . ,diam(S)}, initially: round[i] = 0 for all i

function msg(w, i)

1: if round < diam(S) then
2: return max-id

3: else
4: return null

function stf(w, y)

1: new-id:= max{max-id, largest identifier in y}
2: case
3: round < diam(S): new-lead := unknown

4: round = diam(S) AND max-id = my-id: new-lead := true

5: round = diam(S) AND max-id > my-id: new-lead := false

6: return (my-id, new-id, new-lead, round +1)

Figure 1.12 shows an execution of the floodmax algorithm. This algo-
rithm’s properties are characterized in the following lemma. A complete anal-
ysis of this algorithm, including modifications to improve the communication
complexity, is discussed in [Lynch, 1997, Section 4.1].

Lemma 1.51 (Complexity upper bounds for the floodmax algorithm).
For a network S containing a spanning tree, the floodmax algorithm has
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Fig. 1.12. Execution of the floodmax algorithm. The diameter of the network is
4. In the leftmost frame, the agent with the maximum UID is colored in red. After
4 communication rounds, its message has been received by all agents.

communication complexity in O(diam(S)|Ecmm|), time complexity equal to
diam(S), and space complexity in Θ(1).

A simplification of the floodmax algorithm leads to the Le Lann-Chang-
Roberts (LCR) algorithm for leader election in rings, see [Lynch, 1997, Chap-
ter 3.3], that we describe next. The LCR algorithm runs on a ring digraph
and does not require the agents to know the diameter of the network.

[Informal description] At each communication round, if the agent re-
ceives from its in-neighbor a UID that is larger than the UIDs received
earlier, then the agent records the received UID and forwards it to the
out-neighbor during the following communication round. (Agents do
not record the number of communication rounds.) When the agent
with the maximum UID receives its own UID from a neighbor, it de-
clares itself the leader.

The algorithm is formally stated as follows.

Synchronous Network: ring digraph
Distributed Algorithm: LCR

Alphabet: A = {1, . . . , n}∪{null}
Processor State: w = (my-id, max-id, leader, snd-flag), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i
max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i
leader ∈ {true, false, unknown}, initially: leader[i] = unknown for all i
snd-flag ∈ {true, false}, initially: snd-flag[i] = true for all i

function msg(w, i)

1: if snd-flag = true then
2: return max-id

3: else
4: return null

function stf(w, y)

1: case
2: (y contains only null msgs) OR (largest identifier in y < my-id):
3: new-id := max-id

4: new-lead := leader
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5: new-snd-flag := false

6: (largest identifier in y = my-id):
7: new-id := max-id

8: new-lead := true

9: new-snd-flag := false

10: (largest identifier in y > my-id):
11: new-id := largest identifier in y
12: new-lead := false

13: new-snd-flag := true

14: return (my-id, new-id, new-lead, new-snd-flag)

Figure 1.13 shows an execution of the LCR algorithm. The properties of

Fig. 1.13. Execution of the LCR algorithm. In the leftmost frame, the agent with
the maximum UID is colored in red. After 5 communication rounds, this agent
receives its own UID from its in-neighbor and declares itself the leader.

the LCR algorithm can be characterized as follows.

Lemma 1.52 (Complexity upper bounds for the LCR algorithm).
For a ring network S of order n, the LCR algorithm has communication
complexity in Θ(n2), time complexity equal to n, and space complexity in
Θ(1).

1.4.5 Shortest-paths tree computation

Finally, we consider the shortest-paths tree problem in a weighted digraph:
in Section 1.3.4 we presented Dijkstra’s algorithm to solve this problem in
a centralized setting; we present here the Bellman-Ford algorithm for the
distributed setting.

We consider a synchronous network associated to a weighted digraph, i.e.,
we assume that a strictly positive weight is associated to each communication
edge. We assume that the source is vertex 1 and we aim to compute a tree
containing shortest paths from node 1 to all other nodes. As for the computa-
tion of a BFS tree, we aim to obtain a distributed representation of a directed
tree with bounded memory at each node.

[Informal description] Each agent maintains (1) an estimate dist of
its weighted distance from the source, and (2) an estimate parent of
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the in-neighbor corresponding to the (weighted) shortest path from the
source. The dist estimate is initialized to 0 for the source and to +∞
for all other nodes. At each communication round, each agent performs
the following tasks: (1) it transmits its dist to its out-neighbors, (2)
it computes the smallest quantity among “the dist received from an
in-neighbor summed with the edge weight corresponding to that same
in-neighbor,” and (3) if the agent’s estimate dist is larger than this
quantity, then the agent updates its dist and its estimate parent.

The algorithm is formally stated as follows.

Synchronous Network with Weights: S = ({1, . . . , n}, Ecmm, A)
Distributed Algorithm: Distributed Bellman-Ford

Alphabet: A = R>0 ∪ null∪{+∞}
Processor State: w = (parent, dist), where

parent ∈ {1, . . . , n}, initially: parent[j] = j for all j
dist ∈ A, initially: data[1] = 0,

data[j] = +∞ for all j 6= 1

function msg(w, i)

1: if round < n then
2: return dist

3: else
4: return null

function stf(w, y)

1: i := processor UID
2: k := arginf{yj + aji | for all yj 6= null}
3: if (dist < k) then
4: return (parent, dist)
5: else
6: return (k, yk + aki)

In other words, if we let di ∈ R≥0 ∪{+∞} denote the dist variable for each
processor i, then the Bellman-Ford algorithm is equivalent to the following
discrete-time dynamical system:

di(ℓ+ 1) = inf
{
di(ℓ) , inf{dj(ℓ) + aji | (j, i) ∈ Ecmm}

}
,

with initial conditions d(0) = (1,+∞, . . . ,+∞). (Recall that Ecmm is the edge
set and the weights aij are strictly positive for all (i, j) ∈ Ecmm.)

This algorithm’s key property enabling its analysis is that, after k commu-
nication rounds, the estimated distance at node i equals the shortest path of
topological length k from the source to node i. Therefore, after n−1 communi-
cation rounds, all possible distinct topological paths connecting source to node
i have been investigated. The properties of the distributed Bellman-Ford

algorithm as follows.
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Lemma 1.53 (Complexity upper bounds for the distributed Bellman-
Ford algorithm). For a network S of order n containing a spanning tree
rooted at v, the distributed Bellman-Ford algorithm has communication
complexity in Θ(n|Ecmm|), time complexity equal to n−1, and space complex-
ity in Θ(1).

1.5 Linear distributed algorithms

Computing linear combination of the initial states of the processors is one
of the most basic computation that we might be interested in implement-
ing on a synchronous network. More accurately, linear distributed algorithms
on synchronous networks are discrete-time linear dynamical systems whose
evolution map is linear and has a sparsity structure related to the network.
These algorithms represent an important class of iterative algorithms that find
applications in optimization, in the solution of systems of equations and in dis-
tributed decision making, see for instance [Bertsekas and Tsitsiklis, 1997]. In
this section we present some relevant results on distributed linear algorithms.

1.5.1 Linear iterations on synchronous networks

Given a synchronous network S = ({1, . . . , n}, Ecmm), assign a scalar fji 6= 0
to each directed edge (i, j) ∈ Ecmm. Given such scalars fji for (i, j) ∈ Ecmm,
the Linear combination algorithm over S is defined as follows.

Distributed Algorithm: Linear combination

Alphabet: A = R∪ null

Processor state: w ∈ R

function msg(w, i) = msgstd(w, i)

function stf(w, y)

1: i := processor UID
2: return fiiw +

∑

j∈N in(i) fijyj

We assume that each processor i ∈ {1, . . . , n} knows the scalars fij , for
j ∈ N in(i) ∪ {i}, so that it can evaluate the state-transition function. Also,
we assume that real numbers may be transmitted through a communication
channel, i.e., we neglect quantization issues in the message-generation func-
tion.

In the language of Section 1.2, one can regard the Linear combina-

tion algorithm over S as the discrete-time continuous-space dynamical system
(X,X0, f), with X = X0 = Rn and evolution map defined by f(w) = F · w,
where we define a matrix F ∈ Rn×n with vanishing entries except for fji,
for (i, j) ∈ Ecmm. Note that, if A(S) denotes the adjacency matrix of the
digraph S, then the entries of F vanish precisely when the entries of A(S)T
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vanish. With this notation, the evolution w : Z≥0 → Rn with initial condition
w0 ∈ Rn is given by

w(0) = w0, w(ℓ+ 1) = F · w(ℓ), ℓ ∈ Z≥0. (1.4)

Conversely, any linear algorithm of the form (1.4) can easily be casted as
a Linear combination algorithm over a suitable synchronous network. We
do this bookkeeping carefully, in order to be consistent with the notion of
associated weighted digraph from Remark 1.31. Given F ∈ Rn×n, let SF be
the synchronous network with node set {1, . . . , n} and with edge set Ecmm(F )
defined by any of the equivalent statements:

(i) (i, j) ∈ Ecmm(F ) if and only if fji 6= 0, or
(ii) SF is the reversed and unweighted version of the digraph associated to F .

1.5.2 Averaging algorithms

In what follows we consider linear combination algorithms over time-dependent
weighted directed graphs; we restrict our analysis to nonnegative weights.

Definition 1.54 (Averaging algorithms). The averaging algorithm asso-
ciated to a sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n is the
discrete-time dynamical system

w(ℓ+ 1) = F (ℓ) · w(ℓ), ℓ ∈ Z≥0. (1.5)

In the literature, such algorithms are often referred to as agreement algorithms
or as consensus algorithms.

There are useful ways to compute a stochastic matrix, and therefore a time-
independent averaging algorithm, from a weighted digraph; see Exercise E1.8.

Definition 1.55 (Adjacency- and Laplacian-based averaging). Let G
be a weighted digraph with node set {1, . . . , n}, weighted adjacency matrix
A, weighted out-degree matrix Dout, and weighted Laplacian L. Then

(i) the adjacency-based averaging algorithm is defined by the stochastic ma-
trix (In +Dout)

−1(In +A) and reads in components

wi(ℓ+ 1) =
1

1 + dout(i)

(
wi(ℓ) +

n∑

j=1

aijwj(ℓ)
)
; (1.6)

(ii) given a positive scalar ε upper bounded by min{1/dout(i) | i ∈ {1, . . . , n}},
the Laplacian-based averaging algorithm is defined by the stochastic ma-
trix In − εL(G) and reads in components

wi(ℓ+ 1) =
(

1 − ε

n∑

j=1,j 6=i

aij

)

wi(ℓ) + ε

n∑

j=1,j 6=i

aijwj(ℓ). (1.7)
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These notions are immediately extended to sequences of stochastic matrices
arising from sequences of weighted digraphs.

Adjacency-based averaging algorithms arising from unweighted (undi-
rected) graphs without self-loops are also known as the equal-neighbor av-
eraging rule or the Vicsek’s model ; see [Vicsek et al., 1995]. Specifically, if G
is an unweighted graph with vertices {1, . . . , n} and without self-loops, then
the equal-neighbor averaging rule is

wi(ℓ+ 1) = avrg
(

{wi(ℓ)}∪{wj(ℓ) | j ∈ NG(i)}
)

, (1.8)

where we adopt the shorthand avrg({x1, . . . , xk}) = (x1 + · · · + xk)/k.

Remark 1.56 (Sensing versus communication interpretation of di-
rected edges). In the definition of averaging algorithms arising from di-
graphs, the edges of the digraph play the role of “sensing edges,” not that of
“communication edges.” In other words, a nonzero entry aij , corresponding
to the edge (i, j) in the digraph, implies that the ith component of the state
is updated with the jth component of the state. It is as if node i could sense
the state of node j, rather than node i transmitting to node j its own state.•

Next, we present the main stability and convergence results for averaging
algorithms associated to a sequence of stochastic matrices. We start by dis-
cussing equilibrium points and their stability. Recall that 1n is an eigenvector
of any stochastic matrix with eigenvalue 1 and that the diagonal set diag(Rn)
is the vector subspace generated by 1n. Therefore, any point in diag(Rn) is
an equilibrium for any averaging algorithm. We refer to the points of the
diag(Rn) as agreeement configurations, since all the components of an ele-
ment in diag(Rn) are equal to the same value. We will informally say that an
algorithm achieves agreement if it steers the network state towards the set of
agreement configurations.

Lemma 1.57 (Stability of agreement configurations). Any averaging
algorithm in Rn is uniformly stable and uniformly bounded with respect to
diag(Rn).

Regarding convergence results, we need to introduce a useful property of
collections of stochastic matrices. Given α ∈ ]0, 1], the set of non-degenerate
matrices with respect to α consists of all stochastic matrices F with entries
fij , for i, j ∈ {1, . . . , n}, satisfying

fii ∈ [α, 1], and fij ∈ {0}∪[α, 1] for j 6= i.

Additionally, the sequence of stochastic matrices {F (ℓ) | ℓ ∈ Z≥0} is non-
degenerate if there exists α ∈ ]0, 1] such that F (ℓ) is non-degenerate with
respect to α for all ℓ ∈ Z≥0. We now state the main convergence result (in
the sharpest version given by Moreau [2005]) and postpone its proof to Sec-
tion 1.7.2.
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Theorem 1.58 (Convergence for time-dependent stochastic matri-
ces). Let {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a non-degenerate sequence of stochastic
matrices. For ℓ ∈ Z≥0, let G(ℓ) be the unweighted digraph associated to F (ℓ),
according to Remark 1.31. The following statements are equivalent:

(i) the set diag(Rn) is uniformly globally attractive for the associated averag-
ing algorithm;

(ii) there exists a duration δ ∈ N such that, for all ℓ ∈ Z≥0, the digraph

G(ℓ+ 1)∪ · · · ∪G(ℓ+ δ)

contains a globally reachable vertex.

We collect a few observations about this result.

Remarks 1.59. (i) The statement in Theorem 1.58(i) means that each solu-
tion to the time-dependent linear dynamical system (1.5) converges uni-
formly and asymptotically to the vector subspace generated by 1n.

(ii) The necessary and sufficient condition in Theorem 1.58(ii) amounts to the
existence of a uniformly-bounded time duration δ with the property that a
weak connectivity assumptions holds over each collection of δ consecutive
digraphs. We refer to [Blondel et al., 2005] for a counterexample showing
is the duration in Theorem 1.58 is not uniformly bounded, then there exist
algorithms that do not converge.

(iii) According to Definition 1.20, uniform convergence is a property of all
solutions to system (1.5) starting at any arbitrary time, and not only
at time equal to 0. If we restrict our attention to solutions that only
start at time 0, then Theorem 1.58 should be modified as follows: the
statement in Theorem 1.58(i) implies, but is not implied by, the statement
in Theorem 1.58(ii).

(iv) The theorem applies only to sequences of non-degenerate matrices. Indeed,
there exist sequences of degenerate stochastic matrices whose associated
averaging algorithms converges. Furthermore, one does not even need to
consider sequences because it is possible to define converging algorithms by
just considering a single stochastic matrix. Precisely when the stochastic
matrix is primitive we already know that the associated averaging algo-
rithm will converge (see Theorem 1.11). Examples of degenerate primitive
stochastic matrices (with converging associated averaging algorithms) are
given in Exercise E1.15. We discuss time-invariant averaging algorithms
in Proposition 1.63 below. •
Theorem 1.58 gives a general result about non-degenerate stochastic ma-

trices that are not necessarily symmetric. The following theorem presents a
convergence result for the case of symmetric matrices (i.e., undirected di-
graphs) under connectivity requirements that are weaker (i.e., the duration
does not need to be uniformly bounded) than the ones expressed in state-
ment (ii) of Theorem 1.58.
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Theorem 1.60 (Convergence for time-dependent symmetric stochas-
tic matrices). Let {F (ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a non-degenerate sequence of
symmetric, stochastic matrices. For ℓ ∈ Z≥0, let G(ℓ) be the unweighted graph
associated to F (ℓ), according to Remark 1.31. The following statements are
equivalent:

(i) the set diag(Rn) is globally attractive for the associated averaging algo-
rithm;

(ii) for all ℓ ∈ Z≥0, the graph

⋃

τ≥ℓ

G(τ)

is connected.

Let us briefly particularize our discussion here on adjacency- and Laplacian-
based averaging algorithms.

Corollary 1.61 (Convergence of adjancency- and Laplacian-based
averaging algorithms). Let {G(ℓ) | ℓ ∈ Z≥0} ⊂ Rn×n be a sequence of
weighted digraphs. The following statements are equivalent:

(i) there exists δ ∈ N such that, for all ℓ ∈ Z≥0, the digraph

G(ℓ+ 1)∪ · · · ∪G(ℓ+ δ)

contains a globally reachable vertex;
(ii) the set diag(Rn) is uniformly globally attractive for the the time-dependent

adjancency-based averaging algorithm (1.6);
(iii) the set diag(Rn) is uniformly globally attractive for the the time-dependent

Laplacian-based averaging algorithm (1.7) (defined with ε < 1/n).

Finally, we refine the results presented thus far by discussing some further
aspects.

Proposition 1.62 (Convergence to a point in the invariant set). Un-
der the assumptions in Theorem 1.58 and assuming that diag(Rn) is uniformly
globally attractive for the averaging algorithm, each individual evolution con-
verges to a specific point of diag(Rn), rather than converging to the whole
set.

In general, the specific value upon which all wi, i ∈ {1, . . . , n}, agree in
the limit is unknown. Clearly, this agreement value depends on the initial
condition and the specific sequence of matrices defining the time-dependent
linear algorithm. In some cases, however, by restricting the class of allowable
matrices, we can elucidate the common limit value. We consider two impor-
tant settings: time-independent averaging algorithms and doubly-stochastic
averaging algorithms.
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First, we specialize the main convergence result to the case of time-
independent averaging algorithms. Note that, given a stochastic matrix F ,
convergence of the averaging algorithm associated to F for all initial condi-
tions is equivalent to the matrix F being semi-convergent (see Definition 1.7).

Proposition 1.63 (Time-independent averaging algorithm). Consider
the linear dynamical system on Rn

w(ℓ+ 1) = Fw(ℓ), ℓ ∈ Z≥0. (1.9)

Assume F ∈ Rn×n is stochastic, let G(F ) denote its associated weighted di-
graph, and let v ∈ Rn be a left eigenvector of F with eigenvalue 1. Assume
either one of the two following properties:

(i) F is primitive (i.e., G(F ) is strongly connected and aperiodic), or
(ii) F has non-zero diagonal terms and a column of Fn−1 has positive entries

(i.e., G(F ) has self-loops at each node and has a globally reachable node).

Then every trajectory w of system (1.9) converges to (vTw(0)/vT 1n)1n.

Proof. From Theorem 1.58 we know that the dynamical system (1.9) con-
verges if property (ii) holds. The same conclusion follows if F satisfies prop-
erty (i) because of Perron-Frobenius Theorem 1.9 and Lemma 1.8. To com-
puting the limiting value, note that

vTw(ℓ+ 1) = vTFw(ℓ) = vTw(ℓ),

that is, the quantity ℓ 7→ vTw(ℓ) is constant. Because F is semi-convergent
and stochastic, we know that limℓ→+∞ w(ℓ) = α1n for some α. To conclude,
we compute α from the relationship α(vT 1n) = limℓ→+∞ vTw(ℓ) = vTw(0).
�

Remark 1.64. (i) The following necessary and sufficient condition general-
izes and is weaker than the two sufficient conditions given in Proposi-
tion 1.63: every trajectory of system (1.9) is asymptotically convergent if
and only if all sinks of the condensation digraph of G(F ) are aperiodic
subgraphs of G(F ). We refer the interested reader to Exercise E1.6 for the
notion of condensation digraph and to Chapter 8 of [Meyer, 2001] for the
proof of this statement and for the related notion of ergodic classes of a
Markov chain.

(ii) Without introducing any trajectory w, the result of the proposition can
be equivalently stated by saying that

lim
ℓ→+∞

F ℓ = (vT 1n)−11nv
T . •

Second, we specialize the main convergence result to the case of doubly
stochastic averaging algorithms.

51

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

Corollary 1.65 (Average consensus). Let {F (ℓ) | ℓ ∈ Z≥0} be a sequence
of stochastic matrices as in Theorem 1.58. If all matrices F (ℓ), ℓ ∈ Z≥0, are
doubly stochastic, then every trajectory w of the averaging algorithms satisfies

n∑

i=1

wi(ℓ) =
n∑

i=1

wi(0), for all ℓ,

that is, the sum of the initial conditions is a conserved quantity. Therefore, if
{F (ℓ) | ℓ ∈ Z≥0} is non-degenerate and satisfies property (ii) in Theorem 1.58,
then

lim
ℓ→+∞

wj(ℓ) =
1

n

n∑

i=1

wi(0), j ∈ {1, . . . , n}.

Proof. The proof of the first fact is an immediate consequence of:

n∑

i=1

wi(ℓ+ 1) = 1T
nw(ℓ+ 1) = 1T

nF (ℓ)w(ℓ) = 1T
nw(ℓ) =

n∑

i=1

wi(ℓ).

The second fact is an immediate consequence of the first fact. �

In other words, if the matrices are double stochastic, then each component of
the trajectories will converge to the average of the initial condition. We there-
fore adopt the following definition: an average-consensus averaging algorithm
is an averaging algorithm whose sequence of stochastic matrices are all doubly
stochastic.

1.5.3 Convergence speed of averaging algorithms

We know that any trajectory of the associated averaging algorithm converges
to the diagonal set diag(Rn); in what follows we characterize how fast this
convergence takes place. We begin with some general definitions for semi-
convergent matrices (recall the discussion culminating in Lemma 1.8).

Definition 1.66 (Convergence time and exponential convergence fac-
tor). Let A ∈ Rn×n be semi-convergent with limit limℓ→+∞Aℓ = A∗.

(i) For ε ∈ ]0, 1[, the ε-convergence time of A is the smallest time Tε(A) ∈ Z≥0

such that, for all x0 ∈ Rn and ℓ ≥ Tε(A),

∥
∥Aℓx0 −A∗x0

∥
∥

2
≤ ε‖x0 −A∗x0‖2.

(ii) The exponential convergence factor of A, denoted by rexp(A) ∈ [0, 1[, is

rexp(A) = sup
x0 6=A∗x0

lim sup
ℓ→+∞

(‖Aℓx0 −A∗x0‖2

‖x0 −A∗x0‖2

)1/ℓ

.
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The exponential factor of convergence has the following interpretation.
If the trajectory x(ℓ) = Aℓx0 maximizing the sup operator has the form
x(ℓ) = ρℓ(x0−x∗)+x∗, for ρ < 1, then it is immediate to see that rexp(A) = ρ.

Lemma 1.67. If A is a convergent matrix, then rexp(A) = ρ(A).

In what follows we are interested in studying how the convergence time
and exponential convergence factor of a matrix depend upon ε and upon the
dimension of the matrix itself.

Remark 1.68 (Complexity notions). Analogously to the treatment in Sec-
tion 1.4.2, we introduce some complexity notions. Let An ∈ Rn×n, n ∈ N, be
a sequence of semi-convergent matrices with limit limℓ→+∞Aℓ

n = A∗
n, and let

ε ∈ ]0, 1]. We say that

(i) Tε(An) is of order Ω(f(n, ε)) if, for all n and all ε, there exists an initial
condition x0 ∈ Rn such that ‖Aℓ

nx0 − A∗x0‖2 > ε
∥
∥x0 − A∗x0

∥
∥

2
for all

times ℓ greater than a constant factor times f(n, ε);
(ii) Tε(An) is of order O(f(n, ε)) if, for all n and all ε, Tε(An) is less than or

equal to a constant factor times f(n, ε);
(iii) Tε(An) is of order Θ(f(n, ε)) if it is both of order Ω(f(n, ε)) and of order

O(f(n, ε)). •

Lemma 1.69 (Asymptotic relationship). Let An ∈ Rn×n, n ∈ N, be a
sequence of semi-convergent matrices and let ε ∈ ]0, 1]. In the limit as ε→ 0+

and as n→ +∞,

Tε(An) ∈ O
( 1

1 − rexp(An)
log ε−1

)

.

Proof. By definition of exponential convergence factor and of limsup, we know
that for all η > 0, there exists N such that for all ℓ > N ,

∥
∥Aℓx0 −A∗x0

∥
∥

2
≤ (rexp(An) + η)ℓ‖x0 −A∗x0‖2.

The ε-convergence time is upper bounded by any ℓ such that (rexp(An)+η)ℓ ≤
ε. Selecting η = (1 − rexp(An))/2, straightforward manipulations lead to

ℓ ≥ 1

− log((rexp(An) + 1)/2)
log ε−1.

It is also immediate to note that 2
1−r ≥ 1

− log((r+1)/2) , for all r ∈ ]0, 1[. This

establishes the bound in the statement above. �

Next, we apply the notion of convergence time and exponential conver-
gence factor to any non-degenerate stochastic matrix whose associated digraph
has a globally reachable node.
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Lemma 1.70 (Exponential convergence factor for stochastic matri-
ces). Let F be a non-degenerate stochastic matrix whose associated digraph
has a globally reachable node. Then

rexp(F ) = ρess(F ).

(From equation (1.1) recall ρess(F ) = max{‖λ‖C | λ ∈ spec(F ) \ {1}}.)

Proof. If v ∈ Rn is a left eigenvector of F , then, as in Proposition 1.63,

lim
ℓ→+∞

F ℓ = F ∗ = (vT 1n)−11nv
T .

Relaying upon vTF = vT and F1n = 1n, straightforward manipulations show
that F ∗ = F ∗F = FF ∗ = F ∗F ∗ and in turn

F ℓ+1 − F ∗ = (F − F ∗)(F ℓ − F ∗).

For any w0 ∈ Rn such that w0 6= F ∗w0, define the error variable e(ℓ) :=
F ℓw0 − F ∗w0. Note that the error variable evolves according to e(ℓ + 1) =
(F − F ∗)e(ℓ) and converges to zero. Additionally, the rate at which w(ℓ) =
F ℓw0 converges to F ∗w0 is the same at which e(ℓ) converges to zero, that is,

rexp(F − F ∗) = rexp(F ).

Therefore
rexp(F ) = rexp(F − F ∗) = ρ(F − F ∗) = ρess(F ). �

The following result establishes bounds on convergence factors and conver-
gence times for stochastic matrices arising from the equal-neighbor averaging
rule in equation (1.8).

Theorem 1.71 ([Landau and Odlyzko, 1981]). Let G be an undirected
unweighted connected graph of order n and let ε ∈ ]0, 1]. Define the stochastic
matrix F = (In + D(G))−1(In + A(G)). There exists γ > 0 (independent of
n) such that the exponential convergence factor and convergence time of F
satisfy

rexp(F ) ≤ 1 − γn−3, and Tε(F ) ∈ O(n3 log ε−1),

as ε→ 0+ and n→ +∞.

1.5.4 Algorithms defined by tridiagonal Toeplitz and tridiagonal
circulant matrices

This section presents a detailed analysis of the convergence rates of linear
distributed algorithms defined by tridiagonal Toeplitz matrices and by certain
circulant matrices. Our presentation follows Mart́ınez et al. [2007a]. Let us
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start by introducing the family of matrices under study. For n ≥ 2 and a, b, c ∈
R, define the n× n matrices Tridn(a, b, c) and Circn(a, b, c) by

Tridn(a, b, c) =










b c 0 . . . 0
a b c . . . 0
...

. . .
. . .

. . .
...

0 . . . a b c
0 . . . 0 a b










,

and

Circn(a, b, c) = Tridn(a, b, c) +










0 . . . . . . 0 a
0 . . . . . . 0 0
...

. . .
. . .

. . .
...

0 0 . . . 0 0
c 0 . . . 0 0










.

We call the matrices Tridn and Circn tridiagonal Toeplitz and tridiagonal
circulant, respectively. The two matrices only differ in their (1, n) and (n, 1)
entries. Note our convention that

Circ2(a, b, c) =

[
b a+ c

a+ c b

]

.

Note that, for a = 0 and c 6= 0 (alternatively, a 6= 0 and c = 0), the
synchronous networks defined by Trid(a, b, c) and Circ(a, b, c) are, respectively,
the chain and the ring digraphs introduced in Section 1.3. If both a and c are
non-vanishing, then the synchronous networks are, respectively, the undirected
versions of the chain and the ring digraphs.

Now, we characterize the eigenvalues and eigenvectors of Tridn and Circn.

Lemma 1.72 (Eigenvalues and eigenvectors of tridiagonal Toeplitz
and tridiagonal circulant matrices). For n ≥ 2 and a, b, c ∈ R, the fol-
lowing statements hold:

(i) for ac 6= 0, the eigenvalues and eigenvectors of Tridn(a, b, c) are, for i ∈
{1, . . . , n},

b+ 2c

√
a

c
cos

(
iπ

n+ 1

)

∈ C,











(
a
c

)1/2
sin

(
iπ

n+1

)

(
a
c

)2/2
sin

(
2iπ
n+1

)

...
(

a
c

)n/2
sin

(
niπ
n+1

)











∈ Cn;
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(ii) the eigenvalues and eigenvectors of Circn(a, b, c) are, for ω = exp(2π
√−1
n )

and for i ∈ {1, . . . , n},

b+ (a+ c) cos

(
i2π

n

)

+
√
−1(c− a) sin

(
i2π

n

)

∈ C,

and (1, ωi, . . . , ω(n−1)i)T ∈ Cn.

Proof. Both facts are discussed, for example, in [Meyer, 2001, Example 7.2.5
and Exercise 7.2.20]. Fact (ii) requires some straightforward algebraic manip-
ulations. �

Remarks 1.73. (i) The set of eigenvalues of Tridn(a, b, c) is contained in
the real interval [b− 2

√
ac, b+ 2

√
ac], if ac ≥ 0, and in the interval in the

complex plane [b− 2
√
−1

√

|ac|, b+ 2
√
−1

√

|ac|], if ac ≤ 0.
(ii) The set of eigenvalues of Circn(a, b, c) is contained in the ellipse on the

complex plane with center b, horizontal axis 2|a + c|, and vertical axis
2|c− a|. •
Next, we characterize the convergence rate of linear algorithms defined

by tridiagonal Toeplitz and tridiagonal circulant matrices. As in the previous
section we are interested in asymptotic results as the system dimension n →
+∞ and as the accuracy parameter ε goes to 0+.

Theorem 1.74 (Linear algorithms defined by tridiagonal Toeplitz
and tridiagonal circulant matrices). Let n ≥ 2, ε ∈ ]0, 1[, and a, b, c ∈ R.
Let x : Z≥0 → Rn and y : Z≥0 → Rn be solutions to

x(ℓ+ 1) = Tridn(a, b, c)x(ℓ), y(ℓ+ 1) = Circn(a, b, c) y(ℓ),

with initial conditions x(0) = x0 and y(0) = y0, respectively. The following
statements hold:

(i) if a = c 6= 0 and |b|+2|a| = 1, then limℓ→+∞ x(ℓ) = 0n with ε-convergence
time in Θ

(
n2 log ε−1

)
;

(ii) if a 6= 0, c = 0 and 0 < |b| < 1, then limℓ→+∞ x(ℓ) = 0n with ε-
convergence time in O

(
n log n+ log ε−1

)
;

(iii) if a ≥ 0, c ≥ 0, 1 > b > 0, and a+ b+ c = 1, then limℓ→+∞ y(ℓ) = yave1n,
where yave = 1

n1T
ny0, with ε-convergence time in Θ

(
n2 log ε−1

)
.

The proof of this result is reported in Section 1.7.3. Next, we extend these
results to another interesting set of tridiagonal matrices. For n ≥ 2 and a, b ∈
R, define the n× n matrices ATrid+

n (a, b) and ATrid−
n (a, b) by

ATrid±
n (a, b) = Tridn(a, b, a) ±










a 0 . . . . . . 0
0 0 . . . . . . 0
...

. . .
. . .

. . .
...

0 . . . . . . 0 0
0 . . . . . . 0 a










.
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We refer to these matrices as augmented tridiagonal matrices. If we define

P+ =












1 1 0 0 . . . 0
1 −1 1 0 . . . 0
1 0 −1 1 . . . 0
...

. . .
. . .

. . .

1 0 . . . 0 −1 1
1 0 . . . 0 0 −1












,

P− =












1 1 0 0 . . . 0
−1 1 1 0 . . . 0
1 0 1 1 . . . 0
...

. . .
. . .

. . .

(−1)n−2 0 . . . 0 1 1
(−1)n−1 0 . . . 0 0 1












,

then the following similarity transforms are satisfied

ATrid±
n (a, b) = P±

[
b± 2a 0

0 Tridn−1(a, b, a)

]

P−1
± , (1.10)

To analyze the convergence properties of the linear algorithms determined by
ATrid+

n (a, b) and ATrid−
n (a, b), we will find useful to consider the vector

1T
n− = (1,−1, 1, . . . , (−1)n−2, (−1)n−1)T ∈ Rn.

In the following theorem we will not assume that the matrices of interest are
semi-convergent. We will establish convergence to a trajectory, rather than to
a fixed point. For ε ∈ ]0, 1[, we say that a trajectory x : Z≥0 → Rn converges
to xfinal : Z≥0 → Rn with convergence time Tε ∈ Z≥0 if

(i) ‖x(ℓ) − xfinal(ℓ)‖2 → 0 as ℓ→ +∞, and
(ii) Tε is the smallest time such that ‖x(ℓ)−xfinal(ℓ)‖2 ≤ ε‖x(0)−xfinal(0)‖2,

for all ℓ ≥ Tε.

Theorem 1.75 (Linear algorithms defined by augmented tridiagonal
matrices). Let n ≥ 2, ε ∈ ]0, 1[, and a, b ∈ R with a 6= 0 and |b| + 2|a| = 1.
Let x : Z≥0 → Rn and z : Z≥0 → Rn be solutions to

x(ℓ+ 1) = ATrid+
n (a, b)x(ℓ), z(ℓ+ 1) = ATrid−

n (a, b) z(ℓ),

with initial conditions x(0) = x0 and z(0) = z0, respectively. The following
statements hold:

(i) limℓ→+∞
(
x(ℓ)−xave(ℓ)1n

)
= 0n, where xave(ℓ) = ( 1

n1T
nx0)(b+2a)ℓ, with

ε-convergence time in Θ
(
n2 log ε−1

)
;

(ii) limℓ→+∞
(
z(ℓ) − zave(ℓ)1n−

)
= 0n, where zave(ℓ) = ( 1

n1T
n−z0)(b − 2a)ℓ,

with ε-convergence time in Θ
(
n2 log ε−1

)
.
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The proof of this result is reported in Section 1.7.3.

Remark 1.76 (From Toeplitz to stochastic matrices). A tridiagonal
Toeplitz matrix is not stochastic unless its off-diagonal elements are zero.
The tridiagonal circulant matrices Circn and augmented tridiagonal matrices
ATrid+

n studied in Theorem 1.74(iii) and Theorem 1.75(i) are slight modifica-
tions of tridiagonal Toeplitz matrices and are doubly stochastic. Indeed, note
that the evolutions converge to the average consensus value, as predicted by
Corollary 1.65. Note that convergence times obtained for Circn and ATrid+

n

are consistent with the upper bound predicted by Theorem 1.71. •

We conclude this section with some useful bounds.

Lemma 1.77. Assume x ∈ Rn, y ∈ Rn−1, and z ∈ Rn−1 jointly satisfy

x = P+

[
0
y

]

, x = P−

[
0
z

]

.

Then 1
2‖x‖2 ≤ ‖y‖2 ≤ (n− 1)‖x‖2 and 1

2‖x‖2 ≤ ‖z‖2 ≤ (n− 1)‖x‖2.

The proof of this result is based on spelling out the coordinate expressions
for x, y, and z, and is left to the reader as Exercise E1.21.

1.6 Notes

State machines and dynamical systems

The literature on dynamical and control systems is vast. The main tool we
use in later sections is the LaSalle Invariance Principle, obtained in [LaSalle,
1960]; see also the works by [Barbašin and Krasovskĭı, 1952] and [Krasovskĭı,
1963] for related earlier versions. Example relevant references include modern
texts on dynamical systems [Guckenheimer and Holmes, 1990], linear control
systems [Chen, 1984], nonlinear control systems [Khalil, 2002], robust con-
trol [Dullerud and Paganini, 2000], and discrete-event systems [Cassandras
and Lafortune, 2007].

Graph theory

In Section 1.3.5, all statements about powers of the adjacency matrix are
standard results in algebraic graph theory, e.g., see [Godsil and Royle, 2001,
Biggs, 1994].

Proposition 1.30, on the fact that a weighted digraph is aperiodic and
irreducible if and only if its adjacency matrix is primitive, is a standard result
in the theory of Markov chains, e.g., see [Seneta, 1981, Meyer, 2001].

Theorem 1.32 characterizing the properties of the Laplacian matrix con-
tains recent results. Statement (ii) is proved in [Olfati-Saber and Murray,
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2004]; in our proof we follow the approach in [Francis, 2006]. Statement (iii)
is proved by Lin et al. [2005], Francis [2006]; the following equivalent version
is proved in [Ren and Beard, 2005]: a weighted digraph G contains a span-
ning tree if and only if rank(L(rev(G))) = n − 1. Regarding statement (iv),
the equivalence between (iv)a and (iv)b is proved by Olfati-Saber and Mur-
ray [2004] and the equivalence between (iv)b and (iv)c is proved by Moreau
[2005].

Distributed algorithms

Our discussion of distributed algorithms is extremely incomplete. We only
presented a few token ideas and we refer to the textbooks by Lynch [1997]
and Peleg [2000] for wonderful treatments. Let us mention briefly that many
more efficient algorithms are available in the literature, for example, the GHS
algorithm [Gallager et al., 1983] for minimum spanning tree computation and
consensus algorithms with communication and processors faults; much at-
tention is dedicated to fault tolerance in asynchronous systems with shared
memory and in asynchronous network systems.

Linear distributed algorithms

Distributed linear algorithms and in particular, averaging iterations that
achieve consensus among processors, have a long and rich history. The rich-
ness comes from the vivid analogies with physical process of diffusion, with
Markov chain models, and with the sharp theory of positive matrices devel-
oped by Perron and Frobenius. What follows is a necessarily incomplete list.
An early reference on averaging opinions and achieving consensus is [DeG-
root, 1974]. An early reference on the connection between averaging algo-
rithms, the products of stochastic matrices and ergodicity in inhomogeneous
Markov chains is [Chatterjee and Seneta, 1977] – the history of inhomogeneous
Markov chains being a classic topic since the early 20th century. The stochas-
tic setting was investigated in [Cogburn, 1984]. Load balancing with divisible
tasks in parallel computers is discussed in [Cybenko, 1989]. A comprehensive
theory of asynchronous parallel processors implementing distributed gradient
methods and time-dependent averaging algorithms is developed in the se-
ries of works [Tsitsiklis, 1984, Tsitsiklis et al., 1986, Bertsekas and Tsitsiklis,
1997]. Much interest for averaging algorithms arose from the influential work
on flocking by Jadbabaie et al. [2003]. Sharp conditions for convergence for
the time-dependent setting were obtained in [Moreau, 2005]. Finally, proper
attention to the average consensus problem was given in [Olfati-Saber and
Murray, 2004].

Regarding Theorem 1.58 characterizing the convergence of averaging algo-
rithms defined by sequences of stochastic matrices, we note that (1) the PhD
thesis [Tsitsiklis, 1984] established convergence under a strong-connectivity
assumption, (2) a sufficient condition was independently re-discovered in [Jad-
babaie et al., 2003] adopting a result from [Wolfowitz, 1963], and (3) [Moreau,
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2003, 2005] obtained the necessary and sufficient condition (for uniform con-
vergence in non-degenerate sequences) involving the existence of a uniformly
globally reachable node. The work in [Moreau, 2003, 2005] is an early reference
also for Theorem 1.60; additional related results and a historical discussion
appeared in [Blondel et al., 2005, Hendrickx, 2008].

Among the numerous recent directions of research on consensus and av-
eraging we mention: continuous-time consensus algorithms [Olfati-Saber and
Murray, 2004, Moreau, 2004, Lin et al., 2004, Ren and Beard, 2005, Lin et al.,
2005, 2007c], consensus over random networks [Hatano and Mesbahi, 2005,
Wu, 2006, Porfiri and Stilwell, 2007, Tahbaz-Salehi and Jadbabaie, 2008, Picci
and Taylor, 2007, Fagnani and Zampieri, 2008, Patterson et al., 2007], consen-
sus in finite-time [Cortés, 2006, Sundaram and Hadjicostis, 2008], consensus
algorithms for general functions [Bauso et al., 2006, Cortés, 2008, Lorenz
and Lorenz, 2008, Sundaram and Hadjicostis, 2008], connections with the
heat equation and partial difference equation [Ferrari-Trecate et al., 2006],
spatially-decaying interactions [Cucker and Smale, 2007], convergence in time-
delayed and asynchronous settings [Blondel et al., 2005, Angeli and Bliman,
2006, Fang and Antsaklis, 2008], quantized consensus problems [Savkin, 2004,
Kashyap et al., 2007, Carli et al., 2008a, Zhu and Mart́ınez, 2008b], consen-
sus on manifolds [Sarlette and Sepulchre, 2007, Scardovi et al., 2007, Igarashi
et al., 2007], applications to distributed signal processing [Spanos et al., 2005,
Xiao et al., 2005, Olfati-Saber et al., 2006, Zhu and Mart́ınez, 2008a], charac-
terization of the convergence rates and time complexity [Landau and Odlyzko,
1981, Olshevsky and Tsitsiklis, 2007, Carli et al., 2008b, Cao et al., 2008]. Nu-
merous interesting results are reported in the recent PhD theses [Lin, 2005,
Lorenz, 2007, Cao, 2007, Hendrickx, 2008, Carli, 2008]. Finally, we point out
two recent surveys [Olfati-Saber et al., 2007, Ren et al., 2007] and the text [Ren
and Beard, 2008].

Synchronization is a fascinating topic related to averaging algorithms. A
very early reference is the work by Huygens [1673] on coupled pendula. The
synchronization of oscillators in dynamical systems has received increasing
attention and key references include Wiener [1958], Kuramoto [1975], Winfree
[1980], Kuramoto [1984], Strogatz [2000], Nijmeijer [2001]; see also the widely
accessible Strogatz [2003]. Under all-to-all interactions, Mirollo and Strogatz
[1990] prove synchronization of a collection of “integrate and fire” biological
oscillators. Recent works on the Kuramoto and other synchronized oscillator
models include [Jadbabaie et al., 2004, Chopra and Spong, 2008, Triplett et al.,
2006, Papachristodoulou and Jadbabaie, 2006, Wang and Slotine, 2006].

1.7 Proofs

This section gathers the proofs of the main results presented in the chapter.
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1.7.1 Proofs of Lemmas 1.22 and 1.23

Proof (Lemma 1.22). The first statement is obvious. Regarding the second
statement, we prove that a topologically balanced digraph with a globally
reachable node is strongly connected, and leave the proof of the other case to
the reader. We reason by contradiction. Assume G is not strongly connected.
Let S ⊂ V be the set of all nodes of G that are globally reachable. By hypoth-
esis, S 6= ∅. Since G is not strongly connected, we have S ( V . Note that any
outgoing edge with origin in a globally reachable node automatically makes
the destination a globally reachable node too. This implies that there cannot
be any outgoing edges from a node in S to a node in V \ S. Let v ∈ V \ S
such that v has an out-neighbor in S (such a node must exist, since other-
wise the nodes in S cannot be globally reachable). Since by hypothesis G is
balanced, there must exist an edge of the form (w, v) ∈ E. Clearly, w 6∈ S,
since otherwise v would be globally reachable too, which is a contradiction.
Therefore, w ∈ V \ S. Again, using the fact that G is topologically balanced,
there must exist an edge of the form (z, w) ∈ E. As before, z ∈ V \ S (note
that z = v is a possibility). Since V \ S is finite and so is the number of
possible edges between its nodes, applying this argument repeatedly, we find
that there exists a vertex whose out-degree is strictly larger than its in-degree,
which is a contradiction with the fact that G is topologically balanced. We
refer to Cortés [2008] for the proof that G is Eulerian. �

Proof (Lemma 1.23). (i) =⇒ (ii) Assume that i ∈ V is the root of the span-
ning tree and take an arbitrary pair of nonempty, disjoint subsets U1, U2 ⊂ V .
If i ∈ U1, then there must exist a path from i ∈ U1 to a node in U2. Therefore,
U2 must have an in-neighbor. Analogously, if i ∈ U2, then U1 must have an
in-neighbor. Finally, it is possible that i /∈ U1 ∪U2. In this case, there exists
paths from i to both U1 and U2, that is, both sets have in-neighbors.

(ii) =⇒ (i) This is proved by finding a node from which there exists a
path to all others. We do this in an algorithmic manner using induction. At
each induction step k, except the last one, four sets of nodes are considered
U1(k) ⊂W1(k) ⊂ V , U2(k) ⊂W2(k) ⊂ V with the following properties

(a) the sets W1(k) and W2(k) are disjoint,
(b) from each node of Us(k) there exists a path to each other node in Ws(k)\

Us(k), s ∈ {1, 2}.
Induction Step k=1: Set U1 = W1 = {i1} and U2 = W2 = {i2}, where i1, i2
are two arbitrary different nodes of the graph that satisfy the requirements
(a) and (b).
Induction Step k > 1: Suppose that for k − 1 we found sets U1(k − 1) ⊂
W1(k − 1) and U2(k − 1) ⊂ W (k − 1) as in (a) and (b). Since U1(k − 1)
and U2(k − 1) are disjoint, then there exists either an edge (ik, j1) with j1 ∈
U1(k − 1), ik ∈ V \ U1(k − 1), or an edge (ik, j2) with j2 ∈ U2(k − 1) and
ik ∈ V \ U2(k − 1). Suppose that an edge (ik, j2) exists (the case of a edge
(ik, j1) can be treated in a similar way). Only four cases are possible:
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(A) If ik ∈W1(k−1) and W1(k−1)∪W2(k−1) = V , then we can terminate
the algorithm and conclude that from any node i ∈ U1(k− 1) there exists
a path to all other nodes in the graph and thus there is a spanning tree.

(B) If ik ∈W1(k − 1) and W1(k − 1)∪W2(k − 1) 6= V , then set:

U1(k) = U1(k − 1),

W1(k) = W1(k − 1)∪W2(k − 2),

U2(k) = W2(k) = {ik},

where ik is an arbitrary node which does not belong to W1(k−1)∪W2(k−
1).

(C) If ik /∈W1(k − 1)∪W2(k − 1), then set

U1(k) = U1(k − 1),

W1(k) = W1(k − 1),

U2(k) = {ik},
W2(k) = W2(k − 1)∪{ik}.

(D) If ik ∈W2(k − 1) \ U2(k − 1) then

U1(k) = U1(k − 1),

W1(k) = W1(k − 1),

U2(k) = U2(k − 1)∪{ik},
W2(k) = W2(k − 1).

The algorithm terminates in a finite number of induction steps because at
each step, except when finally case (A) holds true, either the number of nodes
in W1 ∪W2 increases, or the number of nodes in W1 ∪W2 remains constant
and the number of nodes in U1 ∪U2 increases. �

1.7.2 Proofs of Theorem 1.58 and Proposition 1.62

In this section we prove Theorem 1.58. The exposition follows along the main
lines of the original proof by Moreau [2005], with the variation of using the
LaSalle Invariance Principle for set-valued dynamical systems, presented as
Theorem 1.18. We begin with some preliminary results.

Lemma 1.78 (Union of graphs and sums of adjacency matrices). Let
G1, . . . , Gδ be unweighted digraphs with common node set {1, . . . , n} and ad-
jacency matrices A1, . . . , Aδ. The unweighted digraph

G1 ∪ · · · ∪Gδ = ({1, . . . , n}, E(A1)∪ · · · ∪E(Aδ))

is equal to the unweighted digraph associated to the nonnegative matrix
∑

k∈{1,...,δ}Ak, that is, the unweighted digraph ({1, . . . , n}, E(A1 + · · ·+Aδ)).
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Proof. If (i, j) ∈ ∪k∈{1,...,δ}E(Gk), then there exists k0 ∈ {1, . . . , δ} such that
(i, j) ∈ E(Gk0

). Denoting the entries of the matrix Ak by aij(k), this implies
that aij(k0) > 0, that aij(1) + · · · + aij(δ) > 0, and that (i, j) is an edge in
E(A1 + · · ·+Aδ). The converse statement is easily proved with an analogous
reasoning. �

In what follows, for α ∈ ]0, 1], let F(α) denote the set of n× n stochastic
matrices that are non-degenerate with respect to α. Given α ∈ ]0, 1] and
δ ∈ N, define the sets Fδ(α) ⊂ Rn×n by

Fδ(α) =
{
F ∈ F(αδ) | ∃F1, . . . , Fδ ∈ F(α) such that F = Fδ · · ·F1

and G(F1)∪ · · · ∪G(Fδ) contains a globally reachable node
}
,

or, equivalently by Proposition 1.29,

Fδ(α) =
{
F ∈ F(αδ) | ∃F1, . . . , Fδ ∈ F(α) such that F = Fδ . . . F1

and a column of (F1 + · · · + Fδ)
n has positive entries

}
.

Lemma 1.79. For α ∈ ]0, 1], the sets F(α) and Fδ(α), δ ∈ N, are compact.

Proof. All sets are clearly bounded. We invite the reader in Exercise E1.16
to prove that F(α) is closed. Let us prove now that Fδ(α) is closed. Consider
a matrix sequence {F (k) | k ∈ N} ⊂ Fδ(α) convergent to some matrix F .
Because F(αδ) is closed, we establish that F ∈ F(αδ). Because each matrix
F (k) belongs to Fδ(α), there exist matrices F1(k), . . . , Fδ(k) ∈ F(α) such
that F (k) = Fδ(k) · · ·F1(k). We claim that there exists a sequence kl ∈ N, for
l ∈ N, such that, for all s ∈ {1, . . . , δ}, the matrix sequences Fs(kl), l ∈ N, are
convergent. (To see this, note that F1(k) takes value in a compact set, hence
it must have a convergent subsequence. Restrict F2(k) to the instants of time
in the convergent subsequence for F1(k) and observe that it takes value in
a compact set, etc.) Therefore, there exist matrices Fs, to which the matrix
sequences Fs(kl), l ∈ N, converge. Taking the limit as l → +∞ in the equality
F (kl) = Fδ(kl) · · ·F1(kl), we establish that F = Fδ · · ·F1. Finally, it remains
to show that a column of B := (F1 + · · ·+Fδ)

n has positive entries. For k ∈ N,
define B(k) = (F1(k) + · · · + Fδ(k))

n. Clearly, B(k) → B as k → +∞. By
the definition of the sequence F (k), each B(k) = (bij(k)) has the property
that there exists jk ∈ {1, . . . , n} such that bijk

(k) > 0 for all i ∈ {1, . . . , n}.
Since {1, . . . , n} is a finite set, there exists j0 ∈ {1, . . . , n} that satisfies this
property for an infinite subsequence of matrices B(kl), l ∈ N. With some
straightforward bookkeeping, we write:

(B(kl))ij0 =

δ∑

a1,...,an=1

n∑

h1=1

· · ·
n∑

hn−1=1

(Fa1
(kl))ih1

· · · (Fan
(kl))hn−1j0 .

Note that, because Fs(k) ∈ F(α), for s ∈ {1, . . . , δ}, each nonzero entry Fs(k)
is lower bounded by α > 0. Furthermore, each entry (B(kl))ij0 is the sum of
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nonnegative terms, each of which is the product of n factors, each of which
is lower bounded by α. Hence, because (B(kl))ij0 is positive, it is also lower
bounded by αn. Since lim

l→+∞
B(kl) = B, by the compactness of [αn, 1]∪{0},

it must be that B = (bij) satisfies bji0 ≥ αn > 0 for all j ∈ {1, . . . , n}. In
particular this implies that F ∈ Fδ(α) and then Fδ(α) is closed. �

Finally, we are able to prove the equivalences in Theorem 1.58.

Proof (Theorem 1.58). First, we prove that (i) implies (ii). Suppose that
for all δ ∈ N, there exists some ℓ0 ∈ N such that the digraph with
edges ∪s∈[ℓ0,ℓ0+δ]E(F (s)) does not contain a globally reachable node. By
Lemma 1.23 there must exist a set of nodes U1, U2 ⊂ {1, . . . , n} such that
there are no out-going edges (i1, j1), with i1 ∈ U1, i1 ∈ {1, . . . , n} \ U1 or
(i2, j2), with j2 ∈ U2, i2 ∈ {1, . . . , n} \ U2. Take any values a, b ∈ R, a 6= b,
and consider the initial condition:

wi(ℓ0) =







a, i ∈ U1,

b, i ∈ U2,

c ∈ co(a, b), i ∈ {1, . . . , n} \ (U1 ∪U2).

Because of the properties of U1 and U2, for all δ ∈ N, we must have

wj(ℓ0 + δ + 1) =







a, j ∈ U1,

b, j ∈ U2,

c ∈ co(a, b), j ∈ {1, . . . , n} \ (U1 ∪U2).

Because δ can be chose arbitrarily large, one can easily construct a contradic-
tion with the fact that diag(Rn) is supposed to be uniformly globally attrac-
tive.

Next, we show that (ii) implies (i). Let α ∈ ]0, 1] to be the scalar
with respect to which the sequence is non-degenerate. Consider the set-
valued discrete-time dynamical system (Rn,Rn, Tα,δ), with evolution map
Tα,δ : Rn ⇉ Rn defined by

Tα,δ(w) = {Fw | F ∈ Fδ(α)}.

Because of this definition, any trajectory w : Z≥0 → Rn of the averaging
algorithm (1.5) satisfies

w((k + 1)δ) ∈ Tα,δ(w(kδ)), k ∈ Z≥0.

Next, we intend to use the LaSalle Invariance Principle for set-valued discrete
systems, presented as Theorem 1.18, to prove that lim

ℓ→+∞
dist(w(kℓ),diag(Rn)) =

0. This will then imply, by Lemma 1.21, the uniform attractivity statement
in theorem. In the following we check the conditions of the theorem.
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Closedness of the set-valued dynamical system. Consider a pair of vector
sequences {xk | k ∈ N} and {yk | k ∈ N} in Rn such that limk→+∞xk =
x, limk→+∞yk = y and yk ∈ Tα,δ(xk), for all k ∈ N. We need to show
that y ∈ Tα,δ(x). By definition of Tα,δ and because yk ∈ Tα,δ(xk), there
exists a sequence {F (k) | k ∈ N} ⊆ Fδ(α) such that F (k)xk = yk, for all
k ∈ N. Furthermore, since Fδ(α) is compact by Lemma 1.79, there exists a
subsequence {F (kl) | l ∈ N} that is convergent to some F ∈ Fδ(α). The
desired conclusion follows from

y = lim
l→+∞

ykℓ
= lim

l→+∞
F (kℓ)xkℓ

= Fx .

Non-increasing Lyapunov function. Define the function V : Rn → R≥0 by

V (x) = max
i∈{1,...,n}

xi − min
i∈{1,...,n}

xi.

Note that V is continuous. Pick any x ∈ Rn and any stochastic matrix F ∈
Fδ(α). Recall that ‖x‖∞ = maxi∈{1,...,n} |xi|, and that ‖F‖∞ = 1. Therefore,
by definition of induced norm, ‖Fx‖∞ ≤ ‖x‖∞. Similarly, in components,

(Fx)i =
∑

j∈{1,...,n}
fijxj ≥

( ∑

j∈{1,...,n}
fij

)

min
k∈{1,...,n}

xk ,

that implies mini∈{1,...,n}(Fx)i ≥ mink∈{1,...,n} xk. Therefore, we have that
V (Fx) ≤ V (x) for all x ∈ Rn and F ∈ Fδ(α). In other words, the function V
is non-increasing along Tα,δ in Rn.

Boundedness. It is immediate to see that, since ‖Fx‖∞ ≤ ‖x‖∞ for all
stochastic matrices F and vectors x, the trajectory k 7→ w(kδ) is bounded.

Invariant set. By Theorem 1.18, any trajectory of Tα,δ, and hence also the
trajectory w : Z≥0 → Rn of the averaging algorithm (1.5), will converge to the
largest weakly positively invariant set contained in a level set of the Lyapunov
function V and in a set where the Lyapunov function does not decrease along
T . In the following we determine that this set must be contained in diag(Rn).

For k ∈ N fixed, assume w(kδ) satisfies V (w(kδ)) > 0. Given the aver-
aging algorithm (1.5) defined by the sequence {F (ℓ) | ℓ ∈ Z≥0} ⊂ F(α),
define F1(k) = F (k + 1), . . . , Fδ(k) = F (k + δ). Additionally, define
F (k) = Fδ(k) · · ·F1(k) and note that F (k) ∈ Fδ(α), by construction. With
this notation, note that w(kδ + s) = Fs(k) · · ·F1(k)w(kδ) for s ∈ {1, . . . , δ}.
Define wM = maxi∈{1,...,n} wi(kδ) and wm = mini∈{1,...,n} wi(kδ); by hypoth-
esis we know wM > wm. Define UM = {i ∈ {1, . . . , n} | w(kδ) = wM} and
Um = {i ∈ {1, . . . , n} | wj(kδ) = wm}; by hypothesis we know UM ∩ Um = ∅.
Now, we are ready to use the property (ii) in the theorem statement. Since
({1, . . . , n},∪s∈{1,...,δ}E(Fs(k)) contains a globally reachable node and since
UM and Um are nonempty and disjoint, then Lemma 1.23 implies that there
exists either

• (an out-neighbor of UM ) an edge (iM , jM ) ∈ E(Fs(kδ)) with iM ∈ UM ,
jM ∈ {1, . . . , n} \ UM , and s ∈ {1, . . . , δ}, or
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• (an out-neighbor of Um) an edge (im, jm) ∈ E(Fs(kδ)) with im ∈ Um,
jm ∈ {1, . . . , n} \ Um, and s ∈ {1, . . . , δ}.

Without loss of generality, suppose that an edge (iM , jM ) exists and let s0 ∈
{1, . . . , δ} be the first time index for which this happens. We have that:

• for every s ∈ {1, . . . , s0 − 1}, there does not exist any edge (i, h) with
i ∈ UM and h /∈ UM , and, thus, for all i ∈ UM ,

wi(kδ + 1) =

n∑

j=1

(F1(k))ijwj(kδ) =
∑

h∈UM

(F1(k))ihwh(kδ)

=
( ∑

h∈UM

(F1(k))ih(k)
)

wM = wM .

The same argument can be repeated for F2(k), . . . , Fs(k), so that wi(kδ+
s) = wM for all i ∈ UM .

• if i /∈ UM at time kδ, then wi(kδ+ s) < wM for all s ∈ {1, . . . , s0 − 1}. To
see this, we compute

wi(kδ + 1) =
n∑

j=1

(F1(k))ijwj(kδ)

= (F1(k))iiwi(kδ) +

n∑

j=1,j 6=i

(F1(k))ijwj(kδ)

≤ (F1(k))iiwi(kδ) +
( n∑

j=1,j 6=i

(F1(k))ij

)

wM

≤ αwi(kδ) + (1 − α)wM < wM ,

where we used the assumption of non-degeneracy with parameter α ∈
]α, 1]. The same argument can be repeated for the subsequent multiplica-
tions by the matrices F2(k), . . . , Fs(k).

We finally reach time s0 and compute

wiM
(kδ + s0) =

n∑

j=1

(Fs0
(k))iM jwj(kδ + s0 − 1)

= (Fs0
(k))iM jM

wjM
(kδ + s0 − 1) +

n∑

j=1,j 6=jM

(Fs0
(k))iM jwj(kδ + s0 − 1)

< (Fs0
(k))iM jM

wM +

n∑

j=1,j 6=jM

(Fs0
(k))iM jwj(kδ + s0 − 1) ≤ wM .

This implies that wiM
((k + 1)δ) < wM so that iM does not belong to UM at

time (k + 1)δ. That is, the cardinality of UM decreases at least by one after
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(k+1)δ. Since {1, . . . , n} is finite, after repeating this argument at most n−1
times, we have that either UM becomes empty at time (k + n − 1)δ. (Here
we are assuming that the out-neighbor always exists for UM ; an analogous
argument can be made for the general case.) This is enough to guarantee that
V (w((k + n)δ)) < wM − wm = V (w(kδ)). This is what we need to conclude
that lim

k→+∞
dist(w(kδ),diag(R)) = 0. In summary, this concludes the proof of

Theorem 1.58. �

We conclude this section by establishing convergence to an individual
point.

Proof (Proposition 1.62). We adopt the same notation as above, i.e., as in
the proof of Theorem 1.58. Since F (k) ∈ Fδ(α), the set of sequence points
{w(kδ) | k ∈ N} belong to the convex hull of all the components of the initial
condition, that is, [mini wi(0),maxi wi(0)]n. Since [mini wi(0),maxi wi(0)]n is
compact, there exists a convergent subsequence {w(klδ) | l ∈ N} to a point
c1n. We also notice that for any kl ∈ N, wi((kl+k)δ) ∈ [mini wi(klδ),maxi wi(klδ)]

n,
i ∈ {1, . . . , n} and k ∈ N. Since lim

l→+∞
w(klδ) = c1n, then lim

l→+∞
[min

i
wi(klδ),max

i
wi(klδ)]

n =

c1n. Therefore any sequence {w((kl + k)δ) | k ∈ N}, for l ∈ N, must converge
to c1n. This implies that lim

k→+∞
w(kδ) = c1n.

1.7.3 Proofs of Theorems 1.74 and 1.75

Proof (Theorem 1.74). Let us prove fact (i). Because Tridn(a, b, a) is a real
symmetric matrix, Tridn(a, b, a) is normal and its 2-induced norm, i.e., its
largest singular value, is equal to the magnitude of its eigenvalue with largest
magnitude. Based on this information and on the eigenvalue computation in
Lemma 1.72, we compute

‖Tridn(a, b, a)‖2 = max
i∈{1,...,n}

∣
∣
∣
∣
b+ 2a cos

(
iπ

n+ 1

)∣
∣
∣
∣

≤ |b| + 2|a| max
i∈{1,...,n}

∣
∣
∣
∣
cos

(
iπ

n+ 1

)∣
∣
∣
∣
≤ |b| + 2|a| cos

(
π

n+ 1

)

.

Because we assumed |b| + 2|a| = 1 and because cos( π
n+1 ) < 1 for any n ≥ 2,

the 2-induced norm of Tridn(a, b, a) is strictly less than 1. Additionally, for
ℓ > 0, we bound from above the magnitude of the curve x as:

‖x(ℓ)‖2 = ‖Tridn(a, b, a)ℓx0‖2 ≤
(

|b| + 2|a| cos

(
π

n+ 1

))ℓ

‖x0‖2.

To have ‖x(ℓ)‖2 < ε‖x0‖2, it is sufficient that ℓ log
(

|b| + 2|a| cos
(

π
n+ 1

))

<

log ε, that is
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ℓ >
log ε−1

− log
(

|b| + 2|a| cos
(

π
n+ 1

)) . (1.11)

The upper bound now follows by noting that, as t→ 0, we have

− 1

log(1 − 2|a|(1 − cos t))
=

1

|a|t2 +O(1).

Let us now show the lower bound. Assume without loss of generality that
ab > 0 and consider the eigenvalue b+2a cos( π

n+1 ) of Tridn(a, b, a). Note that
|b+2a cos( π

n+1 )| = |b|+2|a| cos( π
n+1 ). (If ab < 0, then consider the eigenvalue

b+ 2a cos( nπ
n+1 ).) For n > 2, define the unit-length vector

vn =

√

2

n+ 1






sin π
n+1
...

sin nπ
n+1




 ∈ Rn, (1.12)

and note that, by Lemma 1.72(i), vn is an eigenvector of Tridn(a, b, a) with
eigenvalue b + 2a cos( π

n+1 ). The trajectory x with initial condition vn sat-

isfies ‖x(ℓ)‖2 =
(

|b| + 2|a| cos
(

π
n+1

))ℓ

‖vn‖2 and, therefore, it will enter

B(1n, ε‖vn‖2) only when ℓ satisfies equation (1.11). This completes the proof
of fact (i).

Next, we consider fact (ii). Clearly, all eigenvalues of the matrix Tridn(a, b, 0)
are strictly inside the unit disk. For ℓ > 0, we compute

Tridn(a, b, 0)ℓ

= bℓ
(

In +
a

b
Tridn(1, 0, 0)

)ℓ

= bℓ
n−1∑

j=0

ℓ!

j!(ℓ− j)!

(a

b

)j

Tridn(1, 0, 0)j

because of the nilpotency of Tridn(1, 0, 0). Now, we can bound from above the
magnitude of the curve x as

‖x(ℓ)‖2 = ‖Tridn(a, b, 0)ℓx0‖2

≤ |b|ℓ
n−1∑

j=0

ℓ!

j!(ℓ− j)!

(a

b

)j ∥
∥ Tridn(1, 0, 0)jx0

∥
∥

2
≤ ea/bℓn−1 |b|ℓ ‖x0‖2.

Here we used ‖Tridn(1, 0, 0)jx0‖2 ≤ ‖x0‖2 and max{ ℓ!
(ℓ−j)! | j ∈ {0, . . . , n −

1}} ≤ ℓn−1. Therefore, in order to have ‖x(ℓ)‖2 < ε‖x0‖2, it suffices that
log(ea/b) + (n− 1) log ℓ+ ℓ log |b| ≤ log ε, that is

ℓ− n− 1

− log |b| log ℓ >
a
b − log ε

− log |b| .
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A sufficient condition for ℓ − α log ℓ > β, for α, β > 0, is that ℓ ≥ 2β +
2αmax{1, logα}. For, if ℓ ≥ 2α, then log ℓ is bounded from above by the line
ℓ/2α+ logα. Furthermore, the line ℓ/2α+ logα is a lower bound for the line
(ℓ− β)/α if ℓ ≥ 2β + 2α logα. In summary, it is true that ‖x(ℓ)‖2 ≤ ε‖x(0)‖2

whenever

ℓ ≥ 2
a
b − log ε

− log |b| + 2
n− 1

− log |b| max

{

1, log
n− 1

− log |b|

}

.

This completes the proof of the upper bound, that is, fact (ii).
The proof of fact (iii) is similar to that of fact (i). Because Circn(a, b, c) is

circulant, it is also normal and each of its singular values corresponds to an
eigenvector, eigenvalue pair. From Lemma 1.72(ii) and from the assumption
a + b + c = 1, it is clear that the eigenvalue corresponding to i = n is equal
to 1; this is the largest singular value of Circn(a, b, c) and the corresponding
eigenvector is 1n. We now compute the second largest singular value:

max
i∈{1,...,n−1}

∥
∥
∥b+ (a+ c) cos

(
i2π

n

)

+
√
−1(c− a) sin

(
i2π

n

)∥
∥
∥

C

=
∥
∥
∥1 − (a+ c)

(

1 − cos
(2π

n

))

+
√
−1(c− a) sin

(
2π

n

)∥
∥
∥

C

.

Here ‖ · ‖C is the norm in C. Because of the assumptions on a, b, c, the second
largest singular value is strictly less than 1. In the orthogonal decomposition
induced by the eigenvectors of Circn(a, b, c), we assume that the vector y0 has
a component yave along the eigenvector 1n. For ℓ > 0, we bound the distance
of the curve y(ℓ) from yave1n as

‖y(ℓ) − yave1n‖2

= ‖Circn(a, b, c)ℓy0 − yave1n‖2 = ‖Circn(a, b, c)ℓ
(
y0 − yave1n

)
‖2

≤
∥
∥
∥1 − (a+ c)

(

1 − cos
(2π

n

))

+
√
−1(c− a) sin

(
2π

n

) ∥
∥
∥

ℓ

C

‖y0 − yave1n‖2.

This proves that limℓ→+∞ y(ℓ) = yave1n. Also, for α = a + c, β = c − a and
as t→ 0, we have

− 1

log
((

1 − α(1 − cos t)
)2

+ β2 sin2 t
)1/2

=
2

(α− β2)t2
+O(1).

Here β2 < α because a, c ∈ ]0, 1[. From this, one deduces the upper bound in
(iii).

Now, consider the eigenvalues λn = b+(a+c) cos
(

2π
n

)
+
√
−1(c−a) sin

(
2π
n

)

and λn = b+(a+c) cos
(

(n−1)2π
n

)

+
√
−1(c−a) sin

(
(n−1)2π

n

)

of Circn(a, b, c),

and its associated eigenvectors (cf. Lemma 1.72(ii))
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vn =








1
ω
...

ωn−1







∈ Cn, vn =








1
ωn−1

...
ω







∈ Cn. (1.13)

Note that the vector vn + vn belongs to Rn. Moreover, its component yave
along the eigenvector 1n is 0. The trajectory y with initial condition vn + vn

satisfies ‖y(ℓ)‖2 = ‖λℓ
nvn + λ

ℓ

nvn‖2 = |λn|ℓ‖vn + vn‖2 and, therefore, it will
enter B(0n, ε‖vn + vn‖2) only when

ℓ >
log ε−1

− log
∥
∥
∥1 − (a+ c)

(

1 − cos
(

2π
n

))

+
√
−1(c− a) sin

(
2π
n

)
∥
∥
∥

C

.

This completes the proof of fact (iii). �

Proof (Theorem 1.75). We prove fact (i) and observe that the proof of fact (ii)
is analogous. Consider the change of coordinates

x(ℓ) = P+

[
x′ave(ℓ)
y(ℓ)

]

= x′ave(ℓ)1n + P+

[
0
y(ℓ)

]

,

where x′ave(ℓ) ∈ R and y(ℓ) ∈ Rn−1. A quick calculation shows that x′ave(ℓ) =
1
n1T

nx(ℓ), and the similarity transformation described in equation (1.10) im-
plies

y(ℓ+ 1) = Tridn−1(a, b, a) y(ℓ), and x′ave(ℓ+ 1) = (b+ 2a)x′ave(ℓ).

Therefore, xave = x′ave. It is also clear that

x(ℓ+ 1) − xave(ℓ+ 1)1n

= P+

[
0

y(ℓ+ 1)

]

=
(

P+

[
0 0
0 Tridn−1(a, b, a)

]

P−1
+

)

(x(ℓ) − xave(ℓ)1n).

Consider the matrix in parenthesis determining the trajectory ℓ 7→ (x(ℓ) −
xave(ℓ)1n). This matrix is symmetric, its singular values are 0 and the singular
values of Tridn−1(a, b, a), and its eigenvectors are 1n and the eigenvectors
of Tridn−1(a, b, a) (padded with an extra zero). These facts are sufficient to
duplicate, step by step, the proof of fact (i) in Theorem 1.74. Therefore, the
trajectory ℓ 7→ (x(ℓ) − xave(ℓ)1n) satisfies the stated properties. �

1.8 Exercises

E1.1 Show that the following sets of matrices are compact:
(i) the set of stochastic matrices,
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(ii) the set of permutation matrices.

E1.2 Show that the spectral radius and the ∞-induced norm of a row-stochastic
matrix is 1.
Hint: Let A ∈ Rd×d be stochastic. First, show ‖A‖∞ ≤ 1 by direct algebraic
manipulation. Second, use the bound in Lemma 1.6 to show that ρ(A) ≤ 1.
Finally, conclude the proof by noting that 1 is an eigenvalue of A.
Hint: An alternative proof that ρ(A) = 1 is as follows. First, use Geršgorin
Disks Theorem 1.3 to show that spec(A) is contained in the unit-disk centered
at the origin. Second, note that ρ(A) ≥ 1 since 1 is an eigenvalue of A.

E1.3 Show that set of doubly stochastic matrices is convex and that it contains the
set of permutation matrices. Find in the literature as many distinct proofs
of Theorem 1.2 as possible.
Hint: A proof is contained in [Horn and Johnson, 1985]. A second proof
method is based on combinatorics methods.

E1.4 Let f1, . . . , fm : X → X be continuous functions, where X is a d-dimensional
space chosen among Rd, Sd, and the Cartesian products Rd1 × Sd2 , for some
d1 + d2 = d. Define the set-valued map T : X ⇉ X by

T (x) = {f1(x), . . . , fm(x)}.

Show that T is closed on X.
Hint: Reason by contradiction.

E1.5 (Acyclic digraphs). Let G be an acyclic digraph. Show that:
(i) G contains at least one source, i.e., a vertex without in-neighbors,
(ii) G contains at least one sink, i.e., a vertex without out-neighbors, and
(iii) in an appropriate ordering of the vertices of G, the adjacency matrix A

is lower-triangular, i.e., all its entries above the main diagonal vanish.
Hint: Order the vertices of G according to their distance to a sink.

E1.6 (Condensation digraph). This exercise studies the decomposition of a di-
graph G in its strongly connected components. A subgraph H is a strongly
connected component of G if H is strongly connected and any other subgraph
of G strictly containing H is not strongly connected. The condensation di-
graph of G, denoted C(G), is defined as follows: the nodes of C(G) are the
strongly connected components of G, and there exists a directed edge in
C(G) from node H1 to node H2 if and only if there exists a directed edge in
G from a node of H1 to a node of H2. Show that:
(i) every condensation digraph is acyclic,
(ii) a digraph contains a globally reachable node if and only if its condensa-

tion digraph contains a globally reachable node,
(iii) a digraph contains a directed spanning tree if and only if its condensation

digraph contains a directed spanning tree.

E1.7 (Incidence matrix). Given a weighted digraph G of order n, choose an
arbitrary ordering of its edges. Define the incidence matrix H(G) ∈ R|E|×n

of G by specifying that the row of H(G) corresponding to edge (i, j) has an
entry 1 in column i, an entry −1 in column j, and all other entries equal to
zero. Show that
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H(G)T WH(G) = L(G) + L(rev(G)),

where W ∈ R|E|×|E| is the diagonal matrix with aij in the entry correspond-
ing to edge (i, j).

E1.8 (From digraphs to stochastic matrices and back). Let G be a weighted
digraph of order n with adjacency matrix A, out-degree matrix Dout, and
Laplacian matrix L. Define the following matrices:

F1 = (κIn + Dout)
−1(κIn + A), for κ ∈ R>0,

F2 = In − εL, for ε ∈ [0, min{(Dout)
−1
ii | i ∈ {1, . . . , n}}[.

Perform the following tasks:
(i) compute the entries of F1 and F2 as a function of the entries of A(G),
(ii) show that the matrices F1 and F2 are row-stochastic,
(iii) identify the least restrictive conditions on G such that the matrices F1

and F2 are doubly stochastic,
(iv) under what conditions can a row-stochastic matrix be written in the

form F1, or F2 for some appropriate digraph (and for some appropriate
scalars κ and ε)?

E1.9 (Metropolis-Hastings weights from the theory of Markov chains).
Given an undirected graph G of order n, define a weighted adjacency matrix
A with entries

aij =
1

1 + max{|N (i)|, |N (j)|} ,

for (i, j) ∈ E. Perform the following tasks:
(i) show that the weighted degree of any vertex is strictly smaller than 1,
(ii) use (i) to justify that ε = 1 can be chosen in Exercise E1.8 for the

construction of the matrix F2,
(iii) express the exponential convergence factor rexp(F2) as a function of the

eigenvalues of the Laplacian of G.

E1.10 (Disagreement function). The quadratic form associated with a symmet-
ric matrix B ∈ Rn×n is the function x 7→ xT Bx. Given a digraph G of order
n, the disagreement function ΦG : Rn → R is defined by

ΦG(x) =
1

2

nX

i,j=1

aij(xj − xi)
2. (E1.1)

Show that:
(i) the disagreement function is the quadratic form associated with the sym-

metric positive-semidefinite matrix

P (G) =
1

2
(Dout(G) + Din(G) − A(G) − A(G)T ),

(ii) P (G) = 1
2

`
L(G) + L(rev(G))

´
.

Hint: A sample proof is provided in [Gao et al., 2008].

E1.11 (Weight-balanced graphs and connectivity). Let G be a weighted di-
graph and let A be a nonnegative n×n matrix. Show the following statements:
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(i) if G is weight-balanced and contains a globally reachable node, then it
is strongly connected,

(ii) if A is doubly stochastic and its associated weighted digraph contains a
globally reachable node, then its associated weighted digraph is strongly
connected,

(iii) if A is doubly stochastic and a column of
Pn−1

k=0 Ak is positive, thenPn−1
k=0 Ak is positive.

E1.12 Without relying upon the Geršgorin Disks Theorem 1.3, show that, if the
weighted digraph G is undirected, then the matrix L(G) is symmetric positive
semidefinite. (Note that the proof of statement (i) in Theorem 1.32 relies
upon Geršgorin Disks Theorem 1.3.)

E1.13 (Properties of the BFS algorithm). Prove Lemma 1.24.

E1.14 (LCR algorithm). Consider the LCR algorithm for leader election:
(i) give a UID assignment to each processor for which Ω(n2) messages are

sent
(ii) give a UID assignment to each processor for which only O(n) messages

are sent
(iii) Show that the average number of messages sent is O(n log n), where the

average is taken over all possible ordering of the processors on the ring,
each ordering assumed to be equally likely.

E1.15 Consider the stochastic matrices:

A1 =
1

2

2
4

0 1 1
1 0 1
1 1 0

3
5 and A2 =

1

2

2
664

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

3
775 .

Define and draw the associated digraphs G1 and G2. Without relying upon
the characterization in Propositions 1.29 and 1.30, perform the following
tasks:
(i) show that the matrices A1 and A2 are irreducible and that the associated

digraphs G1 and G2 are strongly connected,
(ii) show that the matrices A1 and A2 are primitive and that the associated

digraphs G1 and G2 are strongly connected and aperiodic,
(iii) show that the averaging algorithm associated with A2 converges in a

finite number of steps.

E1.16 Show that, for any α ∈ ]0, 1], the set of non-degenerate matrices with respect
to α is compact.

E1.17 (Laplacian flow [Olfati-Saber and Murray, 2004]). Let G be a weighted
directed graph with a globally reachable node. Define the Laplacian flow on
Rn by

ẋ = −L(G)x.

(i) what are the equilibrium points?
(ii) show that, if G is undirected, then the disagreement function (see Exer-

cise E1.10) is monotonically non-increasing along the Laplacian flow,
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(iii) given x0 = ((x0)1, . . . , (x0)n) ∈ Rn, show that the solution t 7→ x(t) of
the Laplacian flow starting at x0 verifies

min{(x0)1, . . . , (x0)n} ≤ xi(t) ≤ max{(x0)1, . . . , (x0)n},

for all t ∈ R≥0. Use this fact to deduce that the solution t 7→ x(t) is
bounded,

(iv) for G undirected, use (i)-(iii) to apply the LaSalle Invariance Principle in
Theorem 1.17 and show that the solutions of the Laplacian flow converge
to diag(Rn),

(v) find an example G such that, with the notation in Exercise E1.10, the
symmetric matrix L(G)T P (G) + P (G)L(G) is indefinite,
Hint: To show that the matrix is indefinite, it suffices to find x1, x2 ∈ Rn

such that x1(L(G)T P (G) + P (G)L(G))x1 < 0 and x2(L(G)T P (G) +
P (G)L(G))x2 > 0.

(vi) show that the Euler discretization of the Laplacian flow is the Laplacian-
based averaging algorithm.

E1.18 (Log-Sum-Exp consensus [Tahbaz-Salehi and Jadbabaie, 2006]).
Pick α ∈ R \ {0} and define the function fα : Rn → R by

fα(x) = α log
“ 1

n

nX

i=1

exi/α
”
.

Show that
(i) lim

α→0−
fα(x) = min{x1, . . . , xn} and lim

α→0+
fα(x) = max{x1, . . . , xn},

(ii) lim
α→+∞

fα(x) = lim
α→−∞

fα(x) =
1

n
(x1 + · · · + xn).

Let A ∈ Rn×n be a non-degenerate, doubly stochastic matrix whose associ-
ated digraph contains a globally reachable node. Consider the discrete-time
dynamical system

wi(ℓ + 1) = α log
“ nX

j=1

aij ewj(ℓ)/α
”
,

(iii) show that w(ℓ) → fα(w(0))1n as ℓ → +∞.

E1.19 (The theory of Markov chains and random walks on graphs). List
as many connections as possible between the theory of averaging algorithms
discussed in Section 1.5.2 and the theory of Markov chains. Some relevant
references on Markov chains include [Seneta, 1981, Lovász, 1993].
Hint: There is a one-to-one correspondence between averaging algorithms
and Markov chains. A homogeneous Markov chains corresponds precisely to
a time-independent averaging algorithm. A reversible Markov chain corre-
sponds precisely to a symmetric stochastic matrix.

E1.20 (Distributed hypothesis testing [Rao and Durrant-Whyte, 1993,
Olfati-Saber et al., 2006]). Let hγ , for γ ∈ Γ in a finite set Γ , be a set of
alternative hypotheses about an uncertain event. Suppose that n nodes take
measurements zi, for i ∈ {1, . . . , n}, related to the event. Assume that each
observation is conditionally independent of all other observations, given any
hypothesis.
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(i) Using Bayes’ Theorem and the independence assumption, show that the
a posteriori probabilities satisfy

p(hγ |z1, . . . , zn) =
p(hγ)

p(z1, . . . , zn)

nY

i=1

p(zi|hγ).

(ii) Suppose the nodes form a undirected unweighted connected synchronous
network with adjacency matrix A. Consider the discrete-time dynamical
system

πi(ℓ + 1) =
“
πi(ℓ)

nY

j=1

π
aij

j (ℓ)
”1/(1+dout(i))

.

Fix γ ∈ Γ , set πi(0) = p(zi|hγ), and show that π(ℓ) → n

vuut
nY

i=1

p(zi|hγ)1n

as ℓ → +∞.
(iii) What information does each node need in order to compute the maxi-

mum a posteriori estimate, that is, to estimate the most likely hypothe-
sis?
Hint: Can you compute p(z1, . . . , zn), given knowledge of p(hγ) and ofQn

i=1 p(zi|hγ)?
As a bibliographical note, the variable πi is referred to as the belief in the
seminal work by Pearl [1988].

E1.21 Prove Lemma 1.77.

E1.22 (Cyclic pursuit [Watton and Kydon, 1969]). The “n-bugs problem”
related to the pursuit curves from mathematics, inquires about what are
the paths of n bugs, not aligned initially, when they chase one another.
Simple versions of the problem (e.g., for three bugs starting at the vertices
of an equilateral triangle) were studied as early as the 19th century. It was
in [Watton and Kydon, 1969] when a general solution for the general n bugs
problem for non-collinear initial positions was given. The bugs trace out
logarithmic spirals that eventually meet at the same point, and it is not
necessary that they move with constant velocity. Surveys about cyclic pursuit
problems are given in the papers in [Watton and Kydon, 1969, Marshall
et al., 2004]. Cyclic pursuit, has also been recently studied in the multi-agent
and control literature, e.g., see [Bruckstein et al., 1991, Marshall et al., 2004,
Smith et al., 2005]. In particular, the paper [Marshall et al., 2004] extends the
n-bugs problem to the case of n kinematic unicycles evolving in continuous
time.

Consider the simplified scenario of the n-bugs problem placed on a circle
of radius r and suppose that the bugs’ motion is constrained to be on that
circle. Assume that agents are ordered counterclockwise with identities i ∈
{1, . . . , n}, where we identify for convenience n+1 with 1. Denote by pi(ℓ) =
(r, θi(ℓ)) the sequence of positions of bug i, initially at pi(0) = (r, θi(0)).
(i) Suppose that each bug is chasing the closest counterclockwise neigh-

bor (according to the order we have given them on the circle), see Fig-
ure E1.1(a). In other words, each bug feels an attraction towards the
closest counterclockwise neighbor that can be described by the equation
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θi(ℓ + 1) = (1 − k)θi(ℓ) + kθi+1(ℓ), ℓ ∈ Z≥0,

where k ∈ [0, 1]. Determine for which values of k the bugs converge
to a configuration for which distc(θi+1, θi) = distc(θi, θi−1) for all
i ∈ {1, . . . , n}. Observe that the bugs will approach this equally-spaced
configuration while moving around the circle indefinitely.

(ii) Suppose that each bug makes a compromise between chasing its closest
counterclockwise neighbor and the closest clockwise neighbor, see Fig-
ure E1.1(b). In other words, each bug feels an attraction towards the
closest counterclockwise and clockwise neighbors that can be described
by the equation

θi(ℓ + 1) = kθi+1(ℓ) + (1 − 2k)θi(ℓ) + kθi−1(ℓ), ℓ ∈ Z≥0,

where k ∈ [0, 1].
a) Determine for which values of k the bugs converge to a configuration

for which distc(θi+1, θi) = distc(θi, θi−1) for all i ∈ {1, . . . , n}.
b) Show that the bugs will approach this equally-spaced configuration

while each of them converges to a stationary position on the circle.

θi+1

θi

θi−1

(a)

θi+1

θi

θi−1

(b)

Fig. E1.1. Illustration of the n-bugs problem. In (a), agent i looks at the position
of agent i + 1 and moves toward it by an amount proportional to their distance. In
(b), agent i looks at the position of agents i + 1 and i − 1 and moves toward the
one which is furthest by an amount proportional to the difference between the two
distances. In both cases, the constant of proportionality is k.

Hint: Rewrite the systems in (i) and (ii) in terms of the inter-bug distances;
that is, in terms of di(ℓ) = distc(θi+1(ℓ), θi(ℓ)), i ∈ {1, . . . , n}, ℓ ∈ Z≥0.
Find the matrices that describe the linear iterations in these new coordinates.
Show that the agreement space, i.e., the diagonal set in Rn, is invariant
under the dynamical systems. Finally, determine which values of k make
each system converge to the agreement space. Lemma 1.72 might be of use
in this regard. Regarding part (ii)b), recall that an exponentially decaying
sequence is summable.
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2

Geometric models and optimization

This chapter presents various geometric objects and geometric optimization
problems that have strong connections with motion coordination. Basic geo-
metric notions such as polytopes, centers, partitions, and distances are ubiq-
uitous in cooperative strategies, coordination tasks, and the interaction of
robotic networks with the physical environment. The notion of Voronoi par-
tition finds application in diverse areas such as wireless communications, sig-
nal compression, facility location, and mesh optimization. Proximity graphs
provide a natural way to mathematically model the network interconnection
topology resulting from the agents’ sensing and/or communication capabili-
ties. Finally, multicenter functions play the role of aggregate objective func-
tions in geometric optimization problems. We introduce these concepts here
in preparation for the later chapters.

The chapter is organized as follows. Section 2.1 introduces basic geomet-
ric constructions. Section 2.2 introduces the notion of proximity graphs and
presents numerous examples. Finally, Section 2.3 presents geometric optimiza-
tion problems and multicenter functions, paying special attention to the char-
acterization of their smoothness properties and critical points.

2.1 Basic geometric notions

In this section, we gather some classical geometric constructions that will be
invoked profusely throughout the book.

2.1.1 Polygons and polytopes

For p, q ∈ Rd, we let ]p, q[= {λp+ (1− λ)q | λ ∈ ]0, 1[} and [p, q] = {λp+ (1−
λ)q | λ ∈ [0, 1]} denote the open and closed segment with extreme points p
and q, respectively. We let Hp,q = {x ∈ Rd | ‖x− p‖2 ≤ ‖x− q‖2} denote the
closed halfspace of Rd of points closer (in Euclidean distance) to p than to q.
In the plane, we often refer to a halfspace as a halfplane.
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As seen in Section 1.1.2, a set S ⊂ Rd is convex if, for any two points p,
q in S, the closed segment [p, q] is contained in S. The convex hull of a set
is the smallest (with respect to the inclusion) convex set that contains it. We
denote the convex hull of S by co(S). For S = {p1, . . . , pn} finite, the convex
hull can be explicitly described as

co(S) =
{
λ1p1 + · · · + λnpn | λi ≥ 0 and

n∑

i=1

λi = 1
}
.

Given p and q in Rd and a convex closed set Q ⊂ Rd with p ∈ Q (see
Figure 2.1), define the from-to-inside function by

fti(p, q,Q) =

{

q, if q ∈ Q,

[p, q]∩ ∂Q, if q 6∈ Q.

p

fti(p, q, Q)

q

p

fti(p, q, Q)

q

Fig. 2.1. Illustration of the from-to-inside function fti.

The function fti selects the point in the closed segment [p, q] which is at
the same time closest to q and inside Q. Note that fti depends continuously
on its arguments.

A polygon is a set in R2 whose boundary is the union of a finite number
of closed segments. A polygon is simple if its boundary, regarded as a curve,
is non self-intersecting. We will only consider simple polygons. The closed
segments composing the boundary of a polygon are called edges, and points
resulting from the pairwise intersection between consecutive edges are called
vertices. A convex polygon can be written as

(i) the convex hull of its set of vertices, or
(ii) the intersection of halfplanes defined by its edges.

Two vertices whose open segment is contained in the interior of the polygon
define a diagonal. To each vertex of a polygon we associate an interior and
an exterior angle. A vertex is strictly convex (resp. strictly nonconvex ) if its
interior angle is strictly smaller (resp. greater) than π radians. A polygon is
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nonconvex if it has at least one strictly concave vertex. The perimeter of a
polygon is the length of its boundary, i.e., the sum of the lengths of its edges.

A polytope is the generalization of the notion of polygon to Rd, for d ≥ 3.
In this book, we will not consider nonconvex polytopes in dimension larger
than 2. As for convex polygons, a (convex) polytope in Rd can be defined as
either the convex hull of a finite set of points in Rd or the bounded intersection
of finite set of halfspaces. A face of a polytope is the intersection between the
polytope and the boundary of a closed halfspace that defines the polytope.
The faces of dimensions 0, 1, and d−1 are called, respectively, vertices, edges,
and facets. For a convex polytope Q, we will refer to them, respectively, by
Ve(Q), Ed(Q), and Fa(Q).

2.1.2 Nonconvex geometry

In this section, we gather some basic notions on nonconvex geometry. We
consider environments that include nonconvex polygons as a particular case.

We begin with some visibility notions. Given S ⊂ Rd, two points p, q ∈ S
are visible to each other if the closed segment [p, q] is contained in S. The
visibility set Vi(p;S) is the set of all points in S visible from p. Given r > 0,
the range-limited visibility set Vidisk(p;S) = Vi(p;S)∩B(p, r) is the set of all
points in S within a distance r and visible from p. The set S is star-shaped if
there exists p ∈ S such that Vi(p;S) = S. The kernel set of S is comprised
of all the points with this property, i.e., kernel(S) = {p ∈ S | Vi(p;S) = S}.
Trivially, any convex set is star-shaped. Given δ ∈ R>0, the δ-contraction of
S is the set Sδ = {p ∈ S | dist(p, ∂S) ≥ δ}. Note that, if two points p, q ∈ S
are visible to each other in Sδ, then any point within distance δ of p and any
point within distance δ of q are visible to each other. Figure 2.2 illustrates
these visibility notions.

Next, we introduce various concavity notions. Given S ⊂ Rd connected
and closed, p ∈ ∂S is strictly concave if for any ε ∈ R>0, there exist q1, q2 ∈
B(p, ε)∩ ∂S such that [q1, q2] 6⊂ S. This definition coincides with the notion of
strictly concave vertex when the set S is a polygon. A strict concavity of S is
either an isolated strictly concave point or a concave arc, i.e., a connected set of
strictly concave points. An allowable environment S ⊂ R2 is a set that satisfies
the following properties: it is closed, simply connected, has a finite number
of strict concavities and its boundary can be described by a continuous and
piecewise continuously differentiable curve which is not differentiable at most
at a finite number of points. Figure 2.3 shows a sample allowable environment.
Given an allowable environment S, let v belong to a concave arc and such that
the boundary of S is continuously differentiable at v. The internal tangent
halfplane HS(v) is the closed halfplane whose boundary is tangent to ∂S at
v and whose interior does not contain any points of the strict concavity; see
Figure 2.3.

The following result presents an interesting property of allowable environ-
ments.
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p2

p1

q1

q2

Vidisk(p2, S)

Vi(p1; S) Vi(p1; Sδ)

Fig. 2.2. Illustration of various visibility notions. The visibility set Vi(p1; S) from
p1 in S, the visibility set Vi(p1; Sδ) from p1 in Sδ, and the range-limited visibility
set Vidisk(p2; S) from p2 in S are depicted in light gray. The dashed curve in the
interior of S corresponds to the boundary of the δ-contraction of S. The points p2

and q1 are visible to each other in Sδ. The points q1 and q2 are visible to each other
in S, but they are not visible to each other in Sδ.

HS(v)
v

p1

p2 p3

p4

p5

p6

Fig. 2.3. An allowable environment S. The curved portion of the boundary is a
concave arc. The vertices whose interior angle is 3π/2 radians are isolated strictly
concave points. The relative convex hull of {p1, . . . , p6} in S is depicted in light gray.
Finally, the dashed line represents the boundary of the internal tangent halfplane
HS(v) tangent to ∂S at v.

Lemma 2.1. Given an allowable environment S, the δ-contraction Sδ is also
allowable for sufficiently small δ ∈ R>0 and does not have isolated strictly
concave points. Furthermore, the boundary of Sδ is continuously differentiable
at the concavities.

Lemma 2.1 implies that the internal tangent halfplane is well-defined at
any strict concavity of the δ-contraction Sδ.

A set S ⊂ X is relatively convex in X ⊂ Rd if, for any two points p, q in S,
the shortest curve in X that connects p and q is contained in S. Relatively
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convex sets in Rd are just convex sets. The relative convex hull of a set S in X
is the smallest (with respect to the operation of inclusion) relatively convex
set in X that contains S, see Figure 2.3. We denote the relative convex hull
of S in X by rco(S;X). The (relative) perimeter of S in X is the length of
the shortest measurable closed curve contained in X that encloses S.

2.1.3 Geometric centers

Let X = Rd, X = Sd or X = Rd1 ×Sd2 , d = d1 +d2. Recall our convention (cf.
Section 1.1.1) that, unless otherwise noted, Rd is endowed with the Euclidean
distance, Sd is endowed with the geodesic distance, and Rd1 × Sd2 is endowed
with the Cartesian product distance (dist2,distg).

The circumcenter of a bounded set S ⊂ X, denoted by CC(S), is the center
of the closed ball of minimum radius that contains S. The circumradius of
S, denoted by CR(S), is the radius of this ball1. The circumcenter is always
unique.

The computation of the circumcenter and the circumradius of a polytope
Q ⊂ Rd is a strictly convex problem and in particular a quadratically con-
strained linear program in p (the center) and r (the radius). It consists of
minimizing the radius r of the ball centered at p subject to the constraints
that the distance between q and each of the polygon vertices is smaller than
or equal to r. Formally, the problem can be expressed as follows.

minimize r ,

subject to ‖q − p‖2
2 ≤ r2, for all q ∈ Ve(Q). (2.1)

Next, we summarize some useful properties of the circumcenter in Euclidean
space, see Exercise E2.1. In the following result, for S ∈ F(Rd) with d = 1, we
let Ve(co(S)) denote the set of extreme points of the interval co(S).

Lemma 2.2 (Properties of the circumcenter in Euclidean space). Let
S = {p1, . . . , pn} ∈ F(Rd) with n ≥ 2. The following properties hold:

(i) CC(S) ∈ co(S) \ Ve(co(S));
(ii) if p ∈ co(S) \ {CC(S)} and r ∈ R>0 are such that S ⊂ B(p, r), then

]p,CC(S)[ has a nonempty intersection with B(p+q
2 , r

2 ) for all q ∈ co(S).

Given X = Rd, X = Sd or X = Rd1 × Sd2 , d = d1 + d2, the incenter
or Chebyshev center of a compact set S ⊂ X, denoted by IC(S), is the set
containing the centers of all closed balls of maximum radius contained in S.
The inradius of S, denoted by IR(S), is the common radius of any of these
balls.

1 Note that the definition of circumcenter given here is in general different from the
classical notion of circumcenter of a triangle, i.e., the center of the circle passing
through the three vertices of the triangle.
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Fig. 2.4. Circumcenter and circumradius (left), and incenter and inradius (right)
of a convex polygon.

The computation of the incenter and the inradius of a polytope Q ⊂ Rd is
a convex problem, and in particular a linear program in p and r. It consists
of maximizing the radius r of the ball centered at p subject to the constraints
that the distance between p and each of the polytope facets is greater than
or equal to r. Formally, the problem can be expressed as follows. For each
f ∈ Fa(Q), select a point qf ∈ Q belonging to f . Then, we set

maximize r ,

subject to (p− qf ) · nin,f ≥ r , for all f ∈ Fa(Q), (2.2)

where nin,f denotes the normal to the face f pointing toward the interior of
the polytope. The incenter of a polytope is not necessarily unique (consider,
for instance, the case of a rectangle).

In Euclidean space, X = Rd, we refer to a bounded measurable function
φ : Rd → R≥0 as a density on Rd. The (generalized) area and the centroid of
a bounded measurable set S ⊂ Rd with respect to φ, denoted respectively by
Aφ(S) and CMφ(S), are given by

Aφ(S) =

∫

S

φ(q)dq, CMφ(S) =
1

Aφ(S)

∫

S

qφ(q)dq.

When the function φ being used is clear from the context, we simply refer to
the area and the centroid of S. The centroid can alternatively be defined as
follows. Define the polar moment of inertia of S about p ∈ S by

Jφ(S, p) =

∫

S

‖q − p‖2
2φ(q)dq.

Then, the centroid of S is precisely the point p ∈ S that minimizes the polar
moment of inertia of S about p. This can be easily seen from the Parallel Axis
Theorem [Hibbeler, 2003], that states

Jφ(S, p) = Jφ(S,CMφ(S)) + Aφ(S)‖p− CMφ(S)‖2
2.
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Remark 2.3 (Computation of geometric centers in the plane). The
circumcenter, incenter, and centroid of a polygon can be computed in several
ways. A simple procedure to compute the circumcenter consists of enumer-
ating all pairs and triplets of vertices of the polygon, compute the centers
and radiuses of the balls passing through them, and selecting the ball with
the smallest radius that encloses the polygon. An alternative, more efficient
way of computing the circumcenter, is to use the formulation (2.1). A convex
quadratically constrained linear program is a particular case of a semidefinite-
quadratic-linear program (SQLP). Several freely-available numerical packages
exist to solve SQLP problems, e.g., SDPT3 [Tutuncu et al., 2003]. The com-
putation of the incenter set of a polygon can be performed via linear pro-
gramming using the formulation (2.2). Finally, the centroid of a polygon can
be computed with any numerical routine that accurately approximates the
integral of a function over a planar domain. •

2.1.4 Voronoi and range-limited Voronoi partitions

A partition of a set S is a subdivision of S into connected subsets that are
disjoint except for their boundary. Formally, a partition of S is a collection of
closed connected sets {W1, . . . ,Wm} ⊂ P(S) that verify

S = ∪m
i=1Wi and int(Wj)∩ int(Wk) = ∅,

for all j, k ∈ {1, . . . ,m}.
Definition 2.4 (Voronoi partition). Given a distance function dist : X ×
X → R≥0, a set S ⊂ X and n distinct points P = {p1, . . . , pn} in S,
the Voronoi partition of S generated by P is the collection of sets V(P) =
{V1(P), . . . , Vn(P)} ⊂ P(S) defined by, for each i ∈ {1, . . . , n},

Vi(P) = {q ∈ S | dist(q, pi) ≤ dist(q, pj), for all pj ∈ P}. •

In other words, Vi(P) is the set of the points of S that are closer to pi

than to any of the other points in P. We will refer to Vi(P) as the Voronoi
cell of pi.

Unless explicitly noted otherwise, we compute the Voronoi partition ac-
cording to the following conventions:

• for X = Rd, with respect to the Euclidean distance;
• for X = Sd, with respect to the geodesic distance;
• for X = Rd1 × Sd2 , d1 + d2 = d, with respect to the Cartesian product

distance determined by dist2 on Rd1 and distg on Sd2 .

In the Euclidean case, the Voronoi cell of pi is equal to the intersection of
half-spaces determined by pi and the other locations in P, and as such it is a
convex polytope. The left plot in Figure 2.5 shows an example of the Voronoi
partition of a convex polygon generated by 40 points. Figure 2.6 shows an
example of the Voronoi partition of the circle generated by 5 points.
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Fig. 2.5. Voronoi partition of a convex polygon (left) and r-limited Voronoi par-
tition inside a convex polygon (right) generated by 40 points. The colored regions
correspond to the Voronoi cells and the r-limited Voronoi cells, respectively, of each
individual point.

Fig. 2.6. Voronoi partition of the circle generated by 5 points. The dashed segments
correspond to the Voronoi cells of each individual point.

Definition 2.5 (r-limited Voronoi partition). Given a distance function
dist : X ×X → R≥0, a set S ⊂ X, n distinct points P = {p1, . . . , pn} in S,
and a positive real number r ∈ R>0, the r-limited Voronoi partition inside S
generated by P is the collection of sets Vr(P) = {V1,r(P), . . . , Vn,r(P)} ⊂ P(S)
defined by

Vi,r(P) = Vi(P)∩B(pi, r), i ∈ {1, . . . , n}. •

Note that the r-limited Voronoi partition inside S is precisely the Voronoi
partition of the set ∪n

i=1B(pi, r)∩ S. We will refer to Vi,r(P) as the r-limited
Voronoi cell of pi. The right plot in Figure 2.5 shows an example of the r-
limited Voronoi partition inside a convex polygon generated by 40 points.

Let X = Rd, X = Sd or X = Rd1 × Sd2 , d = d1 + d2. Given a density φ on
X, a set of n distinct points P = {p1, . . . , pn} in S ⊂ X is a
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(i) centroidal Voronoi configuration if each point is the centroid of its own
Voronoi cell, i.e., pi = CMφ(Vi(P));

(ii) r-limited centroidal Voronoi configuration, for r ∈ R>0, if each point is
the centroid of its own r-limited Voronoi cell, that is, pi = CMφ(Vi,r(P)).
If r ≥ diam(S), then an r-limited centroidal Voronoi configuration is a
centroidal Voronoi configuration;

(iii) circumcenter Voronoi configuration if each point is the circumcenter of its
own Voronoi cell, i.e., pi = CC(Vi(P));

(iv) incenter Voronoi configuration if each point is an incenter of its own
Voronoi cell, i.e., pi ∈ IC(Vi(P)).

Figure 2.7 presents an illustration of the various notions of center Voronoi
configurations.

Fig. 2.7. From left to right, centroidal, r-limited centroidal, circumcenter, and
incenter Voronoi configurations composed by 16 points in a convex polygon. Darker
blue-colored areas correspond to higher values of the density φ.

2.2 Proximity graphs

Roughly speaking, a proximity graph is a graph whose vertex set is a set of
distinct points and whose edge set is a function of the relative locations of the
point set. Proximity graphs appear in computational geometry. In this section
we study this important notion in detail following the presentation by Cortés
et al. [2005].

Definition 2.6 (Proximity graph). Let S ⊂ X, whereX is a d-dimensional
space chosen among Rd, Sd, and the Cartesian products Rd1 × Sd2 , for some
d1 + d2 = d. Let G(S) be the set of all undirected graphs whose vertex set is
an element of F(S). A proximity graph G : F(S) → G(S) associates to a set of
distinct points P = {p1, . . . , pn} ⊂ S an undirected graph with vertex set P
and whose edge set is EG(P) ⊆ {(p, q) ∈ P × P | p 6= q}. •

Note that in a proximity graph a point cannot be its own neighbor. From
this definition, we observe that the distinguishing feature of proximity graphs
is that their edge sets change with the location of their vertices. It is also
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possible to define proximity graphs that associate to each point set a digraph,
but we will not consider them here.

Examples of proximity graphs on X, where recall that dist = dist2 if
X = Rd, dist = distg if X = Sd, and dist = (dist2,distg) if X = Rd1 × Sd2 ,
include the following:

(i) the complete graph Gcmplt where any two points are neighbors. When
convenient, we may view the complete graph as weighted by assigning the
weight dist(pi, pj) to the edge (pi, pj) ∈ EGcmplt

(P);
(ii) the r-disk graph Gdisk(r), for r ∈ R>0, where two points are neighbors

if they are located within a distance r, that is, (pi, pj) ∈ EGdisk(r)(P) if
dist(pi, pj) ≤ r;

(iii) the Delaunay graph GD, where two points are neighbors if their corre-
sponding Voronoi cells intersect, that is, (pi, pj) ∈ EGD

(P) if Vi(P) ∩
Vj(P) 6= ∅;

(iv) the r-limited Delaunay graph GLD(r), for r ∈ R>0, where two points are
neighbors if their corresponding r

2 -limited Voronoi cells intersect, that is,
(pi, pj) ∈ EGLD(r)(P) if Vi, r

2
(P)∩Vj, r

2
(P) 6= ∅;

(v) the relative neighborhood graph GRN, where two points are neighbors if
their associated open lune (cf. Section 1.1.1) does not contain any point in
P, that is, (pi, pj) ∈ EGRN

(P) if pk 6∈ B(pi,dist(pi, pj))∩B(pj ,dist(pi, pj))
for all pk ∈ P, k 6∈ {i, j};
Figure 2.8 shows examples of these proximity graphs in the plane.
Additional examples of proximity graphs in the Euclidean space include:

(vi) the Gabriel graph GG, where two points are neighbors if the ball centered
at their midpoint and passing through both of them does not contain any

point in P, that is, (pi, pj) ∈ EGG
(P) if pk 6∈ B

(pi+pj

2 ,
dist(pi,pj)

2

)
for all

pk ∈ P;
(vii) the r-∞-disk graph G∞-disk(r), for r ∈ R>0, where two points are neighbors

if they are located within a L∞-distance r, that is, (pi, pj) ∈ EG∞-disk(r)(P)
if dist∞(pi, pj) ≤ r;

(viii) the Euclidean minimum spanning tree GEMST,G of a proximity graph
G, that assigns to each P a minimum-weight spanning tree (cf. Sec-
tion 1.3.4) of G(P) with weighted adjacency matrix aij = ‖pi − pj‖2,
for (pi, pj) ∈ EG(P). If G(P) is not connected, then GEMST,G(P) is the
union of Euclidean minimum spanning trees of its connected components.
When G is the complete graph, we simply denote the Euclidean minimum
spanning tree by GEMST;

(ix) the visibility graph Gvis,Q in an allowable environment Q in R2, where two
points are neighbors if they are visible to each other, that is, (pi, pj) ∈
EGvis,Q

(P) if the closed segment [pi, pj ] from pi to pj is contained in Q.
(x) the range-limited visibility graph Gvis-disk,Q in an allowable environment

Q in R2, where two points are neighbors if they are visible to each other
and their distance is no more than r, that is, (pi, pj) ∈ EGvis-disk,Q

(P) if
and only if (pi, pj) ∈ EGvis,Q

(P) and (pi, pj) ∈ EGdisk(r)(P).
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(a) Gcmplt (b) Gdisk(r) (c) GD

(d) GLD(r) (e) GRN

Fig. 2.8. Proximity graphs in R2. From left to right, in the first row, complete,
r-disk, and Delaunay, and in the second row, r-limited Delaunay and relative neigh-
borhood for a set of 15 points. When appropriate, the geometric objects determining
the edge relationship are plotted in lighter gray.

Figure 2.9 shows examples of these proximity graphs in the plane.
Figure 2.10 shows some examples of proximity graphs in three-dimensional

space.
As for standard graphs, let us alternatively describe the edge set by means

of the sets of neighbors of the individual graph vertices. To each proximity
graph G, each p ∈ X and each P = {p1, . . . , pn} ∈ F(X), we associate the set
of neighbors map NG : X × F(X) → F(X) defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪{p})}.

Typically, p is a point in P, but the definition is well-posed for any p ∈
X. Under the assumption that P does not contain repeated elements, the
definition will not lead to counterintuitive interpretations later. Given p ∈
X, it is convenient to define the map NG,p : F(X) → F(X) by NG,p(P) =
NG(p,P).

A proximity graph G1 is a subgraph of a proximity graph G2, denoted
G1 ⊂ G2, if G1(P) is a subgraph of G2(P) for all P ∈ F(X). The following
result summarizes the subgraph relationships in the Euclidean case among
the various proximity graphs introduced above.

Theorem 2.7 (Subgraph relationships among some standard prox-
imity graphs on Rd). For r ∈ R>0, the following statements hold:
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(a) GG (b) G∞-disk(r) (c) GEMST

(d) Gvis,Q (e) Gvis-disk,Q

Fig. 2.9. Proximity graphs in R2. From left to right, in the first row, Gabriel, r-
∞-disk, and Euclidean minimum spanning tree graphs for a set of 15 points, and
in the second row, visibility and range-limited visibility graphs for a set of 8 agents
in an allowable environment. When appropriate, the geometric objects determining
the edge relationship are plotted in lighter gray.

(a) Gdisk(r) (b) GG (c) GRN

Fig. 2.10. Proximity graphs in R3. From left to right, r-disk, relative neighborhood,
and Gabriel graphs for a set of 25 points.
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(i) GEMST ⊂ GRN ⊂ GG ⊂ GD;
(ii) GG ∩Gdisk(r) ⊂ GLD(r) ⊂ GD ∩Gdisk(r).

Remark 2.8. The inclusion GLD(r) ⊂ GD ∩Gdisk(r) is in general strict; this
counterintuitive fact is discussed in Exercise E2.2. •

Note that, since GEMST is by definition connected, Theorem 2.7(i) implies
that GRN, GG and GD are connected. Regarding the connectivity properties of
Gdisk(r), we have the following result, see [Cortés et al., 2005, 2006].

Theorem 2.9 (Connectivity properties of some standard proximity
graphs on Rd). For r ∈ R>0, the following statements hold:

(i) GEMST ⊂ Gdisk(r) if and only if Gdisk(r) is connected;
(ii) GEMST ∩Gdisk(r), GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r) have the same

connected components as Gdisk(r) (i.e., for all point sets P ∈ F(Rd), all
graphs have the same number of connected components consisting of the
same vertices).

Note that in Theorem 2.9, fact (ii) implies (i). However, the proof of fact (ii)
requires fact (i), see Section 2.5.2.

2.2.1 Spatially distributed proximity graphs

We now consider the following loosely-stated question: when a does a given
proximity graph encode sufficient information to compute another proximity
graph. For instance, if a node knows the position of its neighbors in the com-
plete graph (that is, of every other node in the graph), then it is clear that
the node can compute its neighbors with respect to any proximity graph. Let
us formalize this idea. A proximity graph G1 is spatially distributed over a
proximity graph G2 if, for all p ∈ P,

NG1,p(P) = NG1,p

(
NG2,p(P)

)
,

that is, any node informed about the location of its neighbors with respect to
G2 can compute its set of neighbors with respect to G1.

Clearly, any proximity graph is spatially distributed over the complete
graph. It is straightforward to deduce that if G1 is spatially distributed over
G2, then G1 is a subgraph of G2. The converse is in general not true. For
instance, GD ∩ Gdisk(r) is a subgraph of Gdisk(r), but GD ∩ Gdisk(r) is not
spatially distributed over Gdisk(r), see Exercise E2.3.

The following result identifies proximity graphs which are spatially dis-
tributed over Gdisk(r).

Proposition 2.10. The proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r), and
GLD(r) are spatially distributed over Gdisk(r).
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Remark 2.11 (Computation of the Delaunay graph over the r-disk
graph). In general, for a fixed r ∈ R>0, GD is not spatially distributed over
Gdisk(r). However, for a given P ∈ F(X), it is always possible find r such that
GD(P ) is spatially distributed over Gdisk(r)(P). This is a consequence of the
following observations. Given P ∈ F(X), define the convex sets

W (pi, r) = B(pi, r) ∩
(
∩‖pi−pj‖≤r Hpi,pj

)
, i ∈ {1, . . . , n},

where recall that Hp,x is the half-space of points q in Rd with the property
that ‖q − p‖2 ≤ ‖q − x‖2. Note that the intersection B(pi, r) ∩ Vi is a subset
of W (pi, r). Provided r is twice as large as the maximum distance between
pi and the vertices of W (pi, r), then all Delaunay neighbors of pi are within
distance r from pi. Equivalently, the half-space Hpi,p determined by pi and
a point p outside B(pi, r) does not intersect W (pi, r). Therefore, the equality
Vi = W (pi, r) holds. For node i ∈ {1, . . . , n}, the minimum adequate radius
is then

ri,min = 2max{‖pi − q‖2 | q ∈W (pi, ri,min)}.

The minimum adequate radius across the overall network is then rmin =
maxi∈{1,...,n} ri,min. The algorithm presented in [Cortés et al., 2004] builds
on these observations to compute the Voronoi partition of a bounded set gen-
erated by a pointset in a distributed way. •

The locally-cliqueless graph of a proximity graph

Given a proximity graph, it is sometimes useful to construct another proximity
graph that has fewer edges and the same number of connected components.
This is certainly the case when optimizing multi-agent cost functions in which
the proximity graph edges describe pairwise constraints between agents. Ad-
ditionally, the construction of the new proximity graph should be spatially
distributed over the original proximity graph. Here, we present the notion of
locally-cliqueless graph of a proximity graph.

Let G be a proximity graph in the Euclidean space. The locally-cliqueless
graph Glc,G of G is the proximity graph defined by: (pi, pj) ∈ EGlc,G

(P) if
(pi, pj) ∈ EG(P) and

(pi, pj) ∈ EGEMST
(P ′),

for any maximal clique P ′ of (pi, pj) in G. Figure 2.11 shows an illustration
of this notion. The properties of this construction are summarized in the
following result, see [Ganguli et al., 2007b].

Theorem 2.12 (Properties of the locally-cliqueless graph). Let G be a
proximity graph in the Euclidean space. Then, the following statements hold:

(i) GEMST,G ⊆ Glc,G ⊆ G;
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Fig. 2.11. Locally-cliqueless graph Glc,Gvis,Q of the visibility graph Gvis,Q for the
node configuration shown in Figure 2.9(d).

(ii) Glc,G has the same connected components as G;
(iii) For G = Gdisk(r), Gvis,Q, and Gvis-disk,Q, where r ∈ R>0 and Q is an

allowable environment, Glc,G is spatially distributed over G.

In general, the inclusions in Theorem 2.12(i) are strict.

2.2.2 Proximity graphs over tuples of points

The notion of proximity graph is defined for sets of distinct points P =
{p1, . . . , pn}. However, we will be interested in considering tuples of elements
of X of the form P = (p1, . . . , pn), where pi corresponds to the position of an
agent i of a robotic network. In principle, note that the tuple P might contain
coincident points. In order to reconcile this mismatch between sets and tuples,
we will do the following.

Let iF : Xn → F(X) be the natural immersion of Xn into F(X), that is,
iF(P ) is the point set that contains only the distinct points in P = (p1, . . . , pn).
Note that iF is invariant under permutations of its arguments and that the
cardinality of iF(p1, . . . , pn) is in general less than or equal to n. In what
follows, P = iF(P ) will always denote the point set associated to P ∈ Xn.
Using the natural inclusion, the notion of proximity graphs can be naturally
extended as follows: given G, we define (with a slight abuse of notation)

G = G ◦ iF : Xn → G(X).

Additionally, we define the set of neighbors map NG : X ×Xn → F(X) by

NG(p, (p1, . . . , pn)) = NG(p, iF(p1, . . . , pn)).

Note that, according to this definition, coincident points in the tuple (p1, . . . , pn)
will have the same set of neighbors. As before, it is convenient to define the
shorthand notation NG,p : Xn → F(X), NG,p(P ) = NG(p, P ) for p ∈ X.
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2.2.3 Spatially distributed maps

Given a set Y and a proximity graph G, a map T : Xn → Y n is spatially
distributed over G if there exists a map T̃ : X ×F(X) → Y , with the property
that, for all (p1, . . . , pn) ∈ Xn and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,pj
(p1, . . . , pn)),

where Tj denotes the jth-component of T . In other words, the jth component
of a spatially distributed map at (p1, . . . , pn) can be computed with only the
knowledge of the vertex pj and the neighboring vertices in the undirected
graph G(P ).

When studying coordination tasks and coordination algorithms, it will be
relevant to characterize the spatially distributed features of functions, vector
fields and set-valued maps with respect to suitable proximity graphs.

Remark 2.13. Note that the proximity graph G1 is spatially distributed over
the proximity graph G2 if and only if the map

P ∈ Xn 7→ (NG1,p1
(P ), . . . ,NG1,pn

(P )) ∈ F(X)n

is spatially distributed over G2. •

2.3 Geometric optimization problems and multicenter

functions

In this section we consider various interesting geometric optimization prob-
lems. By geometric optimization, we mean an optimization problem induced
by a collection of geometric objects, see [Boltyanski et al., 1999]. We shall pay
particular attention to facility location problems, in which service sites are
spatially allocated to fulfill a particular request.

2.3.1 Expected-value multicenter functions

Let S ⊂ Rd be a bounded environment of interest, and consider a density
function φ : Rd → R≥0. For the discussion of this section, only the value of φ
restricted to S is of interest. One can regard φ as a function measuring the
probability that some event takes place over the environment. The larger the
value of φ(q), the more important the location q is. We refer to a non-increasing
and piecewise continuously differentiable function f : R≥0 → R, possibly with
finite jump discontinuities, as a performance. Performance functions describe
the utility of placing a node at a certain distance from a location in the
environment. The smaller the distance, the larger the value of f , i.e., the better
the performance. For instance, in servicing problems, performance functions
can encode the travel time or the energy expenditure required to service a
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specific destination. In sensing problems, performance functions can encode
the signal-to-noise-ratio between a source with unknown location and a sensor
attempting to locate it.

Given a bounded measurable set S ⊂ Rd, a density function φ, and a
performance function f , let us consider the expected value of the coverage
over any point in S provided by a set of points p1, . . . , pn. Formally, we define
the expected-value multicenter function Hexp : Sn → R by

Hexp(p1, . . . , pn) =

∫

S

max
i∈{1,...,n}

f(‖q − pi‖2)φ(q)dq. (2.3)

The definition of Hexp can be read as follows: for each location q ∈ S, consider
the best coverage of q among those provided by each of the nodes p1, . . . , pn,
which corresponds to the value maxi∈{1,...,n} f(‖q−pi‖2). Then, weigh the per-
formance by the importance φ(q) of the location q. Finally, sum the resulting
quantity over all the locations of the environment S to obtain Hexp(p1, . . . , pn)
as a measure of the overall coverage provided by p1, . . . , pn.

Given the meaning of Hexp, we seek to solve the following geometric opti-
mization problem

maximize Hexp(p1, . . . , pn), (2.4)

that is, we seek to determine a set of configurations p1, . . . , pn that maximize
the value of the multicenter function Hexp. An equivalent formulation of this
problem is referred to as a continuous p-median problem in the literature on
facility location, e.g., see [Drezner, 1995]. In our discussion, we will pay special
attention to the case when n = 1, that we term the 1-center problem. For
the purpose of solving (2.4), note that we can assume that the performance
function satisfies f(0) = 0. This can be done without loss of generality, since
for any c ∈ R, one has

∫

S

max
i∈{1,...,n}

(f(‖q − pi‖2) + c)φ(q)dq = Hexp(p1, . . . , pn) + cAφ(S).

The expected-value multicenter function can be alternatively described in
terms of the Voronoi partition of S generated by P = {p1, . . . , pn}. Let us
define the set

Scoinc = {(p1, . . . , pn) ∈ (Rd)n | pi = pj for some i 6= j},

consisting of tuples of n points where some of them are repeated. Then, for
(p1, . . . , pn) ∈ Sn \ Scoinc, one has

Hexp(p1, . . . , pn) =
n∑

i=1

∫

Vi(P)

f(‖q − pi‖2)φ(q)dq. (2.5)

This expression of Hexp is appealing because it clearly shows the result of
the overall coverage of the environment as the aggregate contribution of all
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individual nodes. If (p1, . . . , pn) ∈ Scoinc, then a similar decomposition of Hexp

can be written in terms of the distinct points P = iF(p1, . . . , pn).
Inspired by the expression (2.5), let us define a more general version of the

expected-value multicenter function. Given (p1, . . . , pn) ∈ Sn and a partition
{W1, . . . ,Wn} ⊂ P(S) of S, let

Hexp(p1, . . . , pn,W1, . . . ,Wn) =
n∑

i=1

∫

Wi

f(‖q − pi‖2)φ(q)dq. (2.6)

Notice that Hexp(p1, . . . , pn) = Hexp(p1, . . . , pn, V1(P), . . . , Vn(P)), for all
(p1, . . . , pn) ∈ Sn\Scoinc. Moreover, one can establish the following optimality
result, see [Du et al., 1999].

Proposition 2.14 (Hexp-optimality of the Voronoi partition). Let P =
{p1, . . . , pn} ∈ F(S). For any performance function f and for any partition
{W1, . . . ,Wn} ⊂ P(S) of S,

Hexp(p1, . . . , pn, V1(P), . . . , Vn(P)) ≥ Hexp(p1, . . . , pn,W1, . . . ,Wn),

that is, the Voronoi partition V(P) is optimal for Hexp among all partitions
of S.

Proof. Assume that, for some i 6= j ∈ {1, . . . , n}, the set int(Wi)∩ int(Vj) has
strictly positive measure. For all q ∈ int(Wi)∩ int(Vj), we know ‖q − pi‖2 >
‖q− pj‖2. Because f is non-increasing, f(‖q− pi‖2) < f(‖q− pj‖2) and, since
int(Wi)∩ int(Vj) has strictly positive measure,

∫

int(Wi)∩ int(Vj)

f(‖q − pi‖2)φ(q)dq <

∫

int(Wi)∩ int(Vj)

f(‖q − pj‖2)φ(q)dq.

Therefore, we deduce

∫

Wi

f(‖q − pi‖2)φ(q)dq <

n∑

j=1

∫

Wi ∩Vj

f(‖q − pj‖2)φ(q)dq,

and the statement follows. �

Different choices of performance function give rise to different expected-
value multicenter functions with particular features. Let us examine some
important cases.

Distortion problem: Consider as performance function f(x) = −x2. Then,
on S \ Scoinc, the expected-value multicenter function takes the form

Hdistor(p1, . . . , pn) = −
n∑

i=1

∫

Vi(P )

‖q − pi‖2
2φ(q)dq = −

n∑

i=1

Jφ(Vi(P), pi),
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where recall that Jφ(W,p) denotes the polar moment of inertia of the set
W about the point p. In signal compression −Hdistor is referred to as the
distortion function and is relevant in many disciplines including vector
quantization, signal compression, and numerical integration, see [Gray
and Neuhoff, 1998, Du et al., 1999]. Here, distortion refers to the average
deformation (weighted by the density φ) caused by reproducing q ∈ S with
the location pi in P = {p1, . . . , pn} such that q ∈ Vi(P). It is interesting
to note that

Hdistor(p1, . . . , pn,W1, . . . ,Wn) = −
n∑

i=1

Jφ(Wi, pi)

= −
n∑

i=1

Jφ(Wi,CMφ(Wi)) −
n∑

i=1

Aφ(Wi)‖pi − CMφ(Wi)‖2
2, (2.7)

where in the last equality we have used the Parallel Axis Theorem [Hi-
bbeler, 2003]. Note that the first term only depends on the partition of S,
whereas the second term also depends on the location of the points. The
following result is a consequence of this observation.

Proposition 2.15 (Hdistor-optimality of centroid locations). Let
{W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then, for any P = {p1, . . . , pn} ∈
F(S),

Hdistor

(
CMφ(W1), . . . ,CMφ(Wn),W1, . . . ,Wn

)

≥ Hdistor(p1, . . . , pn,W1, . . . ,Wn),

that is, the centroid locations CMφ(W1), . . . ,CMφ(Wn) are optimal for
Hdistor among all configurations in S. Moreover, if all the sets {W1, . . . ,Wn}
have non-vanishing areas, the inequality is strict unless pi = CMφ(Wi) for
all i ∈ {1, . . . , n}.
A consequence of this result is that for the 1-center problem, i.e., when
n = 1, the node location that optimizes p 7→ Hdistor(p) = − Jφ(S, p) is the
centroid of the set S, denoted by CMφ(S);

Area problem: Consider as performance function f(x) = 1[0,a](x), a ∈ R>0

the indicator function of the closed interval [0, a]. Then, the expected-value
multicenter function takes the form

Harea,a(p1, . . . , pn) =

n∑

i=1

∫

Vi(P)

1[0,a](‖q − pi‖2)φ(q)dq

=
n∑

i=1

∫

Vi(P)∩B(pi,a)

φ(q)dq

=

n∑

i=1

Aφ(Vi(P)∩B(pi, a)) = Aφ(∪n
i=1B(pi, a)),
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that is, it corresponds to the area, measured according to φ, covered by
the union of the n balls B(p1, a), . . . , B(pn, a). Exercise E2.4 discusses the
1-center area problem;

Mixed distortion-area problem: Consider as performance function f(x) =
−x2 1[0,a](x)+b·1]a,+∞[(x), with a ∈ R>0 and b ≤ −a2. Then, on S\Scoinc,
the expected-value multicenter function takes the form

Hdistor-area,a,b(p1, . . . , pn) = −
n∑

i=1

Jφ(Vi,a(P), pi) + bAφ(Q \ ∪n
i=1B(pi, a)),

that is, it is a combination of the multicenter functions corresponding
to the distortion problem and the area problem. Of special interest to
us is the multicenter function that results from the choice b = −a2. In
this case, the performance function f is continuous, and we simply write
Hdistor-area,a. The extension of this function to sets of points and partitions
of the space reads as

Hdistor-area,a(p1, . . . , pn,W1, . . . ,Wn)

= −
n∑

i=1

(

Jφ(Wi ∩B(pi, a), pi) + a2 Aφ(Wi ∩ (S \B(pi, a)))
)

.

The following optimality result can be established (see Exercise E2.7).

Proposition 2.16 (Hdistor-area,a-optimality of centroid locations).
Let {W1, . . . ,Wn} ⊂ P(S) be a partition of S. Then, for any P =
{p1, . . . , pn} ∈ F(S),

Hdistor-area,a

(
CMφ(W1∩B(p1, a)), . . . ,CMφ(Wn∩B(pn, a)),W1, . . . ,Wn

)

≥ Hdistor(p1, . . . , pn,W1, . . . ,Wn).

Moreover, if all the sets {W1, . . . ,Wn} have non-vanishing areas, the in-
equality is strict unless pi = CMφ(Wi ∩B(pi, a)), for all i ∈ {1, . . . , n}.
A consequence of this result is that for the 1-center problem, i.e., when
n = 1, the node location that optimizes p 7→ Hdistor-area,a(p) = Jφ(S ∩
B(p, a), p)+a2 Aφ(S\B(p, a)) is the centroid of the set S∩B(p, a), denoted
by CMφ(S ∩B(p, a)).

Next, we characterize the smoothness of the expected-value multicenter
function. Before stating the precise result, let us introduce some useful no-
tation. For a performance function f , let Dscn(f) denote the (finite) set of
points where f is discontinuous. For each a ∈ Dscn(f), define the limiting
values from the left and from the right, respectively, as

f−(a) = lim
x→a−

f(x), f+(a) = lim
x→a+

f(x).
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We are now ready to characterize the smoothness of Hexp, see [Cortés et al.,
2005]. Before stating the result, recall that the line integral of a function
g : R2 → R over a curve C parameterized by a continuous and piecewise
continuously differentiable map γ : [0, 1] → R2 is defined by

∫

C

g =

∫

C

g(γ)dγ :=

∫ 1

0

g(γ(t)) ‖γ̇(t)‖2 dt,

and is independent of the selected parameterization.

Theorem 2.17 (Smoothness properties of Hexp). Given S ⊂ Rd bounded
and measurable, a density φ : R → R≥0 and a performance function f : R≥0 →
R, the expected-value multicenter function Hexp : Sn → R is

(i) globally Lipschitz on Sn, and
(ii) continuously differentiable on Sn \ Scoinc, where for each i ∈ {1, . . . , n}

∂Hexp

∂pi
(P ) =

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq (2.8)

+
∑

a∈Dscn(f)

(
f−(a) − f+(a)

)
∫

Vi(P)∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq.

Therefore, the gradient of Hexp, interpreted as a map from Sn to Rn, is spa-
tially distributed (in the sense defined in Section 2.2.3) over the Delaunay
graph GD.

Let us discuss how Theorem 2.17 particularizes to the distortion, area, and
mixed distortion-area problems.

Distortion problem: In this case, the performance function does not have
any discontinuities and, therefore, the second term in (2.8) vanishes.
The gradient of Hdistor on Sn \ Scoinc then takes the form, for each
i ∈ {1, . . . , n},

∂Hdistor

∂pi
(P ) = 2Aφ(Vi(P))(CMφ(Vi(P)) − pi),

that is, the ith component of the gradient points in the direction of the
vector going from pi to the centroid of its Voronoi cell. The critical points
of Hdistor are therefore the set of centroidal Voronoi configurations in S
(cf. Section 2.1.4). This is a natural generalization of the result for the
1-center case, where the optimal node location is the centroid CMφ(S);

Area problem: In this case, the performance function is differentiable ev-
erywhere except at a single discontinuity, and its derivative is identically
zero. Therefore the first term in (2.8) vanishes. The gradient of Harea,a on
Sn \ Scoinc then takes the form, for each i ∈ {1, . . . , n},
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∂Harea,a

∂pi
(P ) =

∫

Vi(P)∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq,

that is, the ith component of the gradient is an average of the normal at
each point of Vi(P)∩ ∂B(pi, a), see Figure 2.12 for an illustration. The

Fig. 2.12. Gradient of the area function in an environment with constant density
function. The component of the gradient corresponding to the rightmost node is
zero – roughly speaking, because there is no incentive for this node to move in any
particular direction. However, the component of the gradient for each of the three
leftmost nodes is non-zero – roughly speaking, because by moving in the direction
of the gradient, these agents decrease the overlapping among the disk and cover new
regions of the space.

critical points of Harea,a correspond to configurations with the property
that each pi is a local maximum for the area of Vi,a(P ) = Vi(P )∩B(pi, a)
at fixed Vi(P ). We refer to these configurations as a-limited area-centered
Voronoi configurations. This is a natural generalization of the result for the
1-center case, where the optimal node location maximizes Aφ(S∩B(p, a))
(cf. Exercise E2.4);

Mixed distortion-area problem: In this case, the gradient of Hdistor-area,a,b

is a combination of the gradients of Hdistor and Harea,a. Specifically, one
has for each i ∈ {1, . . . , n},

∂Hdistor-area,a,b

∂pi
(P ) = 2Aφ(Vi,a(P))(CMφ(Vi,a(P)) − pi)

− (a2 + b)

∫

Vi(P)∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq.

For the particular case when b = −a2, the performance function is con-
tinuous, and the gradient of Hdistor-area,a takes the simpler form

∂Hdistor-area,a

∂pi
(P ) = 2Aφ(Vi,a(P))(CMφ(Vi,a(P)) − pi),

which points in the direction of the vector from pi to the centroid of its
a-limited Voronoi cell. In this case, the critical points of Hdistor-area,a are

98

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

therefore the set of a-limited centroidal Voronoi configurations in S (cf.
Section 2.1.4). This is a natural generalization of the result for the 1-center
case, where the optimal node location is the centroid CMφ(S ∩B(p, a)).

We refer to Hdistor, Harea,a, and Hdistor-area,a as multicenter functions be-
cause, as the above discussion shows, their critical points correspond to various
notions of center Voronoi configurations.

It is important to note that the gradients of Harea,a and Hdistor-area,a,b are
spatially distributed over the 2a-limited Delaunay graph GLD(2a). This obser-
vation is important for practical considerations: robotic agents with limited-
range interactions cannot in general compute the gradient of Hdistor because,
as we noted in Remark 2.11, for a given r ∈ R>0, GD is not in general spa-
tially distributed over Gdisk(r). However, robotic agents with limited-range
interactions can compute the gradients of Harea,a and Hdistor-area,a,b as long
as r ≥ 2a because, from Theorem 2.7(iii), GLD(r) is spatially distributed over
Gdisk(r). The relevance of this fact is further justified by the following result.

Proposition 2.18 (Constant-factor approximation of Hdistor). Let S ⊂
Rd be bounded and measurable. Consider the mixed distortion-area problem
with a ∈ ]0,diamS] and b = −diam(S)2. Then, for all P ∈ Sn,

Hdistor-area,a,b(P ) ≤ Hdistor(P ) ≤ β2 Hdistor-area,a,b(P ) < 0, (2.9)

where β = a
diam(S) ∈ [0, 1].

In fact, similar constant-factor approximations of the expected-value mul-
ticenter function Hexp can also be established, see [Cortés et al., 2005].

2.3.2 Worst-case and disk-covering multicenter functions

Given a compact set S ⊂ Rd and a performance function f , let us consider
the point in S that is worst covered by a set of points p1, . . . , pn. Formally,
we define the worst-case multicenter function Hworst : Sn → R by

Hworst(p1, . . . , pn) = min
q∈S

max
i∈{1,...,n}

f(‖q − pi‖2). (2.10)

The definition of Hworst can be read as follows: for each location q ∈ S,
consider the best coverage of q among those provided by each of the nodes
p1, . . . , pn, which corresponds to the value maxi∈{1,...,n} f(‖q − pi‖2). Then,
compute the worst coverage Hworst(p1, . . . , pn) by comparing the performance
at all locations in S.

Given the interpretation of Hworst, we seek to solve the following geometric
optimization problem

maximize Hworst(p1, . . . , pn), (2.11)
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that is, we seek to determine configurations p1, . . . , pn that maximize the value
of Hworst. An equivalent formulation of this problem is referred to as a contin-
uous p-center problem in the literature on facility location, see e.g., [Drezner,
1995].

In the present context, also relevant is the disk-covering multicenter func-
tion Hdc : Sn → R, defined by

Hdc(p1, . . . , pn) = max
q∈S

min
i∈{1,...,n}

‖q − pi‖2. (2.12)

The value of Hdc can be interpreted as the largest possible distance from
a point in S to one of the locations p1, . . . , pn. Note that, by definition, the
environment S is contained in the union of n closed balls centered at p1, . . . , pn

with radius Hdc(p1, . . . , pn).
The following result establishes the relationship between the worst-case

and the disk-covering multicenter functions, and as byproduct, provides an
elegant reformulation of the geometric optimization problem (2.11). Its proof
is left to the reader.

Lemma 2.19 (Relationship between Hworst and Hdc). Given S ⊂ Rd

compact and a performance function f : R≥0 → R, one has Hworst = f ◦Hdc.

Using Lemma 2.19 and the fact that f is non-increasing, we can reformu-
late the geometric optimization problem (2.11) as

minimize Hdc(p1, . . . , pn), (2.13)

that is, find the minimum radius r such that the environment S is covered
by n closed balls center at p1, . . . , pn with equal radius r. Note the connec-
tion between this formulation and the classical disk-covering problem: how to
cover a region with (possibly overlapping) disks of minimum radius. We shall
comment more on this connection later.

Given the equivalence between the geometric optimization problems (2.11)
and (2.13), we focus our attention on Hdc. The disk-covering multicenter
function can be alternatively described in terms of the Voronoi partition of S
generated by P = {p1, . . . , pn}. For (p1, . . . , pn) ∈ Sn \ Scoinc, one has

Hdc(p1, . . . , pn) = max
i∈{1,...,n}

max
q∈Vi(P)

‖q − pi‖2

= max
i∈{1,...,n}

max
q∈∂Vi(P)

‖q − pi‖2. (2.14)

This expression of Hdc is appealing because it clearly shows the value of the
function as the result of the aggregate contribution of all individual nodes. If
(p1, . . . , pn) ∈ Scoinc, then a similar decomposition of Hdc can be written in
terms of the distinct points P = iF(p1, . . . , pn).

Inspired by the expression (2.14), let us define a more general version of
the worst-case multicenter function. Given (p1, . . . , pn) ∈ Sn and a partition
{W1, . . . ,Wn} ⊂ P(S) of S, let
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Hdc(p1, . . . , pn,W1, . . . ,Wn) = max
i∈{1,...,n}

max
q∈∂Wi

‖q − pi‖2.

Notice that Hdc(p1, . . . , pn) = Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)), for all (p1, . . . , pn) ∈
Sn \ Scoinc. Moreover, one can establish the following optimality result.

Proposition 2.20 (Hdc-optimality of the Voronoi partition and cir-
cumcenter locations). For any P = {p1, . . . , pn} ∈ F(S) and any partition
{W1, . . . ,Wn} ⊂ P(S) of S,

Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

that is, the Voronoi partition V(P) is optimal for Hdc among all partitions
of S, and

Hdc(CC(W1), . . . ,CC(Wn),W1, . . . ,Wn) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

that is, the circumcenter locations CC(W1), . . . ,CC(Wn) are optimal for Hdc

among all configurations in S.

As a corollary of this result, we have that the circumcenter of S is a global
optimum of Hdc for the 1-center problem, i.e., when n = 1. This comes at no
surprise since, in this case, the value Hdc(p) corresponds to the radius of the
minimum-radius sphere centered at p that encloses S.

The following result characterizes the smoothness properties of the disk-
covering multicenter function, see [Cortés and Bullo, 2005].

Theorem 2.21 (Smoothness properties of Hdc). Given S ⊂ Rd compact,
the disk-covering multicenter function Hdc : Sn → R is globally Lipschitz
on Sn.

The generalized gradient and the critical points of Hsp can be character-
ized, but require a careful study based on nonsmooth analysis [Clarke, 1983].
In particular, two facts taken from [Cortés and Bullo, 2005] are of interest
here. First, under certain technical conditions, one can show that the critical
points of Hdc are circumcenter Voronoi configurations. This is why we refer
to Hdc as a multicenter function. Second, the generalized gradient of Hdc is
not spatially distributed over GD. This is essentially due to the inherent com-
parison among all agents that is embedded in the definition of Hdc (via the
max function).

2.3.3 Sphere-packing multicenter functions

Given a compact, connected set S ⊂ Rd, consider the situation where one
seeks to cover S as much as possible by means of open balls centered at a
set of points p1, . . . , pn with equal radius in such a way that these regions do
not intersect or leave the environment. Formally, we define the sphere-packing
multicenter function Hsp : Sn → R by

101

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

Hsp(p1, . . . , pn) = min
i6=j∈{1,...,n}

{1

2
‖pi − pj‖2,dist(pi, ∂S)

}

. (2.15)

The definition of Hsp can be read as follows: consider the pairwise distances
between any two points pi, pj (multiplied by a factor 1/2 so that each point can
fit a ball of equal radius and these balls do not intersect), and the individual
distances from each point to the boundary of the environment. The value of
Hsp is then the smallest of all distances, guaranteeing that the union of n
open balls centered at p1, . . . , pn with radius Hsp(p1, . . . , pn) is disjoint and
contained in S.

Given the interpretation of Hsp, we seek to solve the following geometric
optimization problem

maximize Hsp(p1, . . . , pn), (2.16)

that is, we seek to determine configurations p1, . . . , pn that maximize the
value of Hsp. Note the connection of this formulation with the classical
sphere-packing problem: how to maximize the coverage of a region with non-
overlapping disks (contained in the region) of maximum radius. We shall com-
ment more on this connection later.

The sphere-packing multicenter function can be alternatively described
in terms of the Voronoi partition of S generated by P = {p1, . . . , pn}. For
(p1, . . . , pn) ∈ Sn \ Scoinc, one has

Hsp(p1, . . . , pn) = min
i∈{1,...,n}

min
q∈∂Vi(P)

‖q − pi‖2. (2.17)

As for the previous multicenter functions, this expression of Hsp is appealing
because it clearly shows the value of the function as the result of the aggregate
contribution of all individual nodes. If (p1, . . . , pn) ∈ Scoinc, then a similar
decomposition of Hsp exists in terms of the distinct points P = iF(p1, . . . , pn).

Inspired by the expression (2.17), let us define a more general version of
the worst-case multicenter function. Given (p1, . . . , pn) ∈ Sn and a partition
{W1, . . . ,Wn} ⊂ P(S) of S, let

Hsp(p1, . . . , pn,W1, . . . ,Wn) = min
i∈{1,...,n}

min
q∈∂Wi

‖q − pi‖2.

Notice that Hsp(p1, . . . , pn) = Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)), for all (p1, . . . , pn) ∈
Sn \ Scoinc. Also note that the value Hsp(q1, . . . , qn,W1, . . . ,Wn) is the same
for any qi ∈ IC(Wi), i ∈ {1, . . . , n}. With a slight abuse of notation, we refer to
this common value as Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn). Moreover, one
can establish the following optimality result.

Proposition 2.22 (Hsp-optimality of the Voronoi partition and in-
center locations). For any P = {p1, . . . , pn} ∈ F(S) and any partition
{W1, . . . ,Wn} ⊂ P(S) of S,

Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),
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that is, the Voronoi partition V(P) is optimal for Hsp among all partitions
of S, and

Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

that is, the incenter locations IC(W1), . . . , IC(Wn) are optimal for Hsp among
all configurations in S.

As a corollary of this result, we have that the incenter set of S is composed
of global optima of Hsp for the 1-center problem, i.e., when n = 1. This comes
at no surprise since, in this case, the value Hsp(p) corresponds to the radius
of the maximum-radius sphere centered at p enclosed in S.

The following result characterizes the smoothness properties of the sphere-
packing multicenter function, see [Cortés and Bullo, 2005].

Theorem 2.23 (Smoothness properties of Hsp). Given S ⊂ Rd compact,
the sphere-packing multicenter function Hsp : Sn → R is globally Lipschitz
on Sn.

We conclude the section with some remark that are analogous to the ones
for the function Hdc. The generalized gradient and the critical points of Hsp

can be characterized, but require a careful study based on nonsmooth analy-
sis [Clarke, 1983]. In particular, two facts taken from [Cortés and Bullo, 2005]
are of interest here. First, under certain technical conditions, one can show
that the critical points of Hsp are incenter Voronoi configurations. This is why
we refer to Hsp as a multicenter function. Second, the generalized gradient of
Hsp is not spatially distributed over GD. This is essentially due to the inherent
comparison among all agents that is embedded in the definition of Hsp (via
the min function).

2.4 Notes

A thorough introduction to computational geometric concepts can be found
in [Preparata and Shamos, 1993, de Berg et al., 2000, O’Rourke, 2000]. The
handbooks [Goodman and O’Rourke, 2004, Sack and Urrutia, 2000] present
a comprehensive overview of computational geometric problems and their ap-
plications. Among the numerous topics we do not discuss in this chapter,
we mention distance geometry and rigidity theory [Whiteley, 1997] that are
notable for their applications to network localization and formation control.

The notion of Voronoi partition, and generalizations of it, have been ap-
plied in a numerous areas, including spatial interpolation, pattern analysis,
spatial processes modeling, and optimization, to name a few. The survey [Au-
renhammer, 1991] and the book [Okabe et al., 2000] discuss the history, prop-
erties, and applications of Voronoi partitions. The nearest neighbor and nat-
ural neighbor interpolations based on Voronoi partitions, e.g., see [Sibson,
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1981, Boissonnat and Cazals, 2002], are of particular interest to the treatment
of this chapter because of their spatially-distributed computation character.
Spatially-distributed maps for motion coordination are discussed in [Mart́ınez
et al., 2007c] and adopted in later chapters.

Proximity graphs [Jaromczyk and Toussaint, 1992] are a powerful tool
to capture the structure and shape of geometric objects, and therefore have
applications in multiple areas, including topology control of wireless net-
works [Santi, 2005], computer graphics [Langetepe and Zachmann, 2006], and
geographic analysis [Radke, 1988]. In cooperative control, a closely related
notion is that of state-dependent graph [Mesbahi, 2005]. Random geometric
graphs [Penrose, 2003] and percolation theory [Bollobás and Riordan, 2006,
Meester and Roy, 2008] study the properties of proximity graphs associated to
the random deployment of points according to some specified density function.

Locational optimization problems [Drezner, 1995, Drezner and Hamacher,
2001] are spatial resource-allocation problems (e.g., where to place mailboxes
in a city, where to place cache serves on the internet) that pervade a broad
spectrum of scientific disciplines. Computational geometry plays an important
role in locational optimization [Robert and Toussaint, 1990, Okabe et al.,
2000]. The field of geometric optimization [Mitchell, 1997, Agarwal and Sharir,
1998, Boltyanski et al., 1999] blends the geometric and locational optimization
aspects to study a wide variety of optimization problems induced by geometric
objects.

2.5 Proofs

This section gathers the proofs of the main results presented in the chapter.

2.5.1 Proof of Theorem 2.7

Proof. The inclusions in fact (i) are taken from Jaromczyk and Toussaint
[1992], de Berg et al. [2000].

The proof of the first inclusion in fact (ii) is as follows. Let (pi, pj) ∈
EGG ∩Gdisk(r)(P). From the definition of the Gabriel graph, we deduce that

‖pi+pj

2 − pi‖2 = ‖pi+pj

2 − pj‖2 ≤ ‖pi+pj

2 − pk‖2, for all k ∈ {1, . . . , n} \
{i, j}, and therefore,

pi+pj

2 ∈ Vi(P) ∩ Vj(P). Since (pi, pj) ∈ EGdisk(r)(P), we

deduce that
pi+pj

2 ∈ B(pi,
r
2 ) ∩ B(pj ,

r
2 ), and hence (pi, pj) ∈ EGLD(r)(P).

The second inclusion in (ii) is straightforward: if (pi, pj) ∈ EGLD(r)(P), then
Vi(P) ∩ Vj(P) 6= ∅, i.e., (pi, pj) ∈ EGD

(P). Since clearly (pi, pj) ∈ EGdisk(r)(P),
we conclude (ii). �

2.5.2 Proof of Theorem 2.9

Proof. The proof of fact (i) is as follows. Let P ∈ F(Rd). If GEMST(P) ⊆
Gdisk(r)(P), then clearly Gdisk(r)(P) is connected. To prove the other impli-
cation, we reason by contradiction. Assume Gdisk(r)(P) is connected and let
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GEMST(P) 6⊆ Gdisk(r)(P), i.e., there exists pi and pj with (pi, pj) ∈ EGEMST
(P)

and ‖pi − pj‖2 > r. If we remove this edge from EGEMST
(P), then the tree be-

comes disconnected into two connected components T1 and T2, with pi ∈ T1

and pj ∈ T2. Now, since by hypothesis Gdisk(r)(P) is connected, there must
exist k, l ∈ {1, . . . , n} such that pk ∈ T1, pl ∈ T2 and ‖pk − pl‖2 ≤ r. If
we add the edge (pk, pl) to the set of edges of T1 ∪ T2, then the resulting
graph G is acyclic, connected, and contains all the vertices P, i.e., G is a
spanning tree. Moreover, since ‖pk − pl‖2 ≤ r < ‖pi − pj‖2 and T1 and T2

are induced subgraphs of GEMST(P), we conclude that G has smaller length
than GEMST(P), which is a contradiction with the definition of the Euclidean
minimum spanning tree.

Let us prove fact (ii). For r ∈ R+, it is enough to show that GEMST ∩Gdisk(r)
has the same connected components as Gdisk(r), since this implies that
the same result holds for GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r). Since
GEMST ∩Gdisk(r) is a subgraph of Gdisk(r), it is clear that vertices belonging
to the same connected component of GEMST ∩Gdisk(r) must also belong to the
same connected component of Gdisk(r). To prove the converse, let P ∈ F(Rd),
and assume pi and pj in P verify ‖pi − pj‖2 ≤ r. Let C be the connected
component of Gdisk(r)(P) to which they belong. With a slight abuse of nota-
tion, we also denote by C the vertices of the connected component. Since C
is connected, then GEMST(C) ⊂ C by fact (i). Moreover, since all the nodes
in P \ C are at a distance strictly larger than r from any node of C, we
deduce from the definition of the Euclidean minimum spanning tree that
GEMST(C) is equal to the subgraph of GEMST(P) induced by C. Therefore,
GEMST(C) ⊂ GEMST ∩Gdisk(r)(P), and pi and pj belong to the same compo-
nent of GEMST ∩Gdisk(r)(P). This implies the result. �

2.5.3 Proof of Proposition 2.10

Proof. Regarding the statement on GRN ∩Gdisk(r), note that

B(pi, ‖pi − pj‖2)∩B(pj , ‖pi − pj‖2) ⊂ B(pi, ‖pi − pj‖2).

Therefore, if ‖pi − pj‖2 ≤ r, then any node contained in the intersection
B(pi, ‖pi − pj‖2)∩B(pj , ‖pi − pj‖2) must necessarily be within a distance
r of pi. From here, we deduce that GRN ∩Gdisk(r) is spatially distributed
over Gdisk(r). Regarding the statement on GG ∩Gdisk(r), note that

B
(pi + pj

2
,
‖pi − pj‖2

2

)

⊂ B(pi, ‖pi − pj‖2).

Therefore, if ‖pi − pj‖2 ≤ r, then any node contained in B
(pi+pj

2 ,
‖pi−pj‖2

2

)

must necessarily be within a distance r of pi. From here, we deduce that
GG ∩Gdisk(r) is spatially distributed over Gdisk(r). Finally, note that if ‖pi −
pj‖2 > r, then the half plane {q ∈ R2 | ‖q − pi‖2 ≤ ‖q − pj‖2} contains the
ball B(pi,

r
2 ). Accordingly,
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Vi, r
2
(P) = Vi(P) ∩B(pi,

r
2 )

= {q ∈ R2 | ‖q − pi‖2 ≤ ‖q − pj‖2, for all pj ∈ P} ∩B(pi,
r
2 )

= {q ∈ R2 | ‖q − pi‖2 ≤ ‖q − pj‖2, for all pj ∈ NGdisk(r),pi
(P)} ∩B(pi,

r
2 ),

from where we deduce that GLD(r) is spatially distributed over Gdisk(r). �

2.5.4 Proof of Theorem 2.17

We begin with some preliminary notions. In the following, a set Ω ⊂ R2 is
piecewise smooth if its boundary, ∂Ω, is a not self-intersecting closed curve
that admits a continuous and piecewise continuously differentiable parameter-
ization γ : [0, 1] → R2. Likewise, a collection of sets {Ω(x) ⊂ R2 | x ∈ (a, b)}
is a piecewise smooth family if Ω(x) is piecewise smooth for all x ∈ (a, b), and
there exists a continuous function γ : [0, 1] × (a, b) → R2, (t, x) 7→ γ(t, x),
continuously differentiable with respect to its second argument, such that for
each x ∈ (a, b), the map t 7→ γx(t) = γ(t, x) is a continuous and piecewise
smooth parameterization of ∂Ω(x). We refer to γ as a parameterization for
the family {Ω(x) ⊂ R2 | x ∈ (a, b)}.

The following result is an extension of the integral form of the Conservation-
of-Mass Law in fluid mechanics [Chorin and Marsden, 1994] and of the classic
divergence theorem in differential geometry [Chavel, 1984].

Proposition 2.24 (Generalized conservation of mass). Let {Ω(x) ⊂
R2 | x ∈ (a, b)} be a piecewise smooth family such that Ω(x) is star-shaped
for all x ∈ (a, b). Let the function φ : R2 × (a, b) → R be continuous on
R2 × (a, b), continuously differentiable with respect to its second argument for
all x ∈ (a, b) and almost all q ∈ Ω(x), and such that for each x ∈ (a, b), the
maps q 7→ φ(q, x) and q 7→ ∂φ

∂x (q, x) are measurable, and integrable on Ω(x).
Then, the function

(a, b) ∋ x 7→
∫

Ω(x)

φ(q, x)dq (2.18)

is continuously differentiable and

d

dx

∫

Ω(x)

φ(q, x)dq =

∫

Ω(x)

∂φ

∂x
(q, x)dq +

∫

∂Ω(x)

φ(γ, x)
(

n(γ) · ∂γ
∂x

)

dγ ,

where n : ∂Ω(x) → R2, q 7→ n(q), denotes the unit outward normal to ∂Ω(x)
at q ∈ ∂Ω(x), and γ : [0, 1] × (a, b) → R2 is a parameterization for the family
{Ω(x) ⊂ R2 | x ∈ (a, b)}.

We interpret the proposition as follows: in the fluid mechanics interpretation,
as the parameter x changes, the total mass variation inside the region can
be decomposed into two terms. The first term is the amount of mass created
inside the region, whereas the second term is the amount of mass that crosses
the moving boundary of the region.
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Proof (Proposition 2.24). Let x0 ∈ (a, b). Using the fact that the map γ is
continuous and that Ω(x0) is star-shaped, one can show that there exist an
interval around x0 of the form (x0 − ε, x0 + ε), a continuously differentiable
function ux0

: [0, 1] × R≥0 → R2 and a function rx0
: [0, 1] × (x0 − ε, x0 +

ε) → R≥0 continuously differentiable in its second argument and piecewise
continuously differentiable in its first argument, such that for all x ∈ (x0 −
ε, x0 + ε), one has

Ω(x) = ∪t∈[0,1]{ux0
(t, s) | 0 ≤ s ≤ rx0

(t, x)},
γ(t, x) = ux0

(t, rx0
(t, x)), for all t ∈ [0, 1].

For simplicity, we denote by r and u the functions rx0
and ux0

, respectively.
By definition, the function in (2.18) is continuously differentiable at x0 if the
following limit exists

lim
h→0

1

h

( ∫

Ω(x0+h)

φ(q, x0 + h)dq −
∫

Ω(x0)

φ(q, x0)dq
)

,

and depends continuously on x0. Now, we can rewrite the previous limit as

lim
h→0

1

h

∫ 1

0

(∫ r(t,x0+h)

0

φ(u(t, s), x0 + h)
∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
ds

−
∫ r(t,x0)

0

φ(u(t, s), x0)
∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
ds

)

dt

= lim
h→0

1

h

∫ 1

0

( ∫ r(t,x0+h)

r(t,x0)

φ(u(t, s), x0 + h)
∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
ds

+

∫ r(t,x0)

0

(φ(u(t, s), x0 + h) − φ(u(t, s), x0))
∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
ds

)

dt, (2.19)

where × denotes the vector product and for brevity we omit that the partial
derivatives ∂u

∂t and ∂u
∂s are evaluated at (t, s) in the integrals. Regarding the

second integral in the last equality of (2.19), since

lim
h→0

1

h

(

(φ(u(t, s), x0 + h) − φ(u(t, s), x0))
∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2

)

=
∂φ

∂x0
(u(t, s), x0)

∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
,

almost everywhere and this function is measurable and its integral over the
bounded set Ω(x0) is finite by hypothesis, the Lebesgue Dominated Conver-
gence Theorem [Bartle, 1995] implies that
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lim
h→0

1

h

∫ 1

0

∫ r(t,x0)

0

(φ(u(t, s), x0 + h) − φ(u(t, s), x0))
∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
dsdt

=

∫ 1

0

∫ r(t,x0)

0

∂φ

∂x
(u(t, s), x0)

∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
dsdt

=

∫

Ω(x0)

∂φ

∂x
(q, x0)dq. (2.20)

On the other hand, regarding the first integral in the last equality of (2.19),
using the continuity of φ, one can deduce that

lim
h→0

1

h

∫ 1

0

∫ r(t,x0+h)

r(t,x0)

φ(u(t, s), x0 + h)
∥
∥
∥
∂u

∂t
(t, s)× ∂u

∂s
(t, s)

∥
∥
∥

2
ds dt

= lim
h→0

1

h

∫ 1

0

∫ x0+h

x0

φ(u(t, r(t, z)), x0 + h)

·
∥
∥
∥
∂u

∂t
(t, r(t, z))× ∂u

∂s
(t, r(t, z))

∥
∥
∥

2

∂r

∂x
(t, z) dz dt

=

∫ 1

0

φ(u(t, r(t, x0)), x0)
∥
∥
∥
∂u

∂t
(t, r(t, x0))×

∂u

∂s
(t, r(t, x0))

∥
∥
∥

2

∂r

∂x0
(t, x0) dt.

Since γ(t, x) = u(t, r(t, x)) for all t ∈ [0, 1] and x ∈ (x0 − ε, x0 + ε), one has

∂γ

∂t
(t, x0) =

∂u

∂t
(t, r(t, x0)) +

∂u

∂s
(t, r(t, x0))

∂r

∂t
(t, x0) ,

∂γ

∂x
(t, x0) =

∂u

∂s
(t, r(t, x0))

∂r

∂x
(t, x0).

Let χ denote the angle formed by ∂γ
∂t (t, x0) and ∂u

∂s (t, r(t, x0)). Then (omitting
the expression (t, r(t, x)) for brevity),

∥
∥
∥
∂u

∂t
× ∂u

∂s

∥
∥
∥

2
=

∥
∥
∥

(
∂u

∂t
+
∂u

∂s

∂r

∂t

)

× ∂u

∂s

∥
∥
∥

2

=
∥
∥
∥
dγ

dt

∥
∥
∥

2

∥
∥
∥
∂u

∂s

∥
∥
∥

2
sinχ =

∥
∥
∥
∂γ

∂t

∥
∥
∥

2
nT (γ)

∂u

∂s
,

where in the last inequality we have used the fact that, since γx0
is a param-

eterization of ∂Ω(x0), then sinχ = cosψ, where ψ is the angle formed by n,
the outward normal to ∂Ω(x0), and ∂u

∂s . Therefore, we finally arrive at

∫ 1

0

φ(γ(t), x0)
∥
∥
∥
∂u

∂t
(t, r(t, x0))×

∂u

∂s
(t, r(t, x0))

∥
∥
∥

2

∂r

∂x
(t, x0)dt

=

∫ 1

0

φ(γ(t), x0)
∥
∥
∥
∂γ

∂t
(t, x0)

∥
∥
∥

2
nT (γ(t, x0))

∂γ

∂x
(t, x0)dt

=

∫

∂Ω(x0)

φ(γ, x0)n
T (γ)

∂γ

∂x
dγ. (2.21)
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Given the hypothesis of Proposition 2.24, both terms in (2.20) and (2.21) have
a continuous dependence on x0 ∈ (a, b). This concludes the proof. �

We are finally ready to state the proof of the main result of Section 2.3.

Proof (Theorem 2.17). We prove the theorem statement when the perfor-
mance function is continuously differentiable and we refer to [Cortés et al.,
2005] for the complete proof for the case when the performance function is
piecewise continuously differentiable. Specifically, we show that if f is contin-
uously differentiable, then for P ∈ Sn \ Scoinc,

∂Hexp

∂pi
(P ) =

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq.

From Proposition 2.24, we have

∂

∂pi

( n∑

j=1

∫

Vj(P)

f(‖q − pj‖2)φ(q)dq
)

=

∫

Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+
n∑

j=1

∫

∂Vj(P)

ϕ(pj , q)
(

n(γj) ·
∂γj

∂pi

)

dγj ,

where γj is a parametrization of Vj(P) and where we abbreviate ϕ(pj , q) =
f(‖q−pj‖2)φ(q). Next, we show that the second term vanishes. Note that the
motion of pi affects the Voronoi cell Vi(P) and the cells of all its neighbors in
NGD,pi

(P). Therefore, the second term equals

∫

∂Vi(P)

ϕ(pi, q)
(

n(γi)·
∂γi

∂pi

)

dγi+
∑

pj∈NGD,pi
(P)

∫

∂Vj(P)

ϕ(pj , q)
(

n(γj)·
∂γj

∂pi

)

dγj .

Without loss of generality assume Vi(P) does not share any face with ∂S.
Since the boundary of Vi(P) satisfies ∂Vi(P) =

⋃

j ∆ij , where ∆ij = ∆ji is
the edge between Vi(P) and Vj(P), for all neighbors pj , we compute
∫

∂Vi(P)

ϕ(pi, q)
(

n(γi) ·
∂γi

∂pi

)

dγi =
∑

pj∈NGD,pi
(P)

∫

∆ij

ϕ(pi, q)
(

nij(γj) ·
∂γj

∂pi

)

dγj ,

∫

∂Vj(P)

ϕ(pj , q)
(

n(γj) ·
∂γj

∂pi

)

dγj =

∫

∆ji

ϕ(pj , q)
(

nji(γj) ·
∂γj

∂pi

)

dγj ,

where nij denotes the unit normal along ∆ij outward of Vi(P ). Noting that
nji = −nij and collecting the results obtained so far, we write

n∑

j=1

∫

∂Vj(P)

ϕ(pj , q)
(

n(γj) ·
∂γj

∂pi

)

dγj

=
∑

pj∈NGD,pi
(P)

∫

∆ij

(

ϕ(pi, q) − ϕ(pj , q)
)(

nij(γj) ·
∂γj

∂pi

)

dγj .
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This quantity vanishes because f(‖q − pi‖2) = f(‖q − pj‖2) and, therefore,
ϕ(pi, q) = ϕ(pj , q) for any q belonging to the edge ∆ij . �

2.5.5 Proof of Proposition 2.20

Proof. Recall that Hdc(p1, . . . , pn) = Hdc(p1, . . . , pn, V1(P), . . . , Vn(P)). To
show the first inequality, let j ∈ {1, . . . , n} and q∗ ∈ Vj(P) be such that
Hdc(p1, . . . , pn) = ‖q∗ − pj‖2. By definition, given a partition {W1, . . . ,Wn}
of S, there exists k such that q∗ ∈Wk. Therefore,

Hdc(p1, . . . , pn) = ‖q∗ − pj‖2 ≤ ‖q∗ − pk‖2

≤ max
q∈Wk

‖q − pj‖2 ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn).

To show the second inequality, note that the definition of circumcenter implies
that, for each i ∈ {1, . . . , n},

max
q∈∂Wi

‖q − CC(Wi)‖2 ≤ max
q∈∂Wi

‖q − pi‖2.

Taking the maximum over all nodes, we deduce

Hdc(CC(W1), . . . ,CC(Wn),W1, . . . ,Wn) ≤ Hdc(p1, . . . , pn,W1, . . . ,Wn),

as claimed. �

2.5.6 Proof of Proposition 2.22

Proof. Recall that Hsp(p1, . . . , pn) = Hsp(p1, . . . , pn, V1(P), . . . , Vn(P)). To
show the first inequality, let j ∈ {1, . . . , n} and q∗ 6∈ int(Vj(P)) be such that
Hsp(p1, . . . , pn) = ‖q∗−pj‖2. Since q∗ 6∈ int(Vj(P)), there exists i ∈ {1, . . . , n}
such that ‖q∗ − pj‖2 ≥ ‖q∗ − pi‖2. On the other hand, there must exist
k ∈ {1, . . . , n} such that q∗ ∈Wk. Now, if k = j, then q∗ 6∈ int(Wi). Therefore

Hsp(p1, . . . , pn) = ‖q∗ − pj‖2 ≥ ‖q∗ − pi‖2

≥ min
q 6∈int(Wi)

‖q − pi‖2 ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

Now, if k = i, then q∗ 6∈ int(Wj). Therefore

Hsp(P ) = ‖q∗ − pj‖2 ≥ min
q 6∈int(Wj)

‖q − pi‖2 ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

Finally, if k 6= i, j, then q∗ 6∈ int(Wi) ∪ int(Wj), and a similar argument
guarantees Hsp(p1, . . . , pn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn).

To show the second inequality, let i ∈ {1, . . . , n} and select qi ∈ IC(Wi).
The definition of incenter set implies that,

min
q∈∂Wi

‖q − qi‖2 ≥ min
q∈∂Wi

‖q − pi‖2.
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The expression on the left does not depend on the specific point selected in
the incenter set. Taking the minimum over all nodes, we deduce

Hsp(IC(W1), . . . , IC(Wn),W1, . . . ,Wn) ≥ Hsp(p1, . . . , pn,W1, . . . ,Wn),

as claimed. �

2.6 Exercises

E2.1 (Proof of Lemma 2.2). For S = {p1, . . . , pn} ∈ F(Rd) with n ≥ 2, prove
the following statements:
(i) CC(S) ∈ co(S) \ Ve(co(S));
(ii) if p ∈ co(S) \ {CC(S)} and r ∈ R>0 are such that S ⊂ B(p, r), then

]p, CC(S)[ has a nonempty intersection with B( p+q
2

, r
2
) for all q ∈ co(S).

Hint: To show (i), invoke the definition of circumcenter. To show (ii), dis-
tinguish between the case when ‖p − q‖2 < r and ‖p − q‖2 = r. A proof is
contained in [Cortés et al., 2006].

E2.2 (The inclusion GLD(r) ⊂ GD ∩Gdisk(r) is in general strict). Consider
the nodes p1 = (0, 0), p2 = (1, 0), and p3 = (2, 1

10
). Pick r = 3 and perform

the following tasks:
(i) draw the three points, their Voronoi partitions and the disks centered at

the points with radius r, and
(ii) show that p1 and p3 are neighbors in the graph GD ∩Gdisk(r), but not in

the graph GLD(r).

E2.3 (The proximity graph GD ∩Gdisk(r) is not spatially distributed over
Gdisk(r)). Consider the nodes p1 = (0, 0), p2 = (1, 0), p3 = (2, 1

10
), and p4 =

(0, 31
10

). Compute the Voronoi partitions of the plane generated by {p1, p2.p3}
and {p1, p2, p3, p4}. For r = 3, show that p1 and p3 are neighbors in the graph
GD ∩Gdisk(r)({p1, p2, p3}) but not in the graph GD ∩Gdisk(r)({p1, p2, p3, p4}).
Why does this exercise illustrate that GD∩Gdisk(r) is not spatially distributed
over Gdisk(r)?

E2.4 (1-center area problem). Let W ⊂ R2 be a polygon, φ a density function
on R2 and a ∈ R>0. Assume that the a-contraction of W is non-empty.
Consider the area function H1 : W → R defined by

H1(p) =

Z

W∩B(p,a)

φ(q)dq = Aφ(W ∩ B(p, a)).

Justify informally why, at points in the boundary of a convex polygon W ,
the gradient of H1 is non-vanishing, and points toward the interior of the
polygon. (Note that it is not known whether the function H1 is concave and
how to characterize critical points of H1 in geometric terms.)

E2.5 (Proof of Proposition 2.15). This exercise asks you to prove a state-
ment slightly more general than Proposition 2.15. Let {W1, . . . , Wn} ⊂
P(S) be a partition of S ⊂ Rd and φ a density function on Rd. For
any {p1, . . . , pn}, {p1, . . . , pn} ∈ F(S) with the property that, for all i ∈
{1, . . . , n},
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‖pi − CMφ(Wi)‖2 ≤ ‖pi − CMφ(Wi)‖2

show that

Hdistor(p1, . . . , pn, W1, . . . , Wn) ≥ Hdistor(p1, . . . , pn, W1, . . . , Wn),

Moreover, if all the sets {W1, . . . , Wn} have non-vanishing areas, the in-
equality is strict if there exists i ∈ {1, . . . , n} such that ‖pi − CMφ(Wi)‖2 <
‖pi − CMφ(Wi)‖2

Hint: Use the expression of Hdistor in (2.7).

E2.6 (Mixed distortion-area multicenter function). Show that the expected
multicenter function Hexp takes the form of Hdistor-area,a stated in Sec-
tion 2.3.1 when the performance function is

f(x) = −x2 1[0,a](x) + b · 1]a,+∞[(x),

with a ∈ R>0 and b ≤ −a2.
Hint: As an intermediate step, show that for P = (p1, . . . , pn) ∈ Sn, one has
Vi(P ) ∩ (S \ B(pi, a)) = Vi(P ) ∩

`
S \ ∪n

k=1B(pk, a)
´

for all i ∈ {1, . . . , n}.
E2.7 (Proof of Proposition 2.16). This exercise is a guided proof of Proposi-

tion 2.16. Let W ⊂ Rd be a connected set, φ a density function on Rd and
a ∈ R>0. For p ∈ W and B a closed ball centered at a point in W with radius
a, define (p, B) 7→ HW (p, B) by

HW (p, B) = −
Z

W∩B

‖q − p‖2
2φ(q)dq −

Z

W∩(S\B)

a2φ(q)dq.

Do the following:
(i) Show that the multicenter function Hdistor-area,a admits the expression

Hdistor-area,a(p1, . . . , pn, W1, . . . , Wn) =
nX

i=1

HWi(pi, B(pi, a));

(ii) Given a closed ball B centered at a point in W with radius a, show that
for any p ∈ W ,

HW (CMφ(W ∩ B), B) ≥ HW (p, B),

with strict inequality unless p = CMφ(W ∩ B);
Hint: Use the Parallel Axis Theorem [Hibbeler, 2003].

(iii) Given p ∈ W , show that for any closed ball B centered at a point in W
with radius a,

HW (p, B(p, a)) ≥ HW (p, B);

Hint: Consider the decomposition of W given by the union of the disjoint
sets B(p, a)∩B, B(p, a)∩ (W \B), (W \B(p, a))∩B and (W \B(p, a))∩
(W \ B), and compare the integrals over each set.

(iv) Deduce, using (ii) and (iii), that

HW (CMφ(W ∩ B(p, a)), B(CMφ(W ∩ B(p, a)), a)) ≥ HW (p, B(p, a)),

with strict inequality unless p = CMφ(W ∩ B);
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(v) Combine (i) and (iv) to prove Proposition 2.16.

E2.8 (Locally-cliqueless proximity graph). Give an example of an allowable
environment Q and a configuration of points such that the inclusions of
Theorem 2.12(i),

GEMST,G ⊆ Glc,G ⊆ G
are strict for G = Gvis,Q.

E2.9 Prove Theorem 2.12.
Hint: This exercise has considerable theoretical content. To prove Theo-
rem 2.12(i), use an argument by contradiction to show that the first inclusion
holds, and the definition of locally-cliqueless graph to show that the second
inclusion holds.

E2.10 Assume f : R × R → R is continuously differentiable in its both arguments
and let ∂1f its partial derivative with respect to its first argument. Assume
the function y∗ : R → R satisfies, for each x ∈ R,

f(x, y∗(x)) = max{f(x, z) | z ∈ R},
and is continuously differentiable. Show that

d

dx
f(x, y∗(x)) = ∂1f(x, y∗(x)).

Explain how this result gives insight into the expression of the gradient of
Hexp in Theorem 2.17(ii) for smooth performance functions.

E2.11 (Distortion gradient ascent flow). Given a (convex) polytope S ⊂ Rd

and a density function φ, consider n nodes p1, . . . , pn evolving under the
continuous-time gradient ascent flow of the multicenter function Hdistor,

ṗi = 2 Aφ(Vi(P))(CMφ(Vi(P)) − pi), i ∈ {1, . . . , n}.
(i) What are the equilibrium points?
(ii) Show that Hdistor is monotonically non-decreasing along the flow.
(iii) Justify that the polytope S is invariant, i.e., that the trajectories of the

system remain in S.
(iv) Use (i)-(iii) to apply the LaSalle Invariance Principle and show that the

solutions of the flow converge to the set of centroidal Voronoi configura-
tions in S.

(v) Implement numerically the flow in the software of your choice. Select the
unit square S = [0, 1] × [0, 1] and the density function

φ = exp
“
−

`
x − 1

8

´2 −
`
y − 1

8

´2
”

+ exp
“
−

`
x − 7

8

´2 −
`
y − 7

8

´2
”
.

Run simulations from different initial conditions and with different num-
bers of nodes. Show by illustration that multiple local maxima exist.

E2.12 (Area gradient ascent flow). Given a (convex) polytope S ⊂ Rd, a density
function φ, and a radius a ∈ R>0, consider n nodes p1, . . . , pn evolving under
the continuous-time gradient ascent flow of the multicenter function Harea,a,

ṗi =

Z

Vi(P)∩ ∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq, i ∈ {1, . . . , n}.
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(i) What are the equilibrium points?
(ii) Show that Harea,a is monotonically non-decreasing along the flow.
(iii) Justify that the polytope S is invariant, i.e., that the trajectories of the

system remain in S.
(iv) Use (i)-(iii) to apply the LaSalle Invariance Principle and show that

the solutions of the flow converge to the set of a-limited area-centered
Voronoi configurations in S.

(v) Implement numerically the flow in the software of your choice. Select the
unit square S = [0, 1] × [0, 1], the density function

φ = exp
“
−

`
x − 1

8

´2 −
`
y − 1

8

´2
”

+ exp
“
−

`
x − 7

8

´2 −
`
y − 7

8

´2
”
,

and the parameter a = 1
8
. Run simulations from different initial con-

ditions and with different numbers of nodes. Show by illustration that
multiple local maxima exist.
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3

Robotic network models and complexity

notions

This chapter introduces the main subject of study of this book, namely a
model for groups of robots that can sense their own position, communicate
messages according to a geometric communication topology, process informa-
tion, and control their motion. We refer to such systems as robotic networks.
The exposition of this chapter has evolved from [Mart́ınez et al., 2007a].

The chapter is organized as follows. The first section of the chapter con-
tains the formal model. We begin by presenting the physical components of a
network, that is, the mobile robots and the communication service connecting
them. We then present the notion of control and communication law, and how
a law is executed by a robotic network. These notions subsume the notions
of synchronous network and distributed algorithm described in Section 1.4.
As an example of these notions, we introduce a simple law, called the agree
and pursue law, which combines ideas from leader election algorithms and
from cyclic pursuit (i.e., a game in which robots chase each other in a circular
environment). In the second section of the chapter, we propose a model of
groups of robots that interact through sensing, rather than communication.
The third section of the chapter discusses time, space, and communication
complexity notions for robotic networks as extensions of the corresponding
notions for distributed algorithms. The complexity notions rely on the basic
concept of coordination task and task achievement. The fourth and last sec-
tion of the chapter establishes the time, space, and communication required
by the agree and pursue law to steer a group of robots to a uniformly-spaced
rotating configuration.

3.1 A model for synchronous robotic networks

Here we introduce a model for a synchronous robotic network. This model is
an extension of the synchronous network model in Section 1.4.1. We start by
detailing the physical components of the network, which include the robots
themselves as well as the communicate service among them.
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3.1.1 Physical components

Let us start by providing a basic definition of robot and a model for how each
robot moves in space.

A mobile robot is a continuous-time continuous-space dynamical system
as defined in Section 1.2; that is, a tuple (X,U,X0, f), where

(i) X is d-dimensional space chosen among Rd, Sd, and the Cartesian products
Rd1 × Sd2 , for some d1 + d2 = d, called the state space;

(ii) U is a compact subset of Rm containing 0m, called the input space;
(iii) X0 is a subset of X, called the set of allowable initial states;
(iv) f : X×U → Rd is a smooth control vector field onX; that is, f determines

the robot motion x : R≥0 → X via the differential equation, or control
system,

ẋ(t) = f(x(t), u(t)), (3.1)

subject to the control u : R≥0 → U .

We will use the terms robot and agent interchangeably. We refer to x ∈ X
and u ∈ U as a physical state and an input of the mobile robot, respectively.
Most often the physical state will have the interpretation of a location, or
a location and velocity. We will often consider control-affine vector fields. In
such a case, we represent f as the ordered family of smooth vector fields
(f0, f1, . . . , fm) on X. In general the control signal u will not depend only
on time but also on x and possible other variables in the system. Note that
there is no additional difficulty in modeling mobile robots using dynamical
systems defined on manifolds [Bullo and Lewis, 2004], but we avoid it here in
the interest of simplicity.

Example 3.1 (Planar vehicle models). The following models of control
systems are commonly used in robotics, beginning with the early works in [Du-
bins, 1957, Reeds and Shepp, 1990]. Figure 3.1(a) and (b) show a two-wheeled
vehicle and a four-wheeled vehicle, respectively. The two-wheeled planar ve-
hicle is described by the dynamical system:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (3.2)

with state variables x ∈ R, y ∈ R and θ ∈ S1, describing the planar position
and orientation of the vehicle, and with controls v and ω, describing the
forward linear velocity and the angular velocity of the vehicle. Depending on
what set the controls are restricted to, we define the models:

The unicycle: The controls v and ω take value in [−1, 1] and [−1, 1], respec-
tively.

The differential drive robot: Set v = (ωright + ωleft)/2 and ω = (ωright −
ωleft)/2 and assume both ωright and ωleft take value in [−1, 1].

The Reeds–Shepp car: The control v takes values in {−1, 0, 1} and the
control ω takes values in [−1, 1].
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(x, y)
θ

(a)

(x, y)
θ

φ

ℓ

(b)

Fig. 3.1. (a) Two-wheeled vehicle and (b) four-wheeled vehicle. In each case, the
orientation of the vehicle is indicated by the small triangle.

The Dubins vehicle: The control v is set equal to 1 and the control ω takes
value in [−1, 1].

Finally, the four-wheeled planar vehicle, composed of a rear and a front axle
separated by a distance ℓ, is described by the same dynamical system (3.2)
with the following distinctions: (x, y) ∈ R2 is the position of the midpoint
of the rear axle, θ ∈ S1 is the orientation of the rear axle, the control v is
the forward linear velocity of the rear axle and the angular velocity satisfies

ω =
v

ℓ
tanφ, where the control φ is the steering angle of the vehicle. •

The following definition is a generalization of the concept of synchronous
network introduced in Definition 1.33.

Definition 3.2 (Robotic network). The physical components of a robotic
network S consist of a tuple (I,R, Ecmm), where

(i) I = {1, . . . , n}; I is called the set of unique identifiers (UIDs);

(ii) R = {R[i]}i∈I = {(X [i], U [i],X
[i]
0 , f

[i])}i∈I is a set of mobile robots;
(iii) Ecmm is a map from

∏

i∈I X
[i] to the subsets of I × I; this map is called

the communication edge map.

If R[i] = (X,U,X0, f) for all i, then the robotic network is called uniform. •

Remarks 3.3. (i) Following the convention established in Section 1.4, we
let the superscript [i] denote the variables and spaces which correspond

to the robot with unique identifier i; for instance, x[i] ∈ X [i] and x
[i]
0 ∈

X
[i]
0 denote the physical state and the initial physical state of robot R[i],

respectively. We refer to x = (x[1], . . . , x[n]) ∈ ∏

i∈I X
[i] as a state of the

network.
(ii) The map x 7→ (I, Ecmm(x)) models the topology of the communication

service among the robots: at a physical state x = (x[1], . . . , x[n]), two
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robots at locations x[i] and x[j] can communicate if and only if the pair
(i, j) is an edge in Ecmm(x) = Ecmm(x[1], . . . , x[n]). Accordingly, we refer
to (I, Ecmm(x)) as the communication graph at x. When and what robots
communicate is discussed in Section 3.1.2. As communication graphs, we
will often adopt one of the proximity graphs discussed in Section 2.2 and
in particular the (undirected) disk graph. •

To make things concrete, let us present some examples of robotic networks
that will be commonly used later.

Example 3.4 (First-order robots with range-limited communication).
Consider a group of robots moving in Rd, d ≥ 1. As in Chapter 2, we let p
denote a point in Rd and we let {p[1], . . . , p[n]} denote the robot locations.
Assume the robots move according to

ṗ[i](t) = u[i](t), (3.3)

with u[i] ∈ [−umax, umax]. See Figure 3.2 for an illustration. According to our

(x, y)

Fig. 3.2. Omnidirectional vehicle. In addition to controlling the rotation speed of
the wheels, the vehicle can also actuate the direction in which they point. This allows
the vehicle to move in any direction according to the first-order dynamics (3.3).

mobile robot notation, these are identical robots of the form

(Rd, [−umax, umax]
d,Rd, (0d,e1, . . . ,ed)).

We assume that each robot can sense its own position and can communicate to
any other robot within distance r, that is, we adopt the r-disk graph Gdisk(r)
defined in Section 2.2 as communication graph. These data define the uniform
robotic network Sdisk.

It shall also be interesting to consider first-order robots with communica-
tion graphs other than the disk graph; important examples include the De-
launay graph GD, the limited Delaunay graph GLD(r), and the ∞-disk graph
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G∞-disk(r), discussed in Section 2.2. These three graphs, adopted as commu-
nication models, give rise to three robotic networks denoted SD, SLD, S∞-disk,
respectively. •
Example 3.5 (Planar vehicle robots with Delaunay communication).
We consider a group of vehicle robots moving in an allowable environment
Q ⊂ R2 according to the planar vehicle dynamics introduced in Example 3.1.
We let {(p[1], θ[1]), . . . , (p[n], θ[n])} denote the robot physical states, where
p[i] = (x[i], y[i]) ∈ Q corresponds to the position and θ[i] ∈ S1 corresponds
to the orientation of the robot i ∈ I. As communication graph, we adopt the
Delaunay graph GD on Q introduced in Section 2.2. These data define the
uniform robotic network Svehicles. •
Example 3.6 (First-order robots with line-of-sight communication).
We consider a group of robots moving in an allowable environment Q ⊂ R2. As
in Example 3.4, we let {p[1], . . . , p[n]} denote the robot locations and assume
the robots move according to the motion model (3.3). Each robot can sense its
own position, the boundary of ∂Q, and can communicate to any other robot
within distance r and within line of sight, that is, we adopt the range-limited
visibility graph Gvis-disk,Q in Q defined in Section 2.2 as the communication
graph. These data define the uniform robotic network Svis-disk. •
Example 3.7 (First-order robots in S1). Consider n robots {θ[1], . . . , θ[n]}
in S1, moving along on the unit circle with angular velocity equal to the con-
trol input. Each robot is described by the tuple (S1, [−umax, umax],S

1, (0,e)),
where e is the vector field on S1 describing unit-speed counterclockwise rota-
tion. As in the previous examples, we assume that each robot can sense its
own position and can communicate to any other robot within distance r along
the circle, that is, we adopt the r-disk graph Gdisk(r) on S1 defined in Sec-
tion 2.2 as the communication graph. These data define the uniform robotic
network Scircle. •

We conclude this section with a remark.

Remark 3.8 (Congestion models in robotic networks). The behavior of
a robotic network might be affected by communication and physical congestion
problems.

Communication congestion: Omnidirectional wireless transmissions inter-
fere. Clear reception of a signal requires that no other signals are present
at the same point in time and space. In an ad hoc network, node i re-
ceives a message transmitted by node j only if all other neighbors of i
are silent. In other words, the transmission medium is shared among the
agents. As the density of agents increases, so does wireless communica-
tion congestion. Asymptotic and optimization results are known on this
regard.
First, for ad hoc networks with n uniformly randomly placed nodes,
it is known [Gupta and Kumar, 2000] that the maximum-throughput
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communication range r(n) of each node decreases as the density of
nodes increases; in d dimensions the appropriate scaling law is r(n) ∈
Θ

(
(log(n)/n)1/d

)
. This is referred to as the connectivity regime in per-

colation theory and statistical mechanics. Using the k-nearest-neighbor
graph over uniformly placed nodes, the analysis in Xue and Kumar [2004]
suggests that the minimal number of neighbors in a connected network
grows with log(n).
Second, a growing body of literature [Santi, 2005, Lloyd et al., 2005] is
available on topology control, i.e., on how to compute transmission power
values in an ad hoc network so as to minimize energy consumption and
interference (due to multiple sources), while achieving various graph topo-
logical properties, such as connectivity or low network diameter.

Physical congestion: Robots can collide: it is clearly important to avoid
“simultaneous access to the same physical area” by multiple robots. It is
reasonable to assume that, as the number of robots increase, so should
the area available for their motion. An alternative convenient approach is
the one taken by Sharma et al. [2007], where robots’ safety zones decrease
with decreasing robots’ speed. This suggests that, in a fixed environment,
individual nodes of a large ensemble have to move at a speed decreas-
ing with n, and in particular, at a speed proportional to n−1/d. Roughly
speaking, if the overall volume V where the groups of agents move is con-
stant, and there are n robots, then the speed v they can move at goes
approximately as vd ≈ V

n .

In summary, one way to incorporate congestion effects into the robotic
network model is to assume that the parameters of the physical components
of the network depend upon the number of robots n. In the limit as n→ +∞
we will sometimes assume that r and umax, the communication range and the
velocity upper bound in Examples 3.4 and 3.7, are of order n−1/d. •

3.1.2 Control and communication laws

Here we present a discrete-time communication, continuous-time motion
model for the evolution of a robotic network subject to a communication
and control law. In our model, each robot evolves in the physical domain in
continuous time, senses its position in continuous time, and, in discrete time,
exchanges information with other robots and executes a state machine, which
we shall refer to as a processor. The following definition is a generalization of
the concept of distributed algorithm introduced in Definition 1.34 and of the
classical notion of dynamical feedback controller.

Definition 3.9 (Control and communication law). A control and com-
munication law CC for a robotic network S consists of the sets:

(i) A, a set containing the null element, called the communication alphabet ;
elements of A are called messages;
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(ii) W [i], i ∈ I, called the processor state sets;

(iii) W
[i]
0 ⊆W [i], i ∈ I, sets of allowable initial values;

and of the maps:

(i) msg[i] : X [i] ×W [i] × I → A, i ∈ I, called message-generation functions;

(ii) stf[i] : X [i] ×W [i] × An → W [i], i ∈ I, called (processor) state-transition
functions;

(iii) ctl[i] : X [i] × X [i] × W [i] × An → U [i], i ∈ I, called (motion) control
functions.

If S is uniform and if W [i] = W , msg[i] = msg, stf[i] = stf, ctl[i] = ctl,
for all i ∈ I, then CC is said to be uniform and is described by a tuple

(A,W, {W [i]
0 }i∈I ,msg, stf, ctl). •

We will sometimes refer to a control and communication law as a dis-
tributed motion coordination algorithm. Roughly speaking, the rationale be-
hind Definition 3.9 is the following: The state of robot i includes both the
physical state x[i] ∈ X [i] and the processor state w[i] ∈ W [i] of the state
machine that robot i implements. These states are initialized with values

in their corresponding allowable initial sets X
[i]
0 and W

[i]
0 . We assume the

robot can sense it own physical position x[i]. At each time instant ℓ ∈ Z≥0,
robot i sends to each of its out-neighbors j in the communication digraph
(I, Ecmm(x)) a message (possibly the null message) computed by applying
the message-generation function msg[i] to the current values of its physical
state x[i], processor state w[i] and to the identity j. Subsequently, but still
at the time instant ℓ ∈ Z≥0, robot i updates the value of its processor state

w[i] by applying the state-transition function stf[i] to the current value of its
physical state x[i], processor state w[i] and to the messages it receives from its
in-neighbors. Between communication instants, i.e., for t ∈ [ℓ, ℓ+ 1) for some
ℓ ∈ Z≥0, the motion of the ith robot is determined by applying the control
function to the current value of x[i], the value of x[i] at time ℓ, the current
value of w[i], and the messages received at time ℓ. This evolution model is very
similar to the one we introduced for synchronous networks in Definition 1.35:
at each communication round, the first step is transmission and the second
one is computation and, except for the dependence on the physical state x,
the communication and state transition processes are identical.

These ideas are formalized in the following definition.

Definition 3.10 (Evolution of a robotic network). Let CC be a control
and communication law for the robotic network S. The evolution of (S, CC)

from initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of

curves x[i] : R≥0 → X [i] and w[i] : Z≥0 →W [i], i ∈ I, defined by

ẋ[i](t) = f
(

x[i](t), ctl[i]
(
x[i](t), x[i](⌊t⌋), w[i](⌊t⌋), y[i](⌊t⌋)

))

,

where ⌊t⌋ = max{ℓ ∈ Z≥0 | ℓ < t}, and
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w[i](ℓ) = stf[i](x[i](ℓ), w[i](ℓ− 1), y[i](ℓ)),

with x[i](0) = x
[i]
0 , and w[i](−1) = w

[i]
0 , i ∈ I. In the previous equations, y[i] :

Z≥0 → An (describing the messages received by processor i) has components

y
[i]
j (ℓ), for j ∈ I, defined by

y
[i]
j (ℓ) =

{

msg[j](x[j](ℓ), w[j](ℓ− 1), i), if (j, i) ∈ Ecmm

(
x[1](ℓ), . . . , x[n](ℓ)

)
,

null, otherwise.
•

For convenience, we define w(t) = w(⌊t⌋) for all t ∈ R≥0, and let R≥0 ∋
t 7→ (x(t), w(t)) denote the curves x[i] and w[i], for i ∈ {1, . . . , n}.

Remark 3.11 (Simplifications of control and communication laws).

(i) A control and communication law CC is static if the processor state set
W [i] is a singleton for all i ∈ I. This means that there is no meaningful
evolution of the processor state. In this case CC can be described by a
tuple (A, {msg[i]}i∈I , {ctl[i]}i∈I), with msg[i] : X [i] × I → A, and ctl[i] :
X [i] ×X [i] × An → U [i], for i ∈ I;

(ii) A control and communication law CC is data-sampled if the control func-
tions are independent of the current position of the robot and depend only
upon the robot position at last sample time. Specifically, the control func-
tions have the following property: given a processor state w[i] ∈ W [i], an
array of messages y[i] ∈ An, a current state x[i], and a state at last sample

time x
[i]
smpld, the control input ctl[i](x[i], x

[i]
smpld, w

[i], y[i]) is independent of

x[i], for all i ∈ I. In this case the control functions can be described by
maps of the form ctl[i] : X [i] ×W [i] × An → U [i], for i ∈ I.

(iii) In many control and communication laws, the robots exchange their states,
including both their processor and their physical states. For such laws, we
identify the communication alphabet with A = (X ×W )∪{null} and we
refer to the corresponding message generation function msgstd(x,w, j) =
(x,w) as the standard message-generation function.

Note that we allow the processor state set and the communication alphabet to
contain an infinite number of symbols. In other words, we assume that a robot
can store and transmit a (finite number of) integer and real numbers, among
other things. This is equivalent to assuming that we neglect any inaccuracies
due to quantization, as we did in Section 1.5. •

Remark 3.12 (Extensions of control and communication laws). Here
we briefly discuss alternative models and extensions of the proposed models.

Asynchronous sensor-based interactions: In the model proposed in Suzuki
and Yamashita [1999], robots are referred to as “anonymous” and “oblivi-
ous” in precisely the same way in which we defined control and communi-
cation laws to be uniform and static, respectively. As compared with our
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notion of robotic network, the model in [Suzuki and Yamashita, 1999] is
more general in that the robots’ activations schedules do not necessarily
coincide (i.e., this model is asynchronous), and at the same time it is less
general in that (1) robots cannot communicate any information other than
their respective positions, and (2) each robot observes every other robot’s
position (i.e., the complete communication graph is adopted). In the next
Section 3.2 we present a model where robots rely on sensing rather than
communication for their interaction.

Discrete and continuous time in motion and communication: In some
cases it will be convenient to consider discrete-time motion models; for
example, we present discrete-time motion models for first order agents in
Section 4.1. In some other cases, it will be convenient to consider dynam-
ical interactions between agents taking place in continuous time.

Stochastic link models: Although we do not present any result on this topic
in this notes, it is possible to develop robotic networks models over ran-
dom graphs and random geometric graphs, as studied in Bollobás [2001],
Penrose [2003]. Furthermore, it is of interest to consider communication
links with time-varying rates. •

3.1.3 Agree and pursuit control and communication law

We conclude this section with an example of a dynamic control and commu-
nication law. The problem is described as follows: a collection of robots with
range-limited communication are placed on the unit circle; the robots move
and communicate with the objectives of (1) agreeing on a direction of motion
(clockwise or counterclockwise) and (2) achieving an equidistant configuration
where all robots are equally angularly-spaced. To achieve these two objectives,
we combine ideas from leader election algorithms for synchronous networks
(see Section 1.4.4) and from cyclic pursuit problems (see Exercise E1.22): the
robots move a distance proportional to an appropriate inter-robot separation,
and they repeatedly compare their identifiers to discover the direction of mo-
tion of the robot with the largest identifier. In other words, the robots run
a leader election task in their processor states and a uniform robotic deploy-
ment task in their physical state — these are among the most basic tasks
in distributed algorithms and cooperative control. We present the algorithm
here and characterize its correctness and performance later in the chapter.

From Example 3.7, we consider the uniform network Scircle of locally-
connected first-order robots on S1. For r, umax, kprop ∈ ]0, 1

2 [ with kpropr ≤
umax, we define the agree & pursue law, denoted by CCagree & pursue, as
the uniform data-sampled law loosely described as follows:

[Informal description] The processor state consists of dir (the robot’s
direction of motion) taking values in {c, cc} (meaning clockwise and
counterclockwise) and max-id (the largest UID received by the robot,
initially set to the robot’s UID) taking values in I. At each communica-
tion round, each robot transmits its position and its processor state.
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Among the messages received from agents moving towards its posi-
tion, each agent picks the message with the largest value of max-id.
If this value is larger than its own value, the agent resets its proces-
sor state with the selected message. Between communication rounds,
each robot moves in the clockwise or counterclockwise direction de-
pending on whether its processor state dir is c or cc. Each robot
moves kprop times the distance to the immediately next neighbor in
the chosen direction, or, if no neighbors are detected, kprop times the
communication range r.

Note that the processor state with the largest UID will propagate through-
out the network as in the floodmax algorithm for leader election. Also, note
that the assumption kpropr ≤ umax guarantees that the desired control is
always within the allowable range [−umax, umax]. Next, we define the law for-
mally.

Robotic Network: Scircle, first-order agents in S1

with absolute sensing of own position, and
with communication range r

Distributed Algorithm: agree & pursue

Alphabet: A = S1 × {c, cc} × I ∪{null}
Processor State: w = (dir, max-id), where

dir ∈ {c, cc}, initially: dir[i] unspecified
max-id ∈ I, initially: max-id[i] = i for all i

function msg(θ, w, i) % Standard message generation function

1: return (θ, w)

function stf(θ, w, y)

1: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
2: if (max-idrcvd > max-id) AND (distcc(θ, θrcvd) ≤ r AND

dirrcvd = c) OR (distc(θ, θrcvd) ≤ r AND dirrcvd = cc) then
3: new-dir := dirrcvd

4: new-id := max-idrcvd

5: return (new-dir, new-id)

function ctl(θsmpld, w, y)

1: dtmp := r
2: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
3: if (dir = cc) AND (distcc(θsmpld, θrcvd) < dtmp) then
4: dtmp := distcc(θsmpld, θrcvd)
5: utmp := kpropdtmp

6: if (dir = c) AND (distc(θsmpld, θrcvd) < dtmp) then
7: dtmp := distc(θsmpld, θrcvd)
8: utmp := −kpropdtmp

9: return utmp
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An implementation of this control and communication law is shown in
Figure 3.3. As parameters we select n = 45, r = 2π/40, umax = 1/4 and
kprop = 7/16. Along the evolution, all robots agree upon a common direction
of motion and, after suitable time, they reach a uniform distribution.

Fig. 3.3. The agree & pursue law. Disks and circles correspond to robots moving
counterclockwise and clockwise, respectively. The initial positions and the initial
directions of motion are randomly generated. The five pictures depict the network
state at times 0, 9, 20, 100, and 800.

3.2 Robotic networks with relative sensing

The model presented above assumes the ability of each robot to know its own
absolute position. Here, we treat the alternative setting in which the robots do
not communicate amongst themselves, but instead detect and measure each
other’s relative position through appropriate sensors. Additionally, we assume
that the robots will perform measurements of the environment without having
any a priory knowledge of it. We assume that robots do not have the ability
to perform measurements expressed in a common reference frame. An early
reference where relative information is adopted is Lin et al. [2005].

3.2.1 Kinematics notions

Because robots do not have a common reference frame, all the measurements
generated by their on-board sensors are expressed in a local reference frame.
To formalize this fact, it is useful to review some basic kinematics conventions.
We let Σfixed = (pfixed, {xfixed,yfixed,zfixed}) be a fixed reference frame in R3.
A point q, a vector v, and a set of points S expressed with respect to the frame
Σfixed are denoted by qfixed, vfixed and Sfixed, respectively. Next, let Σb =
(pb, {xb,yb,zb}) be a reference frame fixed with a moving body. The origin
of Σb is the point pb, denoted by pb

fixed when expressed with respect to Σfixed.
The orientation of Σb is characterized by the d-dimensional rotation matrix
Rb

fixed, whose columns are the frame vectors {xb,yb,zb} of Σb expressed with
respect to Σfixed. We recall here the definition of the group of rotation matrices
in d-dimensions:
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pfixed

z
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fixed

xfixed

pb
fixed

q
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x
b

y
b

z
b

qb

Fig. 3.4. Inertially-fixed and body-fixed frames in R3

SO(d) = {R ∈ Rd×d | RRT = Id, det(R) = +1}.

With these notations, changes of reference frames are described by

qfixed = Rb
fixedqb + pb

fixed,

vfixed = Rb
fixedvb,

Sfixed = Rb
fixedSb + pb

fixed. (3.4)

Note that these change of frames formulas also hold in the planar case with
the corresponding definition of rotation matrix in SO(2).

Remark 3.13 (Comparison with literature). In our notation the sub-
script denotes the frame with respect to which the quantity is expressed. Some
other references, e.g., [Spong et al., 2006] adopt the opposite convention in
which the superscript denotes the frame with respect to which the quantity
is expressed. •
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3.2.2 The physical components

In what follows we describe our notion of mobile robots equipped with relative
sensors. We consider a group of n robots moving in an allowable environment
Q ⊂ Rd, for d ∈ {2, 3}, and we assume that a reference frame Σ[i], for i ∈
{1, . . . , n}, is attached to each robot, see Figure 3.5. Expressed with respect to

the fixed frame Σfixed, the ith frame Σ[i] is described by a position p
[i]
fixed ∈ Rd

and an orientation R
[i]
fixed ∈ SO(d). The continuous-time motion and discrete-

time sensing models are described as follows.

Σfixed

Σ[1]

Σ[2]

Σ[3]

Σ[4]

Fig. 3.5. Robotic network with relative sensing. A group of 4 robots moves in R2.
Each robot i ∈ {1, . . . , 4} has its own reference frame Σ[i].

Motion model: We select a simple motion model: for all t ∈ R≥0, the

orientation R
[i]
fixed is constant in time and robot i translates according to

ṗ
[i]
fixed(t) = R

[i]
fixedu

[i]
i , (3.5)

that is, the ith control input u
[i]
i is known and applied in the robot frame. Each

control input u
[i]
i , i ∈ {1, . . . , n}, takes values in a compact input space U .

Clearly, it would be possible to consider a motion model with time-varying
orientation and we refer the reader to Exercise E3.1 where we do so.

Sensing model: At each discrete time instant, robot i activates a sensor that
detects the presence and returns a measurement about the relative position of
any object (robots or environment boundary) inside a given “sensor footprint.”
We describe the model in two steps. First, each robot measures other robots’
positions and the environment as follows:

Sensing other robots’ positions: there exists a set Arbt containing the
null element, called the sensing alphabet, and a map rbt-sns : Rd → Arbt,
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called the sensing function, with the interpretation that robot i acquires

the symbol rbt-sns(p
[j]
i ) ∈ Arbt for each robot j ∈ {1, . . . , n} \ {i}.

Sensing the environment: there exists a set Aenv containing the null el-
ement, called the environment sensing alphabet, and a map env-sns :
P(Rd) → Aenv, called the environment sensing function, with the inter-
pretation that robot i acquires the symbol env-sns(Qi) ∈ Aenv.

Second, we let S[i] ⊂ Rd be the sensor footprint of robot i and S
[i]
i be its

expression in the frame Σ[i]. For simplicity, we assume that all robot sensors

are equal, so that we write S
[i]
i = S. We require both sensing functions to

provide no information about robots and boundaries that are outside S in the
following two meanings: (i) if p is any point outside S, then rbt-sns(p) = null,
and (ii) if W is any subset of Rd, env-sns(W ) = env-sns(W ∩S).

We summarize this discussion with the following definition.

Definition 3.14 (Network with relative sensing). The physical compo-
nents of a network with relative sensing consist of n mobile robots with identi-
fiers {1, . . . , n}, with configurations inQ×SO(d), for an allowable environment
Q ⊂ Rd, with dynamics described by equation (3.5), and with relative sensors
described by the sensor footprint S, sensing alphabets Arbt and Aenv, and
sensing functions rbt-sns and env-sns.

To make things concrete, let us present two examples of robotic networks
with relative sensing that are analogs of the “communication-based” robotic
networks Sdisk and Svis-disk in Examples 3.4 and 3.6.

Example 3.15 (Disk sensor and corresponding relative-sensing net-
work). Given a sensing range r ∈ R>0, the disk sensor has sensor foot-
print B(0d, r), i.e., a disk sensor measures any object (robot and environment
boundary) within distance r. Regarding sensing of other robots, we assume
that the alphabet is Arbt = Rd ∪{null} and that the sensing function is

rbt-sns(p
[j]
i ) = p

[j]
i for each robot j ∈ {1, . . . , n} \ {i}, inside the sensor foot-

print B(0d, r), and rbt-sns(p
[j]
i ) = null, otherwise. Regarding sensing of the

environment, we assume that the alphabet is Aenv = P(Rd) and that the
sensing function is env-sns(Qi) = Qi ∩B(0d, r). A group of robots with disk
sensors defines the robotic network with relative sensing Srs

disk. •
Example 3.16 (Range-limited visibility sensor and corresponding
relative-sensing network). Given a sensing range r ∈ R>0, the range-
limited visibility sensor has sensor footprint B(0d, r) and performs measure-
ments only of objects within unobstructed line of sight. Regarding sensing of
other robots, we assume that the alphabet is Arbt = Rd ∪{null} and that the

sensing function is rbt-sns(p
[j]
i ) = p

[j]
i for each robot j ∈ {1, . . . , n}\{i}, inside

the range-limited visibility set Vidisk(02;Qi), and rbt-sns(p
[j]
i ) = null, oth-

erwise. Regarding sensing of the environment, we assume1 that the alphabet

1 It would be equivalent to assume that the robot can sense every portion of ∂Q
that is within distance r and that is visible from the robot position.
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is Aenv = P(Rd) and that the environment sensor measures the range-limited

visibility set Vidisk(p
[i]
fixed;Q) expressed with respect to the frame Σ[i]; see Sec-

tion 2.1.2 for the definition of range-limited visibility set. In other words, the
environment sensing function is env-sns(Qi) = Vidisk(02;Qi). This is illus-
trated in Figure 3.6. A group of robots with range-limited visibility sensors

p
[i]
fixed

Σ[i]

02

Σ[i]

Fig. 3.6. The left plot depicts the range-limited visibility set Vidisk(p
[i]
fixed; Q) ex-

pressed with respect to an inertially fixed frame. The right plot depicts the range-
limited visibility set expressed with respect to the body-fixed frame Σ[i], that is,
Vidisk(02; Qi).

defines the robotic network with relative sensing Srs
vis-disk. •

Remark 3.17 (Sensing model consequences). The proposed sensing model
has the following two consequences:

(i) robots have no information about the absolute position and orientation of
themselves, the other robots or any part of the environment; and

(ii) the relative sensing capacity of the robots gives rise to a proximity graph,
called the sensing graph, whose edges are the collection of robot pairs that
are within sensing range. For example, in the network Srs

disk, the sensing
graph is the disk graph Gdisk(r). In general, sensing graphs are directed.•

3.2.3 Relative-sensing control laws

As we did for robotic networks with interactions based on communication, we
define here control laws based on relative sensing and describe the closed-loop
evolution of robotic networks with relative sensing.

First, we consider a robotic network with relative sensing Srs character-
ized by: identifiers {1, . . . , n}, configurations in Q × SO(d), for an allowable
environment Q ⊂ Rd, dynamics described by equation (3.5), and relative sen-
sors described by the sensor footprint S, sensing alphabets Arbt and Aenv, and
sensing functions rbt-sns and env-sns. A relative-sensing control law RSC for
the robotic network with relative sensing Srs consists of the tuple:
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(i) W , called the processor state set, with corresponding set of allowable initial
values W0 ⊆W ;

(ii) stf : W×An
rbt×Aenv →W , called the (processor) state-transition function;

and
(iii) ctl : W × An

rbt × Aenv → U , called the (motion) control function.

As for robotic networks, we say that RSC is static if W is a singleton for all
i ∈ {1, . . . , n}; in this case RSC can be described by a motion control function
ctl : An

rbt × Aenv → U . Additionally, if the environment Q = Rd, then RSC
can be described by a motion control function ctl : W × An

rbt → U .

Second, the evolution of (Srs,RSC) from initial conditions (p
[i]
0 , R

[i]
fixed) ∈

Rd × SO(d) and w
[i]
0 ∈ W0, i ∈ {1, . . . , n}, is the collection of curves p

[i]
fixed :

R≥0 → Rd and w[i] : Z≥0 →W , i ∈ {1, . . . , n}, defined by

ṗ
[i]
fixed(t) = R

[i]
fixed ctl

(
w[i](⌊t⌋), y[i](⌊t⌋), y[i]

env(⌊t⌋)
)
,

w[i](ℓ) = stf(w[i](ℓ− 1), y[i](ℓ), y[i]
env(ℓ)),

with p
[i]
fixed(0) = p

[i]
0 , and w[i](−1) = w

[i]
0 , i ∈ {1, . . . , n}. In the previous

equations, y[i] : Z≥0 → An
rbt (describing the robot measurements taken by

sensor i) with components y
[i]
j (ℓ), for j ∈ {1, . . . , n}, and y

[i]
env : Z≥0 → Aenv

(describing the environment measurements taken by sensor i) are defined by

y
[i]
j (ℓ) = rbt-sns(p

[j]
i (ℓ)), y[i]

env(ℓ) = env-sns(Qi(ℓ)).

In the last equation, p
[j]
i and Qi(ℓ) denote the position of the j-th robot and

the environment Q as expressed with respect to the moving frame Σ[i].

3.2.4 Equivalence between communication and relative-sensing
laws

Consider a “communication-based” robotic network S1 with control and com-
munication law CC1 with the following properties:

(i) regarding S1: the network is uniform, the state space isX = Rd with states
denoted by x[i] = p[i], the communication graph is the r-disk graph, and
the robot dynamics is ṗ[i] = u[i]; and

(ii) regarding CC1: the control and communication law is uniform and data-
sampled, the communication alphabet is A = Rd ∪{null}, and the
message-generation function is msg(p,w, j) = p.

Given a network and a law (S1, CC1) satisfying (i) and (ii), the control and
communication law CC1 is invariant if its state transition and control maps
satisfy, for all p ∈ Rd, w ∈W , y ∈ An and R ∈ SO(d),

stf(p,w, y) = stf
(
0d, w,R(y − p)

)
,

ctl(p,w, y) = RT ctl
(
0d, w,R(y − p)

)
,
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where the ith component of R(y − p) ∈ An is R(yi − p) if yi ∈ Rd, or null if
yi = null.

Next, consider a relative-sensing network S2 with disk sensors as in Exam-
ple 3.15 that is, assume the sensing footprint is B(0d, r), the sensing alphabet
is Arbt = Rd ∪{null} and the sensing function equals the identity function in
B(0d, r). We assume no environment sensing as we set Q = Rd. The commu-
nication and control law CC1 and the relative-sensing control law RSC2 for
network S2 are equivalent if their processor state sets identical, e.g., denote
both by W , and their state transition and control maps satisfy, for all w ∈W
and y ∈ Rd ∪{null} = An = An

rbt,

stf1(0d, w, y) = stf2(w, y), and ctl1(0d, w, y) = ctl2(w, y).

Proposition 3.18 (Evolution equivalence). If CC1 is invariant and if CC1

and RSC2 are equivalent, then the evolutions of (S1, CC1) and (S2,RSC2) from
identical initial conditions are identical.

Proof. Assume that the messages and measurements array y[i](t) received
by the i-th robot at time t in the communication-based network and in the
relative-sensing networks are equal to, respectively:

p
[j1]
fixed, . . . , p

[jk]
fixed, and p

[j1]
i , . . . , p

[jk]
i .

Then, the evolution of the communication-based network and of the relative-
sensing networks are written as, respectively:

ṗ
[i]
fixed = ctl1(p

[i]
fixed, w

[i], p
[j1]
fixed, . . . , p

[jk]
fixed),

ṗ
[i]
fixed = R

[i]
fixedctl2(w

[i], p
[j1]
i , . . . , p

[jk]
i ).

From equation (3.4) we know that, for all j ∈ {j1, . . . , jk},

p
[j]
fixed = R

[i]
fixedp

[j]
i + p

[i]
fixed =⇒ p

[j]
i = (R

[i]
fixed)T (p

[j]
fixed − p

[i]
fixed).

From this equality and from the fact that CC1 is invariant, we observe that

ctl1(p
[i]
fixed, w

[i], p
[j1]
fixed, . . . , p

[jk]
fixed) = R

[i]
fixedctl1(0d, w

[i], p
[j1]
i , . . . , p

[jk]
i ).

Since CC1 and RSC2 are equivalent, the two evolution equations coincide. A
similar reasoning shows that also the evolutions of the processor states are
identical. �

Remark 3.19 (Communication-based laws on relative-sensing net-
works). Proposition 3.18 implies the following fact. Given an invariant con-
trol and communication law for a robotic network satisfying all appropriate
properties, the control and communication law can be implemented on an
appropriate relative-sensing network as a relative-sensing control law. •
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3.3 Coordination tasks and complexity notions

In this section we introduce concepts and tools useful to analyze a communica-
tion and control law in a robotic network; our treatment is directly generalized
to relative-sensing networks. We address the following questions: What is a
coordination task for a robotic network? When does a control and commu-
nication law achieve a task? And with what time, space, and communication
complexity?

3.3.1 Coordination tasks

Our first analysis step is to characterize the correctness properties of a com-
munication and control law. We do so by defining the notion of task and of
task achievement by a robotic network.

Definition 3.20 (Coordination task). Let S be a robotic network and let
W be a set.

(i) A coordination task for S is a map T :
∏

i∈I X
[i] ×Wn → {true, false}.

(ii) If W is a singleton, then the coordination task is said to be static and can
be described by a map T :

∏

i∈I X
[i] → {true, false}.

Additionally, let CC a control and communication law for S.

(i) The law CC is compatible with the task T :
∏

i∈I X
[i]×Wn → {true, false}

if its processor state take values in W, that is, if W [i] = W, for all i ∈ I.
(ii) The law CC achieves the task T if it is compatible with it and if, for all

initial conditions x
[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, there exists T ∈ R>0

such that the network evolution t 7→ (x(t), w(t)) has the property that
T(x(t), w(t)) = true for all t ≥ T . •

Remark 3.21 (Temporal logic). Loosely speaking, achieving a task means
obtaining and maintaining a specified pattern in the robot physical or pro-
cessor state. In other words, the task is achieved if at some time and for all
subsequent times the predicate evaluates to true along system trajectories. It
is possible to consider more general tasks based on more expressive predicates
on trajectories. Such predicates can be defined through various forms of tem-
poral and propositional logic, e.g., see Emerson [1994]. In particular, (linear)
temporal logic contains certain constructs that allow reasoning in terms of
time and is hence appropriate for robotic applications, as argued for example
in Fainekos et al. [2005]. Network tasks such as periodically visiting a desired
set of configurations can be encoded with temporal logic statements. •

Example 3.22 (Direction agreement and equidistance tasks). From
Example 3.7, consider the uniform network Scircle of locally-connected first-
order agents in S1. From Section 3.1.3, recall the agree & pursue control
and communication law CCagree & pursue with processor state taking values in
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W = {cc, c}×I. There are two tasks of interest. First, we define the direction
agreement task Tdir : (S1)n ×Wn → {true, false} by

Tdir(θ, w) =

{

true, if dir[1] = · · · = dir[n],

false, otherwise,

where θ = (θ[1], . . . , θ[n]), w = (w[1], . . . , w[n]), and w[i] = (dir[i], max-id[i]),
for i ∈ I. Furthermore, for ε > 0, we define the static equidistance task
Tε-eqdstnc : (S1)n → {true, false} to be true if and only if

∣
∣ min

j 6=i
distc(θ

[i], θ[j]) − min
j 6=i

distcc(θ
[i], θ[j])

∣
∣ < ε, for all i ∈ I.

In other words, Tε-eqdstnc is true when, for every agent, the distance to the
closest clockwise neighbor and to the closest counterclockwise neighbor are
approximately equal. •

3.3.2 Complexity notions

We are finally ready to define the key notions of time, space and communi-
cation complexity. These notions describe the cost that a certain control and
communication law incurs while completing a certain coordination task. We
also define the complexity of a task to be the infimum of the costs incurred
by all laws that achieve that task. We begin with a remark highlighting a dif-
ference between what follows and the complexity treatment for synchronous
networks.

Remark 3.23 (Termination via task completion). As discussed in Re-
mark 1.39 in Section 1.4, it is possible to consider various algorithm termi-
nation notions. Here we will establish the completion of an algorithm as the
instant when a given task is achieved. •

First, we define the time complexity of an achievable task as the minimum
number of communication rounds needed by the agents to achieve the task T.

Definition 3.24 (Time complexity). Let S be a robotic network and let T
be a coordination task for S. Let CC be a control and communication law for
S compatible with T.

(i) The (worst-case) time complexity to achieve T with CC from (x0, w0) ∈
∏

i∈I X
[i]
0 × ∏

i∈I W
[i]
0 is

TC(T, CC , x0, w0) = inf {ℓ | T(x(k), w(k)) = true , for all k ≥ ℓ} ,

where t 7→ (x(t), w(t)) is the evolution of (S, CC) from the initial condition
(x0, w0);

133

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

(ii) The (worst-case) time complexity to achieve T with CC is

TC(T, CC) = sup
{

TC(T, CC , x0, w0) | (x0, w0) ∈
∏

i∈I

X
[i]
0 ×

∏

i∈I

W
[i]
0

}

.

(iii) The (worst-case) time complexity of T is

TC(T) = inf{TC(T, CC) | CC compatible with T}. •

Next, we quantify memory and communication requirements of communi-
cation and control laws. We assume that elements of the processor state set
W or of the alphabet set A might amount to multiple “basic memory units”
or “basic messages.” We let |W |basic and |A|basic denote the number of basic
memory units and basic messages required to represent elements of W and
A, respectively. The null message has zero cost. To clarify this assumption,
we adopt two conventions. First, as in Section 1.4.2, we assume that a “basic
memory unit” or a “basic message” contains log(n) bits. This implies that the
log(n) bits required to store or transmit a robot identifier i ∈ {1, . . . , n} are
equivalent to one “basic memory unit.” Second, as mentioned in Remark 3.11,
we assume that a processor can store and transmit a (finite number of) in-
teger and real numbers and we adopt the convention that any such number
is quantized and represented by a constant number of basic memory units or
basic messages.

We now quantify memory requirements of algorithms and tasks by count-
ing the required number of basic memory units. Let the network S, the task
T and the control and communication law CC be as in Definition 3.24.

Definition 3.25 (Space complexity).

(i) The (worst-case) space complexity to achieve T with CC , denoted by
SC(T, CC), is the maximum number of basic memory units required by
a robot processor executing the CC on S among all robots and among all
allowable initial physical and processor states until termination.

(ii) The space complexity of T is the infimum among the space complexities
of all control and communication laws that achieve T. •
The set of all non-null messages generated during one communication

round from network state (x,w) is denoted by

M(x,w) = {(i, j) ∈ Ecmm(x) | msg[i](x[i], w[i], j) 6= null}.

We now quantify mean and total communication requirements of algorithms
and tasks by counting the number of transmitted basic messages.

Definition 3.26 (Mean and Total Communication complexity).

(i) The (worst-case) mean communication complexity and the (worst-case)
total communication complexity to achieve T with CC from (x0, w0) ∈
∏

i∈I X
[i]
0 × ∏

i∈I W
[i]
0 are, respectively,
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MCC(T, CC , x0, w0) =
|A|basic

τ

τ−1∑

ℓ=0

|M(x(ℓ), w(ℓ))|,

TCC(T, CC , x0, w0) = |A|basic

τ−1∑

ℓ=0

|M(x(ℓ), w(ℓ))|,

where t 7→ (x(t), w(t)) is the evolution of (S, CC) from the initial condition
(x0, w0) and where τ = TC(CC , T, x0, w0). Here, MCC is defined only for
initial conditions (x0, w0) with the property that T(x0, w0) = false.

(ii) The (worst-case) mean communication complexity (resp. the (worst-case)
total communication complexity) to achieve T with CC is the supremum
of MCC(T, CC , x0, w0) (resp. TCC(T, CC , x0, w0)) over all allowable initial
states (x0, w0).

(iii) The (worst-case) mean communication complexity (resp. the (worst-case)
total communication complexity) of T is the infimum among the mean
communication complexity (resp. the total communication complexity) of
all control and communication laws that achieve T. •

By construction, one can verify that it always happens that

TCC(T, CC) ≤ MCC(T, CC) · TC(T, CC). (3.6)

We conclude this section with possible variations and extensions of the com-
plexity definitions.

Remark 3.27 (Infinite-horizon mean communication complexity).
The mean communication complexity MCC measures the average cost of the
communication rounds required to achieve a task over a finite time horizon;
a similar statement holds for the total communication complexity TCC. One
might be interested in a notion of mean communication complexity required
to maintain true the task for all times. Accordingly, the infinite-horizon mean
communication complexity of CC from initial conditions (x0, w0) is

IH-MCC(CC , x0, w0) = lim
τ→+∞

|A|basic

τ

τ∑

ℓ=0

|M(x(ℓ), w(ℓ))|. •

Remark 3.28 (Communication complexity in omnidirectional net-
works). In omnidirectional wireless networks the standard operation mode is
for all neighbors of a node to receive the signal it transmits. In other words,
the transmission is omnidirectional rather than unidirectional. It is straight-
forward to require the message generation function to have the property that
the output it generates be independent of the intended receiver. Under such
assumptions, it make sense to count as communication complexity not the
number of messages transmitted in the network, but the number of transmis-
sions, i.e., a unit cost per node rather than a unit cost per edge of the network.
•
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Remark 3.29 (Energy complexity). Given a model for the energy con-
sumed by the robot to move and to transmit a message, one can easily define
a notion of energy complexity for a control and communication law. In mod-
ern wireless transmitters, the energy consumptions in transmitting a signal at
a distance r varies with a power of r. Analogously, energy consumption is an
increasing function of distance traveled. We consider this to be a promising
avenue for further research. •

3.3.3 Invariance under rescheduling

Here we discuss the invariance properties of time and communication com-
plexity under the rescheduling of a control and communication law. The idea
behind rescheduling is to “spread” the execution of the law over time without
affecting the trajectories described by the robots.

For simplicity we consider the setting of static laws; similar results can
be obtained for the general setting. Also, for ease of presentation, we allow
our communication and control laws to be time dependent, i.e., we consider
message-generation functions and motion control functions of the form msg[i] :
Z≥0 ×X [i] × I → A and ctl[i] : R≥0 ×X [i] ×X [i] × An → U [i], respectively.
The Definition 3.10 of network evolution can be readily extended to this more
general time-dependent setup.

Let S = (I,R, Ecmm) be a robotic network where each mobile robot is a

driftless control system, as defined in Section 1.2. Let CC = (A, {msg[i]}i∈I , {ctl[i]}i∈I)
be a static control and communication law. In what follows, we define a new
control and communication law by modifying CC ; to do so we introduce some
notation. Let s ∈ N, with s ≤ n, and let PI = {I0, . . . , Is−1} be an s-partition
of I, that is, I0, . . . , Is−1 ⊂ I are disjoint and nonempty and I = ∪s−1

k=0 Ik. For

i ∈ I, define the message-generation functions msg
[i]
PI

: Z≥0 ×X [i] × I → A by

msg
[i]
PI

(ℓ, x, j) = msg[i](⌊ℓ/s⌋ , x, j), (3.7)

if i ∈ Ik and k = ℓ mod s, and msg
[i]
PI

(ℓ, x, j) = null otherwise. According
to this message-generation function, only the agents with unique identifier
in Ik will send messages at time ℓ, where ℓ ∈ {k + as}a∈Z≥0

. Equivalently,
this can be stated as follows: according to (3.7), the messages originally sent
at the time instant ℓ are now rescheduled to be sent at the time instants
F (ℓ)−s+1, . . . , F (ℓ), where F : Z≥0 → Z≥0 is defined by F (ℓ) = s(ℓ+1)−1.

Figure 3.7 illustrates this idea. For i ∈ I, define the control functions ctl[i] :
R≥0 ×X [i] ×X [i] × An → U [i] by

ctl
[i]
PI

(t, x, xsmpld, y) = ctl[i]
(
t− ℓ+ F−1(ℓ), x, xsmpld, y

)
, (3.8)

if t ∈ [ℓ, ℓ + 1] and ℓ = −1 mod s and ctl
[i]
PI

(t, x, xsmpld, y) = 0 otherwise.

Here F−1 : Z≥0 → Z≥0 is the inverse of F , defined by F−1(ℓ) = ℓ+1
s − 1.
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ℓ ℓ + 1

F (ℓ) − s + 1 F (ℓ) F (ℓ) + 1

Fig. 3.7. Under the rescheduling, the messages that are sent at the time instant
ℓ under the control and communication law CC are rescheduled to be sent over
the time instants F (ℓ) − s + 1, . . . , F (ℓ) under the control and communication law
CC (s,PI ).

Roughly speaking, the control law ctl
[i]
PI

makes the agent i wait for the time
intervals [ℓ, ℓ+ 1], with ℓ ∈ {as− 1}a∈N, to execute any motion. Accordingly,
the evolution of the robotic network under the original law CC during the time
interval [ℓ, ℓ + 1] now takes place when all the corresponding messages have
been transmitted, i.e., along the time interval [F (ℓ), F (ℓ) + 1]. The following
definition summarizes this construction.

Definition 3.30 (Rescheduling of control and communication laws).
Let S = (I,R, Ecmm) be a robotic network with driftless physical agents, and

let CC = (Z≥0,A, {msg[i]}i∈I , {ctl[i]}i∈I) be a static control and communica-
tion law. Let s ∈ N, with s ≤ n, and let PI be an s-partition of I. The control

and communication law CC (s,PI) = (Z≥0,A, {msg
[i]
PI

}i∈I , {ctl[i]PI
}i∈I) defined

by equations (3.7) and (3.8) is called a PI-rescheduling of CC . •

The following result whose proof is presented in Section 3.6.1 shows that
the total communication complexity of CC remains invariant under reschedul-
ing.

Proposition 3.31 (Complexity of rescheduled laws). With the assump-
tions of Definition 3.30, let T :

∏

i∈I X
[i] → {true, false} be a coordination

task for S. Then, for all x0 ∈ ∏

i∈I X
[i]
0 ,

TC(T, CC (s,PI), x0) = s · TC(T, CC , x0) .

Moreover, if Crnd is additive, then, for all x0 ∈ ∏

i∈I X
[i]
0

MCC(T, CC (s,PI), x0) =
1

s
· MCC(T, CC , x0) ,

and, therefore, TCC(T, CC (s,PI), x0) = TCC(T, CC , x0), i.e., the total commu-
nication complexity of CC is invariant under rescheduling. •
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Remark 3.32 (Appropriate complexity notions for driftless agents).
Given the results in the previous theorem, one should be careful in choosing
what notion of communication complexity to evaluate control and commu-
nication laws. For driftless physical agents, rather than the mean commu-
nication complexity MCC, one should really consider the total communica-
tion complexity TCC, since the latter is invariant with respect to reschedul-
ing. Note that the notion of infinite-horizon mean communication complexity
IH-MCC defined in Remark 3.27 satisfies the same relationship as MCC, that
is, IH-MCC(CC (s,PI), x0) = 1

s IH-MCC(CC , x0). •

3.4 Complexity of direction agreement and equidistance

From Example 3.7, Section 3.1.3, and Example 3.22, recall the definition
of uniform network Scircle of locally-connected first-order agents in S1, the
agree & pursue control and communication law CCagree & pursue, and the
two coordination tasks Tdir and Tε-eqdstnc. In this section, we characterize the
complexity to achieve these coordination tasks with CCagree & pursue. Because
the number of bits required to represent the variable max-id ∈ {1, . . . , n} is
log(n), Note that the space complexity of CCagree & pursue is log(n) bits, that
is one basic memory unit in our convention discussed in Section 3.3.2.

Motivated by Remark 3.8, we model wireless communication congestion by
assuming that the communication range is a monotone non-increasing function
r : N → ]0, π[ of the number of agents n. Likewise, we assume that the
maximum control amplitude umax is a non-increasing function umax : N →
]0, 1[; recall that umax is the maximum robot speed. Finally, it is convenient
to define the function n 7→ δ(n) = nr(n) − 2π ∈ R that compares the sum of
the communication ranges of all the robots with the length of the unit circle.

We are now ready to state the main result of this section; proofs are
postponed to Section 3.6.2.

Theorem 3.33 (Time complexity of agree-and-pursue law). For kprop ∈
]0, 1

2 [, in the limit as n → +∞ and ε → 0+, the network Scircle with
umax(n) ≥ kpropr(n), the law CCagree & pursue, and the tasks Tdir and Tε-eqdstnc

together satisfy:

(i) TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1);
(ii) if δ(n) is lower bounded by a positive constant as n→ +∞, then

TC(Tε-eqdstnc, CCagree & pursue) ∈ Ω(n2 log(nε)−1),

TC(Tε-eqdstnc, CCagree & pursue) ∈ O(n2 log(nε−1)).

If δ(n) is upper bounded by a negative constant, then CCagree & pursue does
not achieve Tε-eqdstnc in general.
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Next, we study the total communication complexity of the agree-and-
pursue control and communication law. First, we note that any message in
A = S1 × {cc, c} × {1, . . . , n}∪{null} requires only a finite number of basic
message to encode, that is, |A|basic ∈ O(1).

Theorem 3.34 (Total communication complexity of agree-and-pursue
law). For kprop ∈ ]0, 1

2 [, in the limit as n → +∞ and ε → 0+, the network
Scircle with umax(n) ≥ kpropr(n), the law CCagree & pursue, and the tasks Tdir
and Tε-eqdstnc together satisfy:

(i) if δ(n) ≥ π(1/kprop − 2) as n→ +∞, then

TCC(Tdir, CCagree & pursue) ∈ Θ(n2r(n)−1),

otherwise if δ(n) ≤ π(1/kprop − 2) as n→ +∞, then

TCC(Tdir, CCagree & pursue) ∈ Ω(n3 + nr(n)−1),

TCC(Tdir, CCagree & pursue) ∈ O(n2r(n)−1);

(ii) if δ(n) is lower bounded by a positive constant as n→ +∞, then

TCC(Tε-eqdstnc, CCagree & pursue)∈ Ω(n3δ(n) log(nε)−1),

TCC(Tε-eqdstnc, CCagree & pursue)∈ O(n4 log(nε−1)).

Remark 3.35 (Comparison with leader election). Let us compare the
agree-and-pursue control and communication law with the classical Le Lann-
Chang-Roberts (LCR) algorithm for leader election discussed in Section 1.4.4.
The leader election task consists of electing a unique agent among all agents in
the network; it is therefore different from, but closely related to, the coordina-
tion task Tdir. The LCR algorithm operates on a static network with the ring
communication topology, and achieves leader election with time and total com-
munication complexity, respectively, Θ(n) and Θ(n2). The agree-and-pursue
law operates on a robotic network with the r(n)-disk communication topology,
and achieves Tdir with time and total communication complexity, respectively,
Θ(r(n)−1) and O(n2r(n)−1). If wireless communication congestion is modeled
by r(n) of order 1/n as in Remark 3.8, then the two algorithms have identical
time complexity and the LCR algorithm has better communication complex-
ity. Note that computations on a possibly disconnected, dynamic network are
more complex than on a static ring topology. •

3.5 Notes

The literature on multi-robot systems is very extensive. Examples include
the survey by Cao et al. [1997], the text by Arkin [1998] on behavior-based
robotics, and the recent special issue [Arai et al., 2002] of the IEEE Transac-
tion on Robotics and Automation. Together with this literature, the starting
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point to develop the material of this chapter are the standard notions of syn-
chronous and asynchronous networks in distributed [Lynch, 1997, Peleg, 2000,
Tel, 2001] and parallel [Bertsekas and Tsitsiklis, 1997, Parhami, 1999] com-
putation. This established body of knowledge on networks is, however, not
applicable to the robotic network setting because of the agents’ mobility and
the ensuing dynamic communication topology.

An early influential contribution towards a network model of mobile inter-
acting robots is the work by Suzuki and Yamashita [1999]. This model consists
of a group of identical “distributed anonymous mobile robots” characterized
as follows: no explicit communication takes place between them, and at each
time instant of an “activation schedule,” each robot senses the relative po-
sition of all other robots and moves according to a pre-specified algorithm.
An artificial intelligence approach to multi-agent behavior in a shared envi-
ronment is taken in [Moses and Tennenholtz, 1995]. Santoro [2001] provides,
with an emphasis on computer science aspects, a brief survey of models, algo-
rithms, and the need for appropriate complexity notions. Recently, a notion
of communication complexity for control and communication algorithms in
multi-robot systems is analyzed by Klavins [2003], see also [Klavins and Mur-
ray, 2004]. Notions of failures and robustness in robotic networks are discussed
by Gupta et al. [2006b]. From a broad hybrid networked systems viewpoint,
our robotic network model can be regarded as special cases of the general
modeling paradigms discussed in [Lynch et al., 2003, Lygeros et al., 2003,
Sanfelice et al., 2007].

A key feature of the synchronous robotic network model proposed in this
chapter is the adoption of proximity graphs from computational geometry
as a basis for our communication model. This design choice is justified by
the vast wireless networking literature, where this assumption is made. The
simplest communication model, in which two robots communicate only if they
are within a fixed communication range, is a common model adopted studied,
for example, in the works [Gupta and Kumar, 2000, Santi, 2005, Lloyd et al.,
2005, Li, 2003]. These works study the proximity graph solutions to various
communication optimization problems; this discipline is referred to as topology
control, cf. Remark 3.8. Although we focus our presentation on the topological
aspect of the communication service, more realistic communication models
would include randomness, packet losses, coding, quantization, and delays,
e.g., see [Toh, 2001, Goldsmith, 2005].

Next, we review some literature on emergent and self-organized swarming
behaviors in biological groups. Interesting dynamical systems arise in biolog-
ical networks at multiple levels of resolution, all the way from interactions
among molecules and cells [Miller and Bassler, 2001] to the behavioral ecol-
ogy of animal groups [Okubo, 1986]. Flocks of birds and schools of fish can
travel in formation and act as one unit (see [Parrish et al., 2002]), allowing
these animals to defend themselves against predators and protect their territo-
ries. Wildebeest and other animals exhibit complex collective behaviors when
migrating, such as obstacle avoiding, leader election, and formation keeping
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(see [Sinclair, 1977, Gueron and Levin, 1993]). Certain foraging behaviors
include individual animals partitioning their environment into nonoverlap-
ping zones (see [Barlow, 1974]). Honey bees [Seeley and Buhrman, 1999],
gorillas [Stewart and Harcourt, 1994], and whitefaced capuchins [Boinski and
Campbell, 1995] exhibit synchronized group activities such as initiation of
motion and change of travel direction. These remarkable dynamic capabili-
ties are achieved apparently without following a group leader; see [Okubo,
1986, Parrish et al., 2002, Gueron and Levin, 1993, Barlow, 1974, Seeley and
Buhrman, 1999, Stewart and Harcourt, 1994, Boinski and Campbell, 1995]
for specific examples of animal species and [Couzin et al., 2005, Conradt and
Roper, 2003] for general studies. A comprehensive exposition of bio-inspired
optimization and control methods is presented in [Passino, 2004].

With regards to distributed motion coordination algorithms, much progress
has been made on collective pattern formation [Suzuki and Yamashita, 1999,
Belta and Kumar, 2004, Justh and Krishnaprasad, 2004, Yang et al., 2008,
Sepulchre et al., 2007], flocking [Tanner et al., 2007, Olfati-Saber, 2006, Lee
and Spong, 2007, Moshtagh and Jadbabaie, 2007], motion feasibility of forma-
tions [Tabuada et al., 2005], formation control using rigidity and persistence
theory [Olfati-Saber and Murray, 2002, Baillieul and Suri, 2003, Krick, 2007,
Yu et al., 2008a, Hendrickx et al., 2007], formation stability [Tanner et al.,
2004, Kang et al., 2006, Smith and Hadaegh, 2007, Zheng et al., 2008], mo-
tion camouflage [Justh and Krishnaprasad, 2006], self-assembly [Klavins et al.,
2006], swarm aggregation [Gazi and Passino, 2003], gradient climbing [Ögren
et al., 2004, Cortés, 2007], cyclic pursuit [Bruckstein et al., 1991, Marshall
et al., 2004, Mart́ınez and Bullo, 2006, Smith et al., 2005, Pavone and Fraz-
zoli, 2007], vehicle routing [Lumelsky and Harinarayan, 1997, Sharma et al.,
2007], motion planning with collision avoidance [Lumelsky and Harinarayan,
1997, Pallottino et al., 2007, Hu et al., 2007], and cooperative boundary es-
timation [Bertozzi et al., 2004, Clark and Fierro, 2005, Casbeer et al., 2006,
Zhang and Leonard, 2005, Susca et al., 2008]. It is worth also mentioning
works on network localization, estimation, and tracking, e.g., see [Barooah
and Hespanha, 2007, Aspnes et al., 2006, Oh et al., 2007] and the references
therein.

Much research has been devoted to distributed task allocation problems.
The work in [Gerkey and Mataric, 2004] proposes a taxonomy of task alloca-
tion problems. In papers such as [Godwin et al., 2006, Alighanbari and How,
2006, Schumacher et al., 2003, Moore and Passino, 2007, Tang and Özgüner,
2005], advanced heuristic methods are developed, and their effectiveness is
demonstrated through analysis, simulation or real world implementation. Dis-
tributed auction algorithms are discussed in [Castañón and Wu, 2003, Moore
and Passino, 2007] building on the classic works in [Bertsekas and Castañón,
1991, 1993]. A distributed mixed-integer-linear-programming solver is pro-
posed in [Alighanbari and How, 2006]. A spatially distributed receding-horizon
scheme is proposed in [Frazzoli and Bullo, 2004, Pavone et al., 2007]. There has
also been prior work on target assignment problems [Beard et al., 2002, Ar-

141

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

slan et al., 2007, Zavlanos and Pappas, 2007a, Smith and Bullo, 2007]. Target
allocation for vehicles with nonholonomic constraints is studied in [Rathinam
et al., 2007, Savla et al., 2008, 2007a].

3.6 Proofs

This section gathers the proofs of the main results presented in the chapter.

3.6.1 Proof of Proposition 3.31

Proof (Proposition 3.31). Let t 7→ x(t) and t 7→ x̃(t) denote the network

evolutions starting from x0 ∈ ∏

i∈I X
[i]
0 under CC and CC (s,PI), respectively.

From the definition of rescheduling, one can verify that, for all k ∈ Z≥0,

x̃[i](t) =

{

x̃[i](F (k − 1) + 1), for t ∈ ⋃F (k)−1
ℓ=F (k−1)+1[ℓ, ℓ+ 1],

x[i](t− F (k) + k), for t ∈ [F (k), F (k) + 1].
(3.9)

By definition of TC(T, CC , x0), we have T(x(k)) = true, for all k ≥ TC(T, CC , x0),
and T(x(TC(T, CC , x0)− 1)) = false. Let us rewrite these equalities in terms
of the trajectories of CC (s,PI). From (3.9), one can write x[i](k) = x̃[i](F (k)),
for all i ∈ I and k ∈ Z≥0. Therefore, we have

T(x̃(F (k))) = T(x(k)) = true , for all F (k) ≥ F (TC(T, CC , x0)),

T(x̃(F (TC(T, CC , x0) − 1))) = T(x(TC(T, CC , x0) − 1)) = false,

where we have used the rescheduled message-generation function in (3.7).
Now, note that by equation (3.9), x̃[i](ℓ) = x̃[i](F (⌊ℓ/s⌋ − 1) + 1), for
all ℓ ∈ Z≥0 and all i ∈ I. Therefore, T(x̃(F (TC(T, CC , x0) − 1) + 1)) =
T(x̃(F (TC(T, CC , x0)))) and we can rewrite the previous identities as

T(x̃(k)) = true, for all k ≥ F (TC(T, CC , x0) − 1) + 1,

T(x̃(F (TC(T, CC , x0) − 1))) = false,

which imply that TC(T, CC (s,PI), x0) = F (TC(T, CC , x0)−1)+1 = sTC(T, CC , x0).
As for the mean communication complexity, additivity of Crnd implies

Crnd ◦M(ℓ, x(ℓ))

= Crnd ◦M(F (ℓ) − s+ 1, x̃(F (ℓ)− s+ 1)) + · · · + Crnd ◦M(F (ℓ), x̃(F (ℓ))),

where we have used F (ℓ − 1) + 1 = F (ℓ) − s + 1. We conclude the proof by
computing
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TC(T,CC (s,PI ),x0)−1
∑

ℓ=0

Crnd ◦M(ℓ, x̃(ℓ))

=

F (TC(T,CC ,x0)−1)
∑

ℓ=0

Crnd ◦M(ℓ, x̃(ℓ))

=

TC(T,CC ,x0)−1
∑

ℓ=0

F (ℓ)
∑

k=F (ℓ)−s+1

Crnd ◦M(k, x̃(k))

=

TC(T,CC ,x0)−1
∑

ℓ=0

Crnd ◦M(ℓ, x(ℓ)). �

3.6.2 Proof of Theorem 3.33

Proof (Theorem 3.33). In the following four STEPS we prove the two upper
bounds and the two lower bounds.

STEP 1: We start by proving the upper bound in statement (i). We claim
that TC(Tdir, CCagree & pursue) ≤ 2π/(kpropr(n)), and we reason by contradic-
tion, i.e., we assume that there exists an initial condition which gives rise to an
execution with time complexity strictly larger than 2π/(kpropr(n)). Without
loss of generality, assume dir[n](0) = c. For ℓ ≤ 2π/(kpropr(n)), define

k(ℓ) = argmin{distcc(θ
[n](0), θ[i](ℓ)) | dir[i](ℓ) = cc, i ∈ {1, . . . , n}}.

In other words, agent k(ℓ) is the agent moving counterclockwise that has small-
est counterclockwise distance from the initial position of agent n. Note that
k(ℓ) is well-defined since, by hypothesis of contradiction, Tdir is false for ℓ ≤
2π/(kpropr(n)). According to the state-transition function of CCagree & pursue

(cf. Section 3.1.3), messages with dir = cc can only travel counterclockwise,
while messages with dir = c can only travel clockwise. Therefore, the position
of agent k(ℓ) at time ℓ can only belong to the counterclockwise interval from
the position of agent k(0) at time 0 to the position of agent n at time 0.

Let us examine how fast the message from agent n travels clockwise. To
this end, for ℓ ≤ 2π/(kpropr(n)), define

j(ℓ) = argmax{distc(θ
[n](0), θ[i](ℓ)) | max-id[i](ℓ) = n, i ∈ {1, . . . , n}}.

In other words, agent j(ℓ) has max-id equal to n, is moving clockwise, and
is the agent furthest from the initial position of agent n in the clockwise
direction with these two properties. Initially, j(0) = n. Additionally, for ℓ ≤
2π/(kpropr(n)), we claim that

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ+ 1)) ≥ kpropr(n).

This happens because either (1) there is no agent clockwise-ahead of θ[j(ℓ)](ℓ)
within clockwise distance r(n) and, therefore, the claim is obvious, or (2) there
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are such agents. In case (2), let m denote the agent whose clockwise distance
to agent j(ℓ) is maximal within the set of agents with clockwise distance r(n)
from θ[j(ℓ)](ℓ). Then,

distc(θ
[j(ℓ)](ℓ), θ[j(ℓ+1)](ℓ+ 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ+ 1))

= distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) + distc(θ

[m](ℓ), θ[m](ℓ+ 1))

≥ distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) + kprop

(
r(n) − distc(θ

[j(ℓ)](ℓ), θ[m](ℓ))
)

= kpropr(n) + (1 − kprop) distc(θ
[j(ℓ)](ℓ), θ[m](ℓ)) ≥ kpropr(n),

where the first inequality follows from the fact that at time ℓ there can
be no agent whose clockwise distance to agent m is less than (r(n) −
distc(θ

[j(ℓ)](ℓ), θ[m](ℓ))). Therefore, after 2π/(kpropr(n)) communication rounds,
the message with max-id = n has traveled the whole circle in the clockwise
direction, and must therefore have reached agent k(ℓ). This is a contradiction.

STEP 2: We now prove the lower bound in statement (i). If r(n) > π for all
n, then 1/r(n) < 1/π, and the upper bound reads TC(Tdir, CCagree & pursue) ∈
O(1). Obviously, the time complexity of any evolution with an initial con-
figuration where dir[i](0) = cc for i ∈ {1, . . . , n − 1}, dir[n](0) = c and
EGdisk(r)(θ

[1](0), . . . , θ[n](0)) is the complete graph, is lower bounded by 1.
Therefore, TC(Tdir, CCagree & pursue) ∈ Ω(1). If r(n) > π for all n, then we
conclude TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1). Assume now that r(n) ≤ π
for sufficiently large n. Consider an initial configuration where dir[i](0) = cc

for i ∈ {1, . . . , n − 1}, dir[n](0) = c, and the agents are placed as depicted
in Figure 3.8. Note that, after each communication round, agent 1 has moved

N

N − 1

1

Fig. 3.8. Initial condition for the lower bound of TC(Tdir, CCagree & pursue), with
0 < distc(θ

[n−1](0), θ[n](0)) − r(n) < ε and distc(θ
[1](0), θ[n−1](0)) ≤ r(n) − ε, for

some fixed ε > 0.

kpropr(n) in the counterclockwise direction, while agent n has moved kpropr(n)
in the clockwise direction. These two agents keep moving at full speed towards
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each other until they become neighbors at a time lower bounded by

2π − r(n)

2kpropr(n)
>

π

kpropr(n)
− 1.

We conclude TC(Tdir, CCagree & pursue) ∈ Ω(r(n)−1).
STEP 3: We now prove the upper bound in (ii). We begin by noting that

the lower bound on δ implies r(n)−1 ∈ O(n). Therefore, TC(Tdir, CCagree & pursue)
belongs to O(n) and is negligible as compared with the claimed upper bound
estimates for TC(Tε-eqdstnc, CCagree & pursue). In what follows, we therefore
assume that Tdir has been achieved and that, without loss of generality, all
agents are moving clockwise. We now prove a fact regarding connectivity. At
time ℓ ∈ Z≥0, let H(ℓ) be the union of all the empty “circular segments” of
length at least r(n), that is, let

H(ℓ) = {x ∈ S1 | min
i∈{1,...,n}

distc(x, θ
[i](ℓ)) + min

j∈{1,...,n}
distcc(x, θ

[j](ℓ)) > r(n)}.

In other words, H(ℓ) does not contain any point between two agents separated
by a distance less than r(n), and each connected component of H(ℓ) has
length at least r(n). Let nH(ℓ) be the number of connected components of
H(ℓ), if H(ℓ) is empty, then we take the convention that nH(ℓ) = 0. Clearly,
nH(ℓ) ≤ n. We claim that, if nH(ℓ) > 0, then τ 7→ nH(ℓ+τ) is non-increasing.
Let d(ℓ) < r(n) be the distance between any two consecutive agents at time ℓ.
Because both agents move in the same direction, a simple calculation shows
that

d(ℓ+ 1) ≤ d(ℓ) + kprop(r − d(ℓ)) = (1 − kprop)d(ℓ) + kpropr(n)

< (1 − kprop)r + kpropr(n) = r(n).

This means that the two agents remain within distance r(n) and, therefore
connected, at the following time instant. Because the number of connected
components of EGdisk(r)(θ

[1], . . . , θ[n]) does not increase, it follows that the
number of connected components of H cannot increase. Next, we claim that, if
nH(ℓ) > 0, then there exists τ > ℓ such that nH(τ) < nH(ℓ). By contradiction,
assume nH(ℓ) = nH(τ) for all τ ≥ ℓ. Without loss of generality, let {1, . . . ,m}
be a set of agents with the properties that distcc

(
θ[i](ℓ), θ[i+1](ℓ)

)
≤ r(n), for

i ∈ {1, . . . ,m}, that θ[1](ℓ) and θ[m](ℓ) belong to the boundary of H(ℓ), and
that there is no other set with the same properties and more agents. (Note
that this implies that the agents 1, . . . ,m are in counterclockwise order.) One
can show that, for τ ≥ ℓ,

θ[1](τ + 1) = θ[1](τ) − kpropr(n),

θ[i](τ + 1) = θ[i](τ) − kprop distc(θ
[i](τ), θ[i−1](τ)),

for i ∈ {2, . . . ,m}. If we consider the inter-agent distances
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d(τ) =
(
distcc(θ

[1](τ), θ[2](τ)), . . . ,distcc(θ
[m−1](τ), θ[m](τ))

)
∈ Rm−1

>0 ,

then the previous equations can be rewritten as

d(τ + 1) = Tridm−1(kprop, 1 − kprop, 0) d(τ) + r(n)kprope1,

where the linear map (a, b, c) 7→ Tridm−1(a, b, c) ∈ R(m−1)×(m−1) is defined
in Section 1.5.4. This is a discrete-time affine time-invariant dynamical sys-
tem with unique equilibrium point r(n)1m−1. By construction, the initial
condition of this system satisfies ‖d(0)− r(n)1m−1‖2 ≤ r(n)

√
m− 1. By The-

orem 1.74(ii) in Section 1.5.4, for η1 ∈ ]0, 1[, the solution τ 7→ d(τ) to this
system reaches a ball of radius η1 centered at the equilibrium point in time
O(m logm+ log η−1

1 ). (Here we used the fact that the initial condition of this
system is bounded.) In turn, this implies that τ 7→ ∑m

i=1 di(τ) is larger than
(m − 1)(r(n) − η1) in time O(m logm + log η−1

1 ). We are now ready to find
the contradiction and show that nH(τ) cannot remain equal to nH(ℓ) for all
time τ . After time O(m logm+ log η−1

1 ) = O(n log n+ log η−1
1 ), we have:

2π ≥ nH(ℓ)r(n) +

nH(ℓ)
∑

j=1

(r(n) − η1)(mj − 1)

= nH(ℓ)r(n) + (n− nH(ℓ))(r(n) − η1) = nH(ℓ)η1 + n(r(n) − η1).

Here m1, . . . ,mnH(ℓ) are the number of agents in each isolated group, and
each connected component of H(ℓ) has length at least r(n). Now, take η1 =
(nr(n) − 2π)n−1 = δ(n)n−1, and the contradiction follows from

2π ≥ nH(ℓ)η1 + nr(n) − nη1

= nH(ℓ)η1 + nr(n) + 2π − nr(n) = nH(ℓ)η1 + 2π.

In summary, this shows that the number of connected components of H(ℓ)
decreases by one in time O(n log n + log η−1

1 ) = O(n log n + log(nδ(n)−1)).
Note that δ being lower bounded implies nδ(n)−1 = O(n) and, therefore,
O(n log n + log(nδ(n)−1)) = O(n log n). Iterating this argument n times, in
time O(n2 log n) the set H will become empty. At that time, the resulting
network will obey the discrete-time linear time-invariant dynamical system:

d(τ + 1) = Circn(kprop, 1 − kprop, 0) d(τ), (3.10)

where the linear map (a, b, c) 7→ Circn(a, b, c) ∈ Rn×n is defined in Sec-
tion 1.5.4. Here d(τ) =

(
distcc(θ

[1](τ), θ[2](τ)), . . . ,distcc(θ
[n](τ), θ[n+1](τ))

)
∈

Rn
>0, with the convention θ[n+1] = θ[1]. By Theorem 1.74(iii) in Section 1.5.4,

in time O
(
n2 log ε−1

)
, the error 2-norm satisfies the contraction inequality

‖d(τ) − d∗
∥
∥

2
≤ ε‖d(0) − d∗‖2, for d∗ = 2π

n 1n. We convert this inequality
on 2-norms into an appropriate inequality on ∞-norms as follows. Note that

‖d(0) − d∗‖∞ = maxi∈{1,...,n} |d[i](0) − d
[i]
∗ | ≤ 2π. For η2 ∈ ]0, 1[ and for τ of

order n2 log η−1
2 ,
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‖d(τ) − d∗‖∞ ≤ ‖d(τ) − d∗‖2 ≤ η2‖d(0) − d∗‖2

≤ η2
√
n‖d(0) − d∗‖∞ ≤ η22π

√
n.

This means that the desired configuration is achieved for η22π
√
n = ε, that is,

in time O(n2 log η−1
2 ) = O(n2 log(nε−1)). In summary, the equidistance task

is achieved in time O(n2 log(nε−1)).
STEP 4: Finally, we prove the lower bound in (ii). As we reasoned be-

fore, TC(Tdir, CCagree & pursue) is negligible as compared with the claimed
lower bound estimate for TC(Tε-eqdstnc, CCagree & pursue) and, therefore, we
assume that Tdir has been achieved. We consider an initial configuration with
the properties that (i) agents are counterclockwise-ordered according to their
unique identifier, (ii) the set H(0) is empty, and (iii) the inter-agent distances
d(0) =

(
distcc(θ

[1](0), θ[2](0)), . . . ,distcc(θ
[n](0), θ[1](0))

)
are given by

d(0) =
2π

n
1n +

π − ε′

n
(vn + vn),

where ε′ ∈ ]π, 0[ and where vn is the eigenvector of Circn(kprop, 1 − kprop, 0)
corresponding to the eigenvalue 1−kprop +kprop cos

(
2π
n

)
−kprop

√
−1 sin

(
2π
n

)

(see Section 1.5.4). One can verify that vn +vn = 2(1, cos(2π/n), . . . , cos((n−
1)2π/n)) and that ‖vn + vn‖2 =

√
2n. In turn, this implies that d(0) ∈ Rn

>0

and that ‖d(0)− 2π
n 1n‖2 ∈ O(1/

√
n). Take η3 ∈ ]0, 1[. The argument described

in the proof of Theorem 1.74(iii) leads to the following statement: the 2-
norm of the difference between ℓ 7→ d(ℓ) and the desired configuration 2π

n 1n

decreases by a factor η3 in time of order n2 log η−1
3 . Given an initial error of

order O(1/
√
n) and a final desired error of order ε, we set η3 = ε

√
n and

obtain the desired result that it takes time of order n2 log(nε)−1 to reduce the
2-norm error, and therefore, the ∞-norm error to size ε. This concludes the
proof. �

3.6.3 Proof of Theorem 3.34

Proof (Theorem 3.34). Note that the number of edges in Scircle is at most
O(n2) as it is possible that all robots are within distance r(n) of each other.
The upper bounds in (i) and (ii) follow then from inequality (3.6) and Theo-
rem 3.33. To prove the lower bounds we follow the steps and notation in the
proof of Theorem 3.33. Regarding the lower bounds in (i), we examine the
evolution of the initial configuration depicted in Figure 3.8. From STEP 2: in
the proof of Theorem 3.33, recall that the time it takes agent 1 to receive the
message with max-id = n is lower bounded by π/(kpropr(n)) − 1. Our proof
strategy is to lower bound the number of edges in the graph until this event
happens. Note that, at initial time, there are (n−1)2 edges in the communica-
tion graph of the network, and therefore, (n−1)2 messages get transmitted. At
the next communication round, agent 1 has moved kpropr(n) counterclockwise
and, therefore, the number of edges is lower bounded by (n − 2)2. Iterating
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this reasoning, we see that after i < π/(kpropr(n)) communication rounds, the
number of edges is lower bounded by (n− i)2. Now, if δ(n) > π(1/kprop − 2),
then n > π/kpropr(n)), and therefore, the total communication complexity is
lower bounded by

π
kpropr(n)

∑

i=1

(n− i)2 ∈ Ω(n2r(n)−1).

On the other hand, if δ(n) < π(1/kprop − 2), then n < π/kpropr(n)), and
after n time steps, we lower bound the number of edges in the communication
graph by the number of edges in a chain of length n, that is, n−1. Therefore,
the total communication complexity is lower bounded by

n∑

i=1

(n− i)2 + (n− 1)
( π

kpropr(n)
− n

)

∈ Ω(n3 + nr(n)−1).

The two lower bounds match when δ(n) = π(1/kprop − 2).
Regarding the lower bound in (ii), we consider first the case when nH(0) =

0. In this case, the network obeys the discrete-time linear time-invariant dy-
namical system (3.10). Consider the initial condition d(0) that we adopted
for STEP 4:. We know it takes time of order n2 log(nε)−1 for the appropri-
ate contraction property to hold. At d(0), the maximal inter-agent distance is
(4π−ε′)/n and it decreases during the evolution. Because each robot can com-
municate with any other robot within a distance r(n), the number of agents
within communication range of a given agent is of order r(n)n/(4π − ε′),
that is, of order δ(n). From here we deduce that the total communication
complexity belongs to Ω(n3δ(n) log(nε)−1). �

3.7 Exercises

E3.1 (Orientation dynamics). We review some basic kinematic concepts about
orientation dynamics; e.g., see [Bullo and Lewis, 2004, Spong et al., 2006].
Define the set of skew symmetric matrices in Rd×d:

so(d) = {S ∈ R
d×d | S = −ST }.

Let × denote the cross-product on R3 and define the linear map b· : R3 →
so(3) by bxy = x × y for all y ∈ R3.
(i) Show that, if x = (x1, x2, x3), then

bx =

2
4

0 −x3 x2

x3 0 −x1

−x2 x1 0

3
5 .

(ii) Given a differentiable curve R : [0, T ] → SO(3), show that there exists a
curve ω : [0, T ] → R3 such that

Ṙ(t) = R(t)bω(t).
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These two results lead to a motion model of a relative sensing network
with time-varying orientation. Generalizing the constant-orientation model
in equation (3.5), the complete position and orientation dynamics may be
written as:

ṗ
[i]
fixed(t) = R

[i]
fixed(t) u

[i]
i ,

Ṙ
[i]
fixed(t) = R

[i]
fixed(t) bω[i]

i ,

where, for i ∈ {1, . . . , n}, u
[i]
i and ω

[i]
i are the linear and the body angular

velocities of robot i, respectively.

E3.2 (Variation of agree & pursue control and communication law). Con-
sider the agree & pursue control and communication law defined in Sec-
tion 3.1.3 with the state transition function replaced by the following

function stf(θ, w, y)

1: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) in y do
2: if (max-idrcvd > max-id) then
3: new-dir := dirrcvd

4: new-id := max-idrcvd

5: return (new-dir, new-id)

The only difference between this law and the agree & pursue law in
Section 3.1.3 is that, at each communication round, each agent picks the
message with the largest value of max-id among all messages received (in-
stead of among the messages received only from agents moving towards its
position). We refer to this law as mod-agree & pursue.

Consider the direction agreement task Tdir : (S1)n ×W n → {true, false}
defined in Example 3.22. Assume dir

[n](0) = c, and let k ∈ {1, . . . , n − 1}
be the largest identity such that dir

[k](0) = cc. Do the following:
(i) Show that, if the message from agent k gets delivered to agents clockwise-

placed with respect to agent k along two consecutive communication
rounds, then the message from agent k has traveled at least (1 −
kprop)r(n) along the circle in the clockwise direction.

(ii) Show that, if distcc(θ
[n](0), θ[k](0)) < 2 r(n), then

TC(Tdir, CC mod-agree & pursue, x0, w0) = Θ(r(n)−1).

(iii) Implement the algorithm in your favorite simulation software (e.g.,
Mathematica, Matlab, or Maple), and compute the time complexity of
multiple executions of the algorithm starting from different initial con-
ditions. Does your simulation analysis support the conjecture that

TC(Tdir, CC mod-agree & pursue) = Θ(r(n)−1)?

For the simulation analysis to be relevant, you should use a large number
of randomly generated initial physical positions and processor states.

E3.3 (Leader-following flocking). Consider a group of robots moving in R2 ac-
cording to the following discrete-time version of the planar vehicle dynamics
introduced in Example 3.1:
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x(ℓ + 1) = x(ℓ) + v cos(θ(ℓ)),

y(ℓ + 1) = y(ℓ) + v sin(θ(ℓ)),

θ(ℓ + 1) = θ(ℓ) + ω.

We let {(p[1], θ[1]), . . . , (p[n], θ[n])} denote the robot physical states, where
p[i] = (x[i], y[i]) ∈ R2 corresponds to the position and θ[i] ∈ [0, 2π) corre-
sponds to the orientation of the robot i ∈ I. As communication graph, we
adopt the r-disk graph Gdisk(r) introduced in Section 2.2.

Assume all agents move at unit speed, v = 1, and update their heading ac-
cording to the leader-following version of Vicsek’s model (see equation (1.8)):

θ[1](ℓ + 1) = θ[1](ℓ), (E3.1)

θ[i](ℓ + 1) = avrg
“
{θ[i](ℓ)}∪{θ[j](ℓ) | j s.t. ‖p[j](ℓ) − p[i](ℓ)‖2 ≤ r}

”
,

for i ∈ {2, . . . , n}. Do the following:
(i) Write the algorithm formally as a control and communication law as

defined in Section 3.1.2.
(ii) Given initial conditions for the position and orientation of the robots,

express (E3.1) as the time-dependent linear iteration associated to a
sequence of matrices {F (ℓ) | ℓ ∈ Z≥0}. Are these matrices stochastic?
Are they symmetric? Is the sequence non-degenerate?

(iii) We loosely define the flocking task as achieving agreement on the heading
of the agents. Using Theorem 1.58, identify connectivity conditions on
the sequence of graphs determined by the evolution of the network that
guarantee that agents achieve flocking. What is the final orientation in
which the network flocks?
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4

Connectivity maintenance and rendezvous

The aims of this chapter are twofold. First, we introduce the rendezvous prob-
lem and analyze various coordination algorithms that achieve it, providing
upper and lower bounds on their time complexity. Second we introduce the
problem of maintaining connectivity among a group of mobile robots and use
geometric approaches to preserve this topological property of the network.

Loosely speaking, the rendezvous objective is to achieve agreement over the
physical location of as many robots as possible, i.e., to steer the robots to a
common location. This objective is to be achieved with the limited information
flow described in the model of the network. Typically, it will be impossible to
solve the rendezvous problem for all robots if the robots are placed in such
a way that they do not form a connected communication graph. Therefore,
it is reasonable to assume that the network is connected at initial time and
that a good property of any rendezvous algorithm is that of maintaining some
form of connectivity among robots. This discussion motivates the connectivity
maintenance problem. Once a model for when two robots can acquire each
other’s relative position is adopted, this problem is of particular relevance as
the inter-robot topology depends on the physical states of the robots. Our
exposition here is mainly based on [Ando et al., 1999, Cortés et al., 2006,
Ganguli et al., 2007b].

The chapter is organized as follows. In Section 4.1 we formally introduce
the two problems. In Section 4.2 we define various connectivity constraint
sets to limit the robot motion in order to maintain network connectivity. In
Section 4.3 we study various rendezvous algorithms with connectivity main-
tenance properties. We study the circumcenter algorithm and characterize its
complexity. Additionally, we introduce the perimeter minimizing algorithm
for nonconvex environments. Finally, in Section 4.5 we present the proofs of
the main results of the chapter. Our treatment is based on the LaSalle Invari-
ance Principle and on geometric tools such as proximity graphs and robust
visibility.
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4.1 Problem statement

We here review the class of networks and the types of problems that will be
considered in the chapter.

Networks with discrete-time motion

Along the chapter, we will consider the robotic networks Sdisk, SLD and
S∞-disk, and the relative-sensing networks Srs

disk and Srs
vis-disk presented in Ex-

ample 3.4 and in Section 3.2.2.
For the robotic networks Sdisk, SLD and S∞-disk, we will, however, assume

that the robots move in discrete time, that is, we adopt the discrete-time
motion model:

p[i](ℓ+ 1) = p[i](ℓ) + u[i](ℓ), i ∈ {1, . . . , n}. (4.1)

Similarly, for the relative-sensing networks Srs
disk and Srs

vis-disk, we adopt the
discrete-time motion model:

p
[i]
fixed(ℓ+ 1) = p

[i]
fixed(ℓ) +R

[i]
fixedu

[i]
i (ℓ), i ∈ {1, . . . , n}. (4.2)

As an aside, if we express the previous equation with respect to frame i at
time t, then equation (4.2) reads

p
[i]
(frame i at time ℓ)(ℓ+ 1) = u

[i]
(frame i at time ℓ)(ℓ), i ∈ {1, . . . , n}.

We present the treatment in discrete-time for simplicity. It is easy to show
that any control law for the discrete-time motion model can be implemented in
the continuous-time networks. We usually assume no bound on the control or
umax as magnitude bound and we explicitly state when we instead introduce
the bound.

The rendezvous task

Next, we discuss the rendezvous problem. There are different ways of formu-
lating this objective in terms of task maps. Let S = ({1, . . . , n},R, Ecmm)
be a uniform robotic network. The (exact) rendezvous task Trndzvs : Xn →
{true, false} for S is the coordination task defined by:

Trndzvs(x
[1], . . . , x[n])

=

{

true, if x[i] = x[j], for all (i, j) ∈ Ecmm(x[1], . . . , x[n]),

false, otherwise.

Next, assume that, for the same network S = ({1, . . . , n},R, Ecmm), the
robots’ physical state space is X ⊂ Rd. It is convenient to review some
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basic notation consistent with what we adopted in Chapter 2. We let P =
{p[1], . . . , p[n]} denote the set of agents location in X ⊂ Rd and P be an array
of n points in Rd. Furthermore, we let avrg denote the average of a finite point
set in Rd, that is,

avrg({q1, . . . , qk}) =
1

k
(q1 + · · · + qk).

For ε ∈ R>0, the ε-rendezvous task Tε-rndzvs : (Rd)n → {true, false} for
S is defined as follows: Tε-rndzvs is true at P if each robot position p[i], for
i ∈ {1, . . . , n}, is at distance less than ε from the average position of its
Ecmm-neighbors. Formally,

Tε-rndzvs(P ) = true

⇐⇒ ‖p[i] − avrg
(
{p[j] | (i, j) ∈ Ecmm(P )}

)
‖2 < ε, i ∈ {1, . . . , n}.

The connectivity maintenance problem

Assume the communication graph, computed as a function of the robot po-
sitions, is connected: how should the robots move in such a way that their
communication graph is again connected. Clearly, the problem depends upon
(1) how do the robots move, and (2) what proximity graph describes the com-
munication graph or, in the case of relative-sensing networks, what sensor
model is available on each robot.

The key idea is to restrict the allowable motion of each agent. Differ-
ent motion constraint sets correspond to different communication or sensing
graphs. We have three objectives in doing so. First, we aim to achieve this
objective only based on local measurements or 1-hop communication, i.e.,
without introducing processor states explicitly dedicated to this task. Second,
the constraint sets should depend continuously on the position of the robots.
Third, we have the somehow informal objective to design the constraint sets
as “large” as possible so as to minimally constrain the motion of the robots.

4.2 Connectivity maintenance algorithms

In this section we present some algorithms that might be used by a robotic
network to maintain communication connectivity. The results presented in this
section start with the original idea introduced by Ando et al. [1999] for first-
order robots communicating along the edges of a disk graph, that is, for the
network described in Example 3.4. This idea is then generalized to a number
of useful settings. The properties of proximity graphs presented in Section 2.2
play a key role in formulating and solving the connectivity problem.
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4.2.1 Enforcing range-limited links

First, we aim to constrain the motion of two first-order agents in order to
maintain a communication link between them. We assume that the commu-
nication takes place over the disk graph Gdisk(r) with communication range
r > 0.

Loosely stated, the pairwise connectivity maintenance problem is as fol-
lows: given two neighbors in the proximity graph Gdisk(r), find a rich set of
control inputs for both agents with the property that, after moving, both
agents are again within distance r. We provide a solution to this problem as
follows.

Definition 4.1 (Pairwise connectivity constraint set). Consider two
agents i and j at positions p[i] ∈ Rd and p[j] ∈ Rd such that ‖p[i] − p[j]‖2 ≤ r.
The connectivity constraint set of agent i with respect to agent j is

Xdisk

(
p[i], p[j]

)
= B

(p[j] + p[i]

2
,
r

2

)

. •

Note that both robots i and j can independently compute their respective
connectivity constraint sets. The proof of the following result is straightfor-
ward.

Lemma 4.2 (Maintaining pairwise connectivity). Assume that at time ℓ
the distance between agents p[i] and p[j] is no more than r. If the control u[i](ℓ)
takes value in

u[i](ℓ) ∈ Xdisk

(
p[i](ℓ), p[j](ℓ)

)
− p[i](ℓ) = B

(p[j](ℓ) − p[i](ℓ)

2
,
r

2

)

,

and, similarly, u[j](ℓ) ∈ Xdisk

(
p[j](ℓ), p[i](ℓ)

)
− p[j](ℓ), then, according to the

discrete-time motion model (4.1),

(i) both agents positions at time ℓ+ 1 are inside Xdisk

(
p[i](ℓ), p[j](ℓ)

)
, and

(ii) the distance between the agents positions at time ℓ+ 1 is no more than r.

We illustrate these pairwise connectivity maintenance concepts in Figure 4.1.

Remark 4.3 (Constraints for relative-sensing networks). Let us con-
sider a relative-sensing network with a disk sensor of radius r; see Exam-
ple 3.15. Recall the following facts about this model. First, agent i measures

the position of robot j in its frame Σ[i], that is, robot i measures p
[j]
i . Second,

p
[i]
i = 0d. Third, if W ⊂ Rd, then Wi denotes its expression in the frame Σ[i].

Combining these notions and assuming the inter-agent distance is no more
than r, the pairwise connectivity constraint set in Definition 4.1 satisfies:

(

Xdisk(p
[i], p[j])

)

i
= Xdisk

(
0d, p

[j]
i

)
= B

(p
[j]
i

2
,
r

2

)

. •
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Σfixed

Σ[i]

Σ[j]

Fig. 4.1. Illustration of the connectivity maintenance constraint. Starting from
positions p[i] and p[j], the robots are restricted to move inside the disk centered at
Xdisk(p

[i], p[j]) = 1
2

`
p[i] + p[j]

´
with radius r

2
.

4.2.2 Enforcing network connectivity

Here, we focus on how to constrain the mobility of multiple agents in order
to maintain connectivity for the entire network that they form. We again
consider the case of first-order agents moving according to the discrete-time
equation (4.1) and communicating over Gdisk(r).

Loosely stated, the network connectivity maintenance problem is as follows:
Given n agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} in which they form a
connected r-disk graph Gdisk(r), the objective is to find a rich set of control
inputs for all agents with the property that, at time ℓ + 1, the agents’ new
positions P(ℓ + 1) form again a connected r-disk graph Gdisk(r). We provide
a simple, but potentially conservative, solution to this problem as follows.

Definition 4.4 (Connectivity constraint set). Consider a group of agents
at positions P = {p[1], . . . , p[n]} ⊂ Rd. The connectivity constraint set of agent
i with respect to P is

Xdisk(p
[i],P) =

⋂ {
Xdisk(p

[i], q) | q ∈ P \ {p[i]} s.t. ‖q − p[i]‖2 ≤ r
}
. •

In other words, if q1, . . . , ql are agents positions whose distance from p[i] is no
more than r, then the connectivity constraint set for agent i is the intersection
of the constraint sets B

(
1
2 (qk + p[i]), r

2

)
for k ∈ {1, . . . , l}; see Figure 4.2.

The following result is a consequence of Lemma 4.2.

Lemma 4.5 (Maintaining network connectivity). Consider a group of
agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Rd at time ℓ. If each agent’s
control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk

(
p[i](ℓ),P(ℓ)

)
− p[i](ℓ), i ∈ {1, . . . , n},

then, according to the discrete-time motion model (4.1),
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Fig. 4.2. Illustration of network connectivity maintenance. The connectivity Xdisk-
constraint set of the white-colored agent is the intersection of the individual con-
straint sets determined by its neighbors.

(i) each agent remains in its connectivity constraint set, that is, p[i](ℓ+ 1) ∈
Xdisk(p

[i](ℓ),P(ℓ)),
(ii) each edge of Gdisk(r) at P(ℓ) is maintained after the motion step, i.e., if

‖p[i](ℓ) − p[j](ℓ)‖2 ≤ r, then also ‖p[i](ℓ+ 1) − p[j](ℓ+ 1)‖2 ≤ r,
(iii) if Gdisk(r) at time ℓ is connected, then Gdisk(r) at time ℓ+ 1 is connected,

and
(iv) the number of connected components of the graph Gdisk(r) at time ℓ+ 1 is

equal to or smaller than the number of connected components of the graph
Gdisk(r) at time ℓ.

Remark 4.6 (Constraints for relative-sensing networks: cont’d). Fol-
lowing up on Remark 4.3, the connectivity constraint set in Definition 4.4,
written in the frame Σ[i], is

Xdisk(0d, {p[1]
i , . . . , p

[n]
i })

=
⋂ {

B
(p

[j]
i

2
,
r

2

) ∣
∣ j 6= i such that ‖p[j] − p[i]‖2 ≤ r

}

. •

Next, we relax the constraints in Definition 4.4 to provide the network
nodes with larger, and therefore less conservative, motion constraint sets. Re-
call from Section 2.2 the relative neighborhood graph GRN, the Gabriel graph
GG, and the r-limited Delaunay graph GLD(r). These proximity graphs are il-
lustrated in Figure 2.8. From Theorem 2.9 and Proposition 2.10, respectively,
recall that the proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r) have
the following properties:
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(i) they have the same connected components as Gdisk(r), that is, for all point
sets P ⊂ Rd, all graphs have the same number of connected components
consisting of the same vertices, and

(ii) they are spatially distributed over Gdisk(r).

These mathematical facts have two implications. First, to maintain or de-
crease the number of connected components of a disk graph, it is sufficient to
maintain or decrease the number of connected components of any of the three
proximity graphs GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r). Because each of
these graphs is more sparse than the disk graph, i.e., they are subgraphs of
Gdisk(r), fewer connectivity constraints need to be imposed. Second, because
these proximity graphs are spatially distributed over the disk graph, it is pos-
sible for each agent to determine which of its neighbors in Gdisk(r) are its
neighbors also in these subgraphs. We formalize this discussion as follows.

Definition 4.7 (G-connectivity constraint set). Let G be a proximity
graph that is spatially distributed over Gdisk(r) and that has the same
connected components as Gdisk(r). Consider a group of agents at positions
P = {p[1], . . . , p[n]} ⊂ Rd. The G-connectivity constraint set of agent i with
respect to P is

Xdisk,G(p[i],P) =
⋂ {

Xdisk(p
[i], q) | q ∈ P s. t. (q, p[i]) is an edge of G(P)

}
.

•

Lemma 4.8 (Maintaining connectivity of sparser networks). Let G
be a proximity graph that is spatially distributed over Gdisk(r) and that has
the same connected components as Gdisk(r). Consider a group of agents at
positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Rd at time ℓ. If each agent’s control
u[i](ℓ) takes value in

u[i](ℓ) ∈ Xdisk,G
(
p[i](ℓ),P(ℓ)

)
− p[i](ℓ), i ∈ {1, . . . , n},

then, according to the discrete-time motion model (4.1),

(i) each agent remains in its G-connectivity constraint set,
(ii) two agents that are in the same connected component of G remain at the

same connected component after the motion step,
(iii) the number of connected components of the graph G at P(ℓ + 1) is equal

to or smaller than the number of connected components of the graph G at
P(ℓ).

The reader is asked to provide a proof of this result in Exercise E4.1.

4.2.3 Enforcing range-limited line-of-sight links and network
connectivity

Here, we consider the connectivity maintenance problem for a group of agents
with range-limited line-of-sight communication, as described in Example 3.6.
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It is convenient to treat directly and only the case of a compact allowable non-
convex environment Q ⊂ R2 contracted into Qδ = {q ∈ Q | dist(q, ∂Q) ≥ δ}
for a small positive δ. We present a solution based on designing constraint sets
that guarantee that every edge of the range-limited visibility graph Gvis-disk,Qδ

is preserved.
We begin with a useful observation and a corresponding geometric algo-

rithm. Assume that, at time ℓ, robot j is inside the range-limited visibility set
from p[i] in Qδ, that is, with the notation of Section 2.1.2,

p[j](ℓ) ∈ Vidisk(p
[i](ℓ);Qδ) = Vi(p[i](ℓ);Qδ)∩B(p[i](ℓ), r).

This property holds also at time ℓ + 1 if ‖p[i](ℓ + 1) − p[j](ℓ + 1)‖2 ≤ r and
[p[i](ℓ+ 1), p[j](ℓ+ 1)] ⊂ Qδ. A sufficient condition is therefore that

p[i](ℓ+ 1), p[j](ℓ+ 1) ∈ X ,

for some convex subset X of Qδ ∩B
(

1
2 (p[i](ℓ) + p[j](ℓ)), r

2

)
. Intuitively speak-

ing, X plays the role of X -constraint set for the proximity graph Gvis-disk,Qδ
.

The following geometric algorithm, given the positions p[i] and p[j] in an en-
vironment Qδ, computes precisely one such convex subset.

function iterated truncation(p[i], p[j];Qδ)
% Executed by robot i for p[j] within range-limited line of sight of p[i]

1: Xtemp := Vidisk(p
[i];Qδ)∩B

(
1
2 (p[i] + p[j]), r

2

)

2: while ∂Xtemp contains a concavity do
3: v := a strictly concave point of ∂Xtemp closest to [p[i], p[j]]
4: Xtemp := Xtemp ∩HQδ

(v)
5: return Xtemp

Note: in step 3: multiple points belonging to distinct concavities may
satisfy the required property. If so, v may be chosen as any of them.

Figure 4.3(b) illustrates an example convex constraint set computed by
the iterated truncation algorithm. Figure 4.4 illustrates the step-by-step
execution required to generate Figure 4.3(b).

Next, we characterize the main properties of the iterated truncation

algorithm. It is convenient to define the following set:

J = {(p, q) ∈ Qδ ×Qδ | [p, q] ∈ Qδ and ‖p− q‖2 ≤ r}.

Proposition 4.9 (Properties of the iterated truncation algorithm).
Consider the δ-contraction of a compact allowable environment Qδ with κ
strict concavities, and let (p[i], p[j]) ∈ J . The following statements hold:

(i) The iterated truncation algorithm, invoked with arguments (p[i], p[j];Qδ),
terminates in at most κ steps; denote its output by Xvis-disk(p

[i], p[j];Qδ);
(ii) Xvis-disk(p

[i], p[j];Qδ) is nonempty, compact and convex;
(iii) Xvis-disk(p

[i], p[j];Qδ) = Xvis-disk(p
[j], p[i];Qδ); and
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pj

pi

(a)

p[j]
p[i]

(b)

Fig. 4.3. The plot in (a) shows the set Vidisk(p
[i]; Qδ)∩B( 1

2
(p[i] +p[j]), r

2
). The plot

in (b) shows the outcome of the execution of the iterated truncation algorithm.
Robots i and j are constrained to remain inside the shaded region in (b), which is
a convex subset of Qδ and of the closed ball with center 1

2
(p[i] + p[j]) and radius r

2
.

pj

pi

v pj

pi

v

pj

pi

v

pj

pi

v

Fig. 4.4. From left to right, a sample run of the iterated truncation algorithm.
The initial set Xtemp := Vidisk(p

[i]; Qδ)∩B( 1
2
(p[i]+p[j]), r

2
) is shown in Figure 4.3(a).

The lightly and darkly shaded regions together represent Xtemp at the current iter-
ation. The darkly shaded region represents Xtemp ∩HQδ

(v), where v is as described
in step 3:. The outcome of the execution is shown in Figure 4.3(b).

(iv) the set-valued map (p, q) 7→ Xvis-disk(p, q;Qδ) is closed at all (p, q) ∈ J .

In the interest of brevity we do not include the proof here and instead refer
the reader to [Ganguli et al., 2007b]. We just mention that fact (iii) is a
consequence of the fact that all relevant concavities in the computation of
Xvis-disk(p

[i], p[j];Qδ) are visible from both agents p[i] and p[j]. We are finally
ready to provide analogs of Definition 4.4 and Lemma 4.5.

Definition 4.10 (Line-of-sight connectivity constraint set). Consider
a nonconvex allowable environment Qδ and two agents i and j within range-
limited line of sight. We call Xvis-disk(p

[i], p[j];Qδ) the pairwise line-of-sight
connectivity constraint set of agent i with respect to agent j. Furthermore,
given agents at positions P = {p[1], . . . , p[n]} ⊂ Qδ that are all within range-
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limited line of sight of agent i, the line-of-sight connectivity constraint sets of
agent i with respect to P is

Xvis-disk(p
[i],P;Qδ) =

⋂{
Xvis-disk(p

[i], q;Qδ) | q ∈ P \ {p[i]}
}
. •

The following result is a consequence of Proposition 4.9.

Lemma 4.11 (Maintaining network connectivity). Consider a group of
agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Qδ at time ℓ. If each agent’s
control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xvis-disk

(
p[i](ℓ),P(ℓ);Qδ

)
− p[i](ℓ), i ∈ {1, . . . , n},

then, according to the discrete-time motion model (4.1),

(i) each agent remains in its constraint set, that is,

p[i](ℓ+ 1) ∈ Xvis-disk(p
[i](ℓ),P(ℓ);Qδ),

(ii) each edge of Gvis-disk,Qδ
at P(ℓ) is maintained after the motion step, i.e.,

if p[i] and p[j] are within range-limited line of sight at time ℓ, then they
are so also at time ℓ+ 1,

(iii) if Gvis-disk,Qδ
at P(ℓ) is connected, then Gvis-disk,Qδ

at P(ℓ+1) is connected,
and

(iv) the number of connected components of the graph Gvis-disk,Qδ
at P(ℓ+1) is

equal to or smaller than the number of connected components of the graph
Gvis-disk,Qδ

at P(ℓ).

Remark 4.12 (Constraints for relative-sensing networks: cont’d).
Following up on Remarks 4.3 and 4.6, we consider a relative-sensing net-
work with range-limited visibility sensors, see Example 3.16. To compute the
connectivity constraint set for this network, it suffices to provide a relative
sensing version of the iterated truncation algorithm:

function relative-sensing iterated truncation(y; yenv)
% Executed by robot i with range-limited visibility sensor:

% robot measurement is y = p
[j]
i ∈ Vidisk(02; (Qδ)i) for some j 6= i

% environment measurement is yenv = Vidisk(02; (Qδ)i)

1: Xtemp := yenv ∩B
(p

[j]
i

2 , r
2

)

2: while ∂Xtemp contains a concavity do
3: v := a strictly concave point of ∂Xtemp closest to [02, y]
4: Xtemp := Xtemp ∩Hyenv

(v)
5: return Xtemp

The algorithm output is Xvis-disk(0d, y), for y = p
[j]
i ∈ Vidisk(02; (Qδ)i). •
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Next, we relax the constraints in Definition 4.10 to provide the network
nodes with larger, and therefore less conservative, motion constraint sets. Sim-
ilarly to Section 4.2.2, we seek to enforce the preservation of a fewer number
of range-limited line-of-sight links while still making sure that the overall net-
work connectivity is preserved. To do this, we recall from Section 2.2 the
notion of locally-cliqueless graph Glc,G of a proximity graph G. This prox-
imity graph is illustrated in Figure 2.11. Let us use the shorthand notation
Glc-vis-disk,Qδ

≡ Glc,Gvis-disk,Qδ
. From Theorem 2.12(ii) and (iii), respectively,

recall that Glc-vis-disk,Qδ
has the following properties:

(i) it has the same connected components as Gvis-disk,Qδ
, that is, for all point

sets P ⊂ Rd, the graph has the same number of connected components
consisting of the same vertices, and

(ii) it is spatially distributed over Gvis-disk,Qδ
.

Because of (i), to maintain or decrease the number of connected components
of a range-limited visibility graph, it is sufficient to maintain or decrease the
number of connected components of the sparser graph Glc-vis-disk,Qδ

. Because
of (ii), it is possible for each agent to determine which of its neighbors in
Gvis-disk,Qδ

are its neighbors also in Glc-vis-disk,Qδ
. We formalize this discussion

as follows.

Definition 4.13 (Locally-cliqueless line-of-sight connectivity constraint
set). Consider a nonconvex allowable environment Qδ ⊂ R2 and a group of
agents at positions P = {p[1], . . . , p[n]} ⊂ Q. The locally-cliqueless line-of-sight
connectivity constraint set of agent i with respect to P is

Xlc-vis-disk(p
[i],P;Qδ) =

⋂ {
Xvis-disk(p

[i], q;Qδ) | q ∈ P s. t. (q, p[i]) is an edge of Glc-vis-disk,Qδ
(P)

}
.

•

Lemma 4.14 (Maintaining connectivity of sparser networks). Con-
sider a group of agents at positions P(ℓ) = {p[1](ℓ), . . . , p[n](ℓ)} ⊂ Qδ at time
ℓ. If each agent’s control u[i](ℓ) takes value in

u[i](ℓ) ∈ Xlc-vis-disk

(
p[i](ℓ),P(ℓ);Qδ

)
− p[i](ℓ), i ∈ {1, . . . , n},

then, according to the discrete-time motion model (4.1),

(i) each agent remains in its locally-cliqueless line-of-sight connectivity con-
straint set,

(ii) two agents that are in the same connected component of Glc-vis-disk,Qδ
re-

main at the same connected component after the motion step,
(iii) the number of connected components of the graph Glc-vis-disk,Qδ

at P(ℓ+1)
is equal to or smaller than the number of connected components of the
graph Glc-vis-disk,Qδ

at P(ℓ).
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4.3 Rendezvous algorithms

In this section we present some algorithms that might be used by a robotic
network to achieve rendezvous. Throughout the section we mainly focus on
the uniform network Sdisk of locally-connected first-order agents in Rd; this
robotic network was introduced in Example 3.4.

4.3.1 Averaging control and communication law

We first study a behavior in which agents move towards a position computed
as the average of the received messages. This law is related to the distributed
linear algorithms discussed in Section 1.5 and, in particular, to adjacency-
based agreement algorithms and the Vicsek’s model. This algorithm has also
been studied in the context of “opinion dynamics under bounded confidence”
and is known in the literature as the Krause model.

We loosely describe the averaging law, that we denote by CCaveraging,
as follows:

[Informal description] At each communication round each agent per-
forms the following tasks: (i) it transmits its position and receives its
neighbors’ positions; (ii) it computes the average of the point set com-
prised of its neighbors and of itself. Between communication rounds,
each robot moves toward the average point it computed.

We next formulate the algorithm using the description model of Chap-
ter 3. The law is uniform, static, and data-sampled, with standard message-
generation function.

Robotic Network: Sdisk with motion model (4.1) in Rd,
with absolute sensing of own position, and
with communication range r

Distributed Algorithm: averaging

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: return avrg({p}∪{prcvd | prcvd is a non-null message in y}) − p

An implementation of this control and communication law is shown in Fig-
ure 4.5 for d = 1. Note that, along the evolution, (1) several robots rendezvous,
i.e., agree upon a common location, and (2) some robots are connected at the
simulation’s beginning and not connected at the simulation’s end. Our analy-
sis of the performance of this law is contained in the following theorem, whose
proof is postponed to Section 4.5.1.
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55

Fig. 4.5. Evolution of a robotic network under the averaging control and commu-
nication law in Section 4.3.1 implemented over the network Sdisk, with r = 1.5. The
vertical axis corresponds to the elapsed time, and the horizontal axis to the positions
of the agents in the real line. The 51 agents are initially randomly deployed over the
interval [−15, 15].

Theorem 4.15 (Correctness and time complexity of averaging law).
For d = 1, the network Sdisk, the law CCaveraging achieves the task Trndzvs with
time complexity

TC(Trndzvs, CCaveraging) ∈ O(n5),

TC(Trndzvs, CCaveraging) ∈ Ω(n).

4.3.2 Circumcenter control and communication laws

Here we define the circumcenter control and communication law for the
network Sdisk. The law solves the rendezvous problem while maintaining the
network connected. This law was introduced by Ando et al. [1999] and later
studied in [Lin et al., 2007a, Cortés et al., 2006].

It is convenient to recall two useful geometric concepts: (i) given a bounded
set S, its circumcenter CC(S) is the center of the closed ball of minimum
radius containing S (see Section 2.1.3); (ii) given a point p in a convex set Q
and a second point q, the from-to-inside map fti(p, q, S) is the point in the
closed segment [p, q] which is at the same time closest to q and inside S (see
Section 2.1.1). Finally, recall also the connectivity constraint set introduced
in Definition 4.4.

We loosely describe the circumcenter law, that we denote by CCcircumcenter,
as follows:

[Informal description] At each communication round each agent per-
forms the following tasks: (i) it transmits its position and receives its
neighbors’ positions; (ii) it computes the circumcenter of the point
set comprised of its neighbors and of itself. Between communication
rounds, each robot moves toward this circumcenter point while main-
taining connectivity with its neighbors using appropriate connectivity
constraint sets.
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We next formulate the algorithm using the description model of Chap-
ter 3. The law is uniform, static, and data-sampled, with standard message-
generation function.

Robotic Network: Sdisk with discrete-time motion model (4.1) in Rd,
with absolute sensing of own position, and
with communication range r

Distributed Algorithm: circumcenter

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: pgoal := CC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk(p, {prcvd | for all non-null prcvd ∈ y})
3: return fti(p, pgoal,X ) − p

This algorithm is illustrated in Figure 4.6.

Fig. 4.6. Illustration of the execution of circumcenter. Each row of plots repre-
sents an iteration of the law. At each round, each agent computes its goal point and
its constraint set, and then moves towards the goal while remaining in the constraint
set.

Remark 4.16 (Relative sensing version). It is possible and straightfor-
ward to implement the circumcenter law as a static relative-sensing control
law on the relative-sensing network with disk sensors Srs

disk introduced in Ex-
ample 3.15
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Relative Sensing Network: Srs
disk with motion model (4.2),

no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ B(02, r) for all j 6= i

Distributed Algorithm: relative-sensing circumcenter

function ctl(y)

1: pgoal := CC({0d}∪{psnsd | for all non-null psnsd ∈ y})
2: X := Xdisk(0d, {psnsd | for all non-null psnsd ∈ y})
3: return fti(0d, pgoal,X )

•

In the remainder of this section, we generalize the circumcenter law in a
number of ways: (i) we modify the constraint set by imposing bounds on the
control inputs and by relaxing the connectivity constraint as much as possible,
while maintaining connectivity guarantees; and (ii) we implement the circum-
center law on two distinct communication graphs. Let us note that many
of these generalized circumcenter laws can also be implemented as relative-
sensing control laws; we do not present the details in the interest of brevity.

Circumcenter law with control bounds and relaxed connectivity
constraints

First, we assume that the agents have a compact input space U = B(0d, umax),
with umax ∈ R>0. Additionally, we adopt the relaxed G-connectivity constraint
sets as follows. Let G be a proximity graph that is spatially distributed over
Gdisk(r) and that has the same connected components as Gdisk(r); examples
include GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r). Recall the G-connectivity
constraint set from Definition 4.7. Combining the relaxed connectivity con-
straint and the control magnitude bound, we redefine the control function in
the circumcenter law to be:

function ctl(p, y)
% Includes control bound and relaxed G-connectivity constraint

1: pgoal := CC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk,G(p, {prcvd | for all non-null prcvd ∈ y})∩B(p, umax)
3: return fti(p, pgoal,X ) − p

Second, the circumcenter law can be implemented also on robotic net-
works with different proximity graphs. For example, we can implement the
circumcenter algorithm without any change on the following network.

Circumcenter law on the limited Delaunay graph

We consider the same set of physical agents as in the Sdisk. For r ∈ R>0,
we adopt as communication graph the r-limited Delaunay graph GLD(r),
described in Section 2.2. These data define the uniform robotic network
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SLD = ({1, . . . , n},R, ELD), as described in Example 3.4. On this network,
we implement the circumcenter law without any change, that is, with the
same message-generation and control function as we did for the implementa-
tion on the network Sdisk.

Parallel circumcenter law on the ∞-disk graph

We consider the network S∞-disk of first-order robots in Rd connected accord-
ing to the G∞-disk(r) graph, see Example 3.4. For this network we define the
pll-crcmcntr law, that we denoted by CCpll-crcmcntr, by designing d decou-
pled circumcenter laws running in parallel on each coordinate axis of Rd. As
before, this law is uniform and static. What is remarkable, however, is that
no constraint is required to maintain connectivity, see Exercise E4.4.

The parallel circumcenter of the set S, denoted by PCC(S), is the center
of the smallest axis-aligned rectangle containing S. In other words, PCC(S)
is the component-wise circumcenter of S, see Figure 4.7. We state the parallel

Fig. 4.7. The grey-colored point is the parallel circumcenter of the collection of
black-colored points.

circumcenter law as follows.

Robotic Network: S∞-disk with discrete-time motion model (4.1) in Rd,
with absolute sensing of own position, and
with communication range r in L∞-metric

Distributed Algorithm: pll-crcmcntr

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: pgoal := PCC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: return pgoal − p
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4.3.3 Correctness and complexity of circumcenter laws

In this section we characterize the convergence and complexity properties of
the circumcenter law and of its variations. The robustness of the circumcenter
control and communication laws can be characterized with respect to link
failures; see Cortés et al. [2006].

The following theorem summarizes the results known in the literature
about the asymptotic properties of the circumcenter law.

Theorem 4.17 (Correctness of the circumcenter laws). For d ∈ N,
r ∈ R>0 and ε ∈ R>0, the following statements hold:

(i) on the network Sdisk, the law CCcircumcenter (with control magnitude
bounds and relaxed G-connectivity constraints) achieves the exact ren-
dezvous task Trndzvs;

(ii) on the network SLD, the law CCcircumcenter achieves the ε-rendezvous task
Tε-rndzvs; and

(iii) on the network S∞-disk, the law CCpll-crcmcntr achieves the exact ren-
dezvous task Trndzvs.

Furthermore, the evolutions of (Sdisk, CCcircumcenter), of (SLD, CCcircumcenter),
and of (S∞-disk, CCpll-crcmcntr) have the following properties:

(iv) if any two agents belong to the same connected component of the respective
communication graph at ℓ ∈ Z≥0, then they continue to belong to the same
connected component for all subsequent times k ≥ ℓ; and

(v) for each evolution, there exists P ∗ = (p∗1, . . . , p
∗
n) ∈ (Rd)n such that:

a) the evolution asymptotically approaches P ∗, and
b) for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or ‖p∗i − p∗j‖2 > r (for the

networks Sdisk and SLD) or ‖p∗i −p∗j‖∞ > r (for the network S∞-disk).

The results on Sdisk appeared originally in [Ando et al., 1999]. The proof
for the results on SLD is provided by Cortés et al. [2006] and on S∞-disk are
contained in [Mart́ınez et al., 2007b].

Next, we analyze the time complexity of CCcircumcenter. As we see next,
the complexity of CCcircumcenter differs dramatically when applied to robotic
networks with different communication graphs. We provide complete results
for the networks Sdisk and SLD only for the case d = 1.

Theorem 4.18 (Time complexity of circumcenter laws). For r ∈ R>0

and ε ∈ ]0, 1[, the following statements hold:

(i) on the network Sdisk, evolving on the real line R (i.e., with d = 1),
TC(Trndzvs, CCcircumcenter) ∈ Θ(n);

(ii) on the network SLD, evolving on the real line R (i.e., with d = 1),
TC(T(rε)-rndzvs, CCcircumcenter) ∈ Θ(n2 log(nε−1)); and

(iii) on the network S∞-disk, evolving on Euclidean space (i.e., with d ∈ N),
TC(Trndzvs, CCpll-crcmcntr) ∈ Θ(n).
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The proof of this result is contained in [Mart́ınez et al., 2007b].

Remark 4.19 (Analysis in higher dimensions). The results in Theo-
rem 4.18(i) and (ii) induce lower bounds on the time complexity of the cir-
cumcenter law in higher dimensions. Indeed, for arbitrary d ≥ 1, we have

(i) on the network Sdisk, TC(Trndzvs, CCcircumcenter) ∈ Ω(n);
(ii) on the network SLD, TC(T(rε)-rndzvs, CCcircumcenter) ∈ Ω(n2 log(nε−1)).

We have performed extensive numerical simulations for the case d = 2 and
the network Sdisk. We run the algorithm starting from generic initial configu-
rations (where, in particular, robots’ positions are not aligned) contained in a
bounded region of R2. We have consistently obtained that the time complexity
to achieve Trndzvs with CCcircumcenter starting from these initial configurations
is independent of the number of robots. This leads us to conjecture that initial
configurations where all robots are aligned (equivalently, the 1-dimensional
case) give rise to the worst possible performance of the algorithm. In other
words, we conjecture that, for d ≥ 2, TC(Trndzvs, CCcircumcenter) = Θ(n). •

Remark 4.20 (Congestion effects). As discussed in Remark 3.8, one way
of incorporating congestion effects into the network operation is to assume that
the parameters of the physical components of the network depend upon the
number of robots. For instance, by assuming that the communication range
decreases with the number of robots. Theorem 4.18 presents an alternative,
equivalent way of looking at congestion: the results hold under the assump-
tion that the communication range is constant, but allow for the diameter of
the initial network configuration (the maximum inter-agent distance) to grow
unbounded with the number of robots. •

4.3.4 Circumcenter law in nonconvex environments

In this section we adapt the circumcenter algorithm to work on networks in
planar nonconvex allowable environments. Throughout the section, we only
consider the case of a compact allowable nonconvex environment Q contracted
into Qδ for a small positive δ. We present the algorithm in two formats: for
the communication-based network Svis-disk described in Example 3.6 and for
the relative-sensing network Srs

vis-disk described in Example 3.16.
We modify the circumcenter algorithm in three ways: first, we adopt the

connectivity constraints described in the previous section for range-limited
line-of-sight links; second, we further restrict the robot motion to remain
inside the relative convex hull of the sensed robot positions; and third, we move
towards the circumcenter of the constraint set, instead of the circumcenter of
the neighbors positions. The algorithm details are as follows.

Robotic Network: Svis-disk with discrete-time motion model (4.1),
absolute sensing of own position and of Qδ, and
communication range r within line of sight (Gvis-disk,Qδ

)
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Distributed Algorithm: circumcenter

Alphabet: A = R2 ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: X1 := Xvis-disk(p, {prcvd | for all non-null prcvd ∈ y};Qδ)
2: X2 := rco({p}∪{prcvd | for all non-null prcvd ∈ y}; Vi(p;Qδ))
3: pgoal := CC(X1 ∩X2)
4: return fti(p, pgoal, B(p, umax)) − p

Next, we present the relative sensing version; recall that p
[i]
i = 02 and

that, as discussed in Section 3.2.3 about the evolution of a relative sensing
network with environment sensors, yenv denotes the environment measurement
provided by the range-limited visibility sensor.

Relative Sensing Network: Srs
vis-disk with motion model (4.2) in Qδ,

no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ Vidisk(02; (Qδ)i) for j 6= i

environment sensing is yenv = Vidisk(02; (Qδ)i)

Distributed Algorithm: relative-sensing circumcenter

function ctl(y, yenv)

1: X1 := Xvis-disk(02, {psnsd | for all non-null psnsd ∈ y}; yenv)
2: X2 := rco({02}∪{psnsd | for all non-null psnsd ∈ y}; yenv)
3: pgoal := CC(X1 ∩X2)
4: return fti(02, pgoal, B(02, umax))

Theorem 4.21 (Correctness of the circumcenter law in nonconvex
environments). For δ > 0, let Qδ be a contraction of a compact allow-
able nonconvex environment Q. For r ∈ R>0 and ε ∈ R>0, on the network
Svis-disk, the law CCcircumcenter (with control magnitude bounds) achieves the
ε-rendezvous task Tε-rndzvs. Furthermore, the evolution has the following prop-
erties:

(i) if any two agents belong to the same connected component of the graph
Gvis-disk,Qδ

at ℓ ∈ Z≥0, then they continue to belong to the same connected
component for all subsequent times k ≥ ℓ; and

(ii) there exists P ∗ = (p∗1, . . . , p
∗
n) ∈ Qn

δ such that:
a) the evolution asymptotically approaches P ∗, and
b) for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or p∗i and p∗j are not within

range-limited line of sight

The proof of this result can be found in [Ganguli et al., 2007b]. The
complexity of circumcenter law in nonconvex environments has not been
characterized. However, note that the evolution from any initial configuration
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such that Gvis,Qδ
is complete is also an evolution of the circumcenter law

discussed in Section 4.3.2, and hence Theorem 4.18(i) induces a lower bound
on the time complexity.

4.4 Notes

The rendezvous problem and the circumcenter algorithm were originally intro-
duced by Ando et al. [1999], where a convergence analysis is also provided. The
circumcenter algorithm has been extended to other control policies, including
asynchronous implementations, in [Lin et al., 2007a,b]. The circumcenter al-
gorithm has been extended beyond planar problems to arbitrary dimensions
in [Cortés et al., 2006], where its robustness properties are also character-
ized. Variations of the circumcenter law in the presence of noise and sensor
errors are studied in [Mart́ınez, 2008]. The continuous-time version of the cir-
cumcenter law, with no connectivity constraints, is analyzed in [Lin et al.,
2007c]. Continuous-time control laws for groups of robots with simple first-
order dynamics and unicycle dynamics are proposed in [Lin et al., 2004, 2005,
Dimarogonas and Kyriakopoulos, 2007]. In these works, the inter-robot topol-
ogy is time-dependent and assumed a priori to be connected at all times.
Rendezvous under communication quantization is studied in [Fagnani et al.,
2004, Carli and Bullo, 2007]. Rendezvous for unicycle robots with minimal
sensing capabilities is studied by Yu et al. [2008b]. Relationships with classic
curve-shortening flows are studied by Smith et al. [2007].

Rendezvous has also been studied within the computer science literature,
where the problem is referred to as the “gathering” or point formation prob-
lem. Flocchini et al. [1999], Suzuki and Yamashita [1999] study the point for-
mation problem under the assumption that each robot is capable of sensing all
other robots. Flocchini et al. [2005] propose asynchronous algorithms to solve
the gathering problem, and Agmon and Peleg [2006] study the solvability of
the problem in the presence of faulty robots.

Multirobot rendezvous with line-of-sight sensors is considered in [Roy and
Dudek, 2001], where solutions are proposed based on the exploration of the
unknown environment and the selection of appropriate rendezvous points at
pre-specified times. The paper [Hayes et al., 2003] also consider rendezvous
at a specified location for visually-guided agents, but the proposed solution
requires each agent to have knowledge of the location of all other agents.
The problem of computing a multirobot rendezvous point in polyhedral sur-
faces made of triangular faces is considered in [Lanthier et al., 2005]. The
perimeter minimizing algorithm presented by Ganguli et al. [2007b] solves the
rendezvous problem for sensor-based networks with line-of-sight limited-range
sensors in nonconvex environments.

Regarding the connectivity maintenance problem, a number of works have
addressed the problem of designing a coordination algorithm that achieves
a general, non-specified task while preserving connectivity. The centralized
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solution proposed in [Zavlanos and Pappas, 2005] allows for a general range
of agent motions. The distributed solution presented by [Savla et al., 2007b]
gives connectivity maintaining constraints for second-order control systems
with input magnitude bounds. A distributed algorithm to perform graph re-
arrangements that preserve the connectivity is presented in [Schuresko and
Cortés, 2007]. Connectivity problems have been studied also in other con-
texts. Langbort and Gupta [2007] study the impact of the connectivity of the
interconnection topology in a class of network optimization problems. Spanos
and Murray [2005] generate connectivity-preserving motions between pairs
of formations. Ji and Egerstedt [2007] design Laplacian-based control laws to
solve formation control problems while preserving connectivity. Various works
have focused on designing the network motion so that some desired mea-
sure of connectivity (e.g., algebraic connectivity) is maximized under position
constraints. Boyd [2006], de Gennaro and Jadbabaie [2006] consider convex
constraints, while Kim and Mesbahi [2006] deal with a class of nonconvex
constraints. Zavlanos and Pappas [2007b] use potential fields to maximize
algebraic connectivity.

A continuous-time version of the averaging control and communication law
is also known as the Hegselmann-Krause model for “opinion dynamics under
bounded confidence”; see [Hegselmann and Krause, 2002, Lorenz, 2007]. In
this model, each agent may change its opinion by averaging it with that of
neighbors’ who are in an ε-confidence area. In other words, the difference be-
tween the agent opinion and its neighbors’ should be bounded by ε. A similar
model where the communication between agents is random is the Deffuant-
Weisbuch model, inspired by a model of dissemination of culture; see Deffuant
et al. [2000], Axelrod [1997].

4.5 Proofs

This section gathers the proofs of the main results presented in the chapter.

4.5.1 Proof of Theorem 4.15

Proof. One can easily prove that, along the evolution of the network, the or-
dering of the agents is preserved, i.e., the inequality p[i] ≤ p[j] is preserved
at the next time step. However, links between agents are not necessarily pre-
served (see, e.g., Figure 4.5). Indeed, connected components may split along
the evolution. However, merging events do not occur. Consider two contiguous
connected components C1 and C2 of Gdisk(r), with C1 to the left of C2. By
definition, the rightmost agent in the component C1 and the leftmost agent in
the component C2 are at a distance strictly larger than r. Now, by executing
the algorithm, they can only but increase that distance, since the rightmost
agent in C1 will move to the left, and the leftmost agent in C2 will move to
the right. Therefore, connected components do not merge.
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Consider first the case of an initial configuration of the network for which
the communication graph remains connected throughout the evolution. With-
out loss of generality, assume that the agents are ordered from left to right
according to their identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). Let α ∈ {3, . . . , n}
have the property that agents {2, . . . , α − 1} are neighbors of agent 1, and
agent α is not. (If instead all agents are within an interval of length r, then
rendezvous is achieved in 1 time instant, and the statement in theorem is eas-
ily seen to be true.) Note that we can assume that agents {2, . . . , α − 1} are
also neighbors of agent α. If this is not the case, then those agents that are
neighbors of agent 1 and not of agent α, rendezvous with agent 1 at the next
time instant. At the time instant ℓ = 1, the new updated positions satisfy

p[1](1) =
1

α− 1

α−1∑

k=1

p[k](0),

p[γ](1) ∈
[ 1

α

α∑

k=1

p[k](0), ∗
]

, γ ∈ {2, . . . , α− 1},

where ∗ denotes a certain unimportant point.
Now, we show that

p[1](α− 1) − p[1](0) ≥ r

α(α− 1)
. (4.3)

Let us first show the inequality for α = 3. Because of the assumption that the
communication graph remains connected, agent 2 is still a neighbor of agent
1 at the time instant ℓ = 1. Therefore p[1](2) ≥ 1

2 (p[1](1) + p[2](1)), and from
here we deduce

p[1](2) − p[1](0) ≥ 1

2

(
p[2](1) − p[1](0)

)

≥ 1

2

(1

3

(
p[1](0) + p[2](0) + p[3](0)

)
− p[1](0)

)
≥ 1

6

(
p[3](0) − p[1](0)

)
≥ r

6
.

Let us now proceed by induction. Assume that inequality (4.3) is valid for
α − 1, and let us prove it for α. Consider first the possibility when at the
time instant ℓ = 1, the agent α− 1 is still a neighbor of agent 1. In this case,
p[1](2) ≥ 1

α−1

∑α−1
k=1 p

[k](1), and from here we deduce

p[1](2) − p[1](0) ≥ 1

α− 1

(

p[α−1](1) − p[1](0)
)

≥ 1

α− 1

( 1

α

α∑

k=1

p[k](0) − p[1](0)
)

≥ 1

α(α− 1)

(

p[α](0) − p[1](0)
)

≥ r

α(α− 1)
,

which in particular implies (4.3). Consider then the case when agent α − 1
is not a neighbor of agent 1 at the time instant ℓ = 1. Let β < α such that
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agent β− 1 is a neighbor of agent 1 at ℓ = 1, but agent β is not. Since β < α,
we have by induction p[1](β) − p[1](1) ≥ r

β(β−1) . From here, we deduce that

p[1](α− 1) − p[1](0) ≥ r
α(α−1) .

It is clear that after ℓ1 = α−1, we could again consider two complementary
cases (either agent 1 has all others as neighbors or not) and repeat the same
argument once again. In that way, we would find ℓ2 such that the distance
traveled by agent 1 after ℓ2 rounds would be lower bounded by 2r

n(n−1) . Repeat-

ing this argument iteratively, the worst possible case is one in which agent 1
keeps moving to the right and, at each time step, there is always another agent
which is not a neighbor. Since the diameter of the initial condition P0 is upper
bounded by (n−1)r, in the worst possible situation, there exists some time ℓk
such that kr

(n−1)n = O(r(n− 1)). This implies that k = O((n− 1)2n). Now we

can upper bound the total convergence time ℓk by ℓk =
∑k

i=1 αi−k ≤ k(n−1),
where we have used that αi ≤ n for all i ∈ {1, . . . , n}. From here we see that
ℓk = O((n − 1)3n) and hence, we deduce that in O(n(n − 1)3) time instants
there cannot be any agent which is not a neighbor of the agent 1. Hence, all
agents rendezvous at the next time instant. Consequently,

TC(Trndzvs, CCaveraging, P0) = O(n(n− 1)3).

Finally, for a general initial configuration P0, because there are a finite number
of agents, only a finite number of splittings (at most n− 1) of the connected
components of the communication graph can take place along the evolution.
Therefore, we conclude TC(Trndzvs, CCaveraging) = O(n5).

Let us now prove the lower bound. Consider an initial configuration
P0 ∈ Rn where all agents are positioned in increasing order according to
their identity, and exactly at a distance r apart, say p[i+1](0) − p[i](0) = r,
i ∈ {1, . . . , n− 1}. Assume for simplicity that n is odd - when n is even, one
can reason in an analogous way. Because of the symmetry of the initial condi-
tion, in the first time step, only agents 1 and n move. All the remaining agents
remain in their position because it coincides with the average of its neighbors’
position and its own. At the second time step, only agents 1, 2, n − 1 and n
move, and the others remain static because of the symmetry. Applying this
idea iteratively, one deduces that the time step when agents n−1

2 and n+3
2

move for the first time is lower bounded by n−1
2 . Since both agents have still

at least a neighbor (agent n+1
2 ), the task Trndzvs has not been achieved yet at

this time step. Therefore, TC(Trndzvs, CCaveraging, P0) ≥ n−1
2 , and the result

follows. �

4.5.2 Proof of Theorem 4.17

Proof. We divide the proof of the theorem into three groups, one per network.
STEP 1: Facts on (Sdisk, CCcircumcenter). Fact (iv) for (Sdisk, CCcircumcenter)

is a direct consequence of the control function definition of the circumcenter

law and Lemma 4.8.
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Let us show fact (i). Because G has the same connected components as
Gdisk(r), fact (iv) implies that the number of connected components of Gdisk(r)
can only but decrease. In other words, the number of agents in each of the
connected components of Gdisk(r) is non-decreasing. Since there is a finite
number of agents, there must exist ℓ0 such that the identity of the agents in
each connected component of Gdisk(r) is fixed for all ℓ ≥ ℓ0 (i.e., no more agents
are added to the connected component afterwards). In what follows, without
loss of generality, we assume that there is only one connected component after
ℓ0, i.e., the graph is connected (if this is not the case, then the same argument
follows through for each connected component).

Our strategy to prove that the law CCcircumcenter (with control magnitude
bounds and relaxed G-connectivity constraints) achieves the exact rendezvous
task Trndzvs consists of two steps:

(a) we first define a set-valued dynamical system ((Rd)n, (Rd)n, T ) such that
the evolutions of (Sdisk, CCcircumcenter) starting from an initial configura-
tion where Gdisk(r) is connected are contained in the set of evolutions of
the set-valued dynamical system;

(b) we then establish that any evolution of ((Rd)n, (Rd)n, T ) converges to a
point in diag((Rd)n) (the point might be different for different evolutions).

This strategy is analogous to the discussion regarding the Overapproximation
Lemma for time-dependent systems in Section 1.2.4.

Let as perform (a). Given a connected graph G with vertices {1, . . . , n},
let us consider the constraint sets and goal points defined with respect to G.
In other words, given P = (p1, . . . , pn) ∈ (Rd)n, define for each i ∈ {1, . . . , n},

(pgoal)i := CC({pi}∪{pj | j ∈ NG(i)}),
Xi :=

⋂ {
B(

pi+pj

2 , ri(P )
2 ) | j ∈ NG(i)

}
∩B(pi, umax),

where ri(P ) = max{r,max{‖pi − pj‖2 | j ∈ NG(i)}}. Since two neighbors
according to G can be arbitrarily far from each other in Rd, we need to
modify the definition of the constraint set with the radius ri(P ) to prevent
Xi from becoming empty. Note that if ‖pi − pj‖2 ≤ r for all j ∈ NG(i), then
ri(P ) = r, and therefore Xi = Xdisk,G(pi, P )∩B(pi, umax). It is also worth
observing that both (pgoal)i and Xi change continuously with (p1, . . . , pn).

Define the map ftiG : (Rd)n → (Rd)n by

ftiG(p1, . . . , pn) = (fti(p1, (pgoal)1,X1), . . . , fti(pn, (pgoal)n,Xn)).

One can think of ftiG as a circumcenter law where the neighboring relation-
ships among the agents never change. Because fti is continuous, and (pgoal)i

and Xi, i ∈ {1, . . . , n}, change continuously with (p1, . . . , pn), we deduce that
ftiG is continuous.

We are now ready to define a set-valued dynamical system ((Rd)n, (Rd)n, T )
through the set-valued map T : (Rd)n ⇉ (Rd)n given by
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T (p1, . . . , pn) = {ftiG(p1, . . . , pn) | G is a strongly connected digraph}.

Note that the evolution of the circumcenter law using a proximity graph
such as Gdisk(r) is just one of the multiple evolutions described by this set-
valued map. This concludes (a).

Let us now perform (b). To characterize the convergence properties of
the set-valued dynamical system, we use the LaSalle Invariance Principle in
Theorem 1.18. With the notation of this result, we select W = (Rd)n. This
set is clearly strongly positively invariant for ((Rd)n, (Rd)n, T ).

Closedness of the set-valued map. Since ftiG is continuous for each di-
graph G and there is a finite number of strongly connected digraphs on the
vertices {1, . . . , n}, Exercise E1.4 implies that T is closed.

Common Lyapunov function. Define the function Vdiam : (Rd)n → R≥0 by

Vdiam(P ) = max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}.

With a slight abuse of notation, we denote by co(P ) the convex hull of
{p1, . . . , pn} ⊂ Rd. Note that Vdiam(P ) = diam(co(P )). The function Vdiam

has the following properties.

(i) Vdiam is continuous and invariant under permutations of its arguments;
(ii) Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n), where recall that diag((Rd)n) =

{(p1, . . . , pn) ∈ (Rd)n | p[i] = · · · = p[n] ∈ Rd} denotes the diagonal set of
(Rd)n. This fact is an immediate consequence of the fact that, given a set
S ⊂ (Rd)n, diam(co(S)) = 0 if and only if S is a singleton;

(iii) Vdiam is non-increasing along T on (Rd)n. Consider a finite set of points
S ∈ F((Rd)n) and let CC(S) be its circumcenter. From Lemma 2.2(i), we
have CC(S) ∈ co(S). Therefore, for any strongly connected digraph G,
we have that co(ftiG(P )) ⊂ co(P ) for any P ∈ (Rd)n. Since for any two
sets S1, S2 ⊂ (Rd)n such that co(S2) ⊂ co(S2) it holds that Vdiam(S2) ≤
Vdiam(S1), then Vdiam(ftiG(P )) ≤ Vdiam(P ) for any strongly connected
digraph G, which implies that Vdiam is non-increasing along T on (Rd)n.

Bounded evolutions. Consider any initial condition (p1(0), . . . , pn(0)) ∈
(Rd)n. For any strongly connected digraph, G, we have

ftiG(p1(ℓ), . . . , pn(ℓ)) ∈ co(p1(0), . . . , pn(0)),

for all ℓ ∈ Z≥0. Therefore, any evolution of the set-valued dynamical system
((Rd)n, (Rd)n, T ) is bounded.

Characterization of the invariant set. By the LaSalle Invariance for set-
valued dynamical systems in Theorem 1.18, any evolution with initial condi-
tion in W = (Rd)n approaches the largest weakly positively invariant set M
contained in

{P ∈ (Rd)n | ∃P ′ ∈ T (P ) such that Vdiam(P ′) = Vdiam(P )}.

We show that M = diag((Rd)n). Clearly, diag((Rd)n) ⊂ M . To prove the
other inclusion, we reason by contradiction. Assume P ∈ M \ diag((Rd)n),
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and therefore Vdiam(P ) > 0. Let G be a strongly connected digraph and con-
sider ftiG(P ). For each i ∈ {1, . . . , n}, we distinguish two cases depending on
whether pi is or is not a vertex of co(P ). If pi 6∈ Ve(co(P )), then Lemma 2.2(i)
implies that fti(pi, (pgoal)i,Xi) ∈ co(P ) \ Ve(co(P )).

If pi ∈ Ve(co(P )), then we must take into consideration the possibility of
having more than one agent located at the same point. If the location of all
the neighbors of i in the digraph G coincides with pi, then agent i will not
move, and hence fti(pi, (pgoal)i,Xi) ∈ Ve(co(P )). However, we can show that
the application of ftiG strictly decreases the number of agents located at pi.
Let us denote this number by Ni, i.e.,

Ni = |{j ∈ {1, . . . , n} | pj = pi and pj ∈ {p1, . . . , pn}}|.

Since the digraph G is strongly connected, there must exist at least an agent
located at pi with a neighbor which is not located at pi (otherwise, all agents
would be at pi, which is a contradiction). In other words, there exist i∗, j ∈
{1, . . . , n} such that pi∗ = pi, pj 6= pi, and j ∈ NG(i∗). By Lemma 2.2(i),
we have that (pgoal)i∗ ∈ co(P ) \ Ve(co(P )), and therefore (pgoal)i∗ 6= pi∗ .
Combining this with the fact that

{pi}∪{pj | j ∈ NG(i)} ⊂ B(pi∗ , ri∗(P )),

we can apply Lemma 2.2(ii) to ensure that ]pi∗ , (pgoal)i∗ [ has nonempty in-
tersection with Xi∗ . Therefore, fti(pi∗ , (pgoal)i∗ ,Xi∗) ∈ co(P ) \Ve(co(P )), and
the number Ni of agents located at pi decreases at least by one with the
application of ftiG.

Next, we show that, after a finite number of steps, no agents remains at the
location pi. Define N = max{Ni | pi ∈ Ve(co(P ))} < n−1. Then all agents in
the configuration ftiG1

(ftiG2
(. . . ftiGN

(P ))) are contained in co(P )\Ve(co(P )),
for any collection of strongly connected directed graphs G1, . . . , GN . There-
fore, diam(co(ftiG1

(ftiG2
(. . . ftiGN

(P ))))) < diam(co(P )), which contradicts
the fact that M is weakly invariant.

Point convergence. We have proved that any evolution of ((Rd)n, (Rd)n, T )
approaches the set diag((Rd)n). To conclude the proof, let us show that the
convergence of each trajectory is to a point, rather that to the diagonal set.
Let {P (ℓ) | ℓ ∈ Z≥0} be an evolution of the set-valued dynamical system.
Since the sequence is contained in the compact set co(P (0)), there exists a
convergent subsequence {P (ℓk) | k ∈ Z≥0}, i.e., there exists p ∈ Rd such that

lim
k→+∞

P (ℓk) = (p, . . . , p). (4.4)

Let us show that the whole sequence {P (ℓ) | ℓ ∈ Z≥0} converges to (p, . . . , p).
Because of (4.4), for any ε > 0, there exists k0 such that for k ≥ k0 one has
co(P (ℓk)) ⊂ B(p, ε/

√
n). From this, we deduce that co(P (ℓ)) ⊂ B(p, ε/

√
n)

for all ℓ ≥ ℓk0
, which in turn implies that ‖P (ℓ) − (p, . . . , p)‖2 ≤ ε for all

ℓ ≥ ℓk0
, as claimed. This concludes (b).
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(a) and (b) imply that any evolution of (Sdisk, CCcircumcenter) starting
from an initial configuration where Gdisk(r) is connected converges to a point
in diag((Rd)n). To conclude the proof of fact (i), we only need to establish
that this convergence is in finite time. This last fact is a consequence of Ex-
ercise E4.5.

Fact (v) for (Sdisk, CCcircumcenter) is a consequence of facts (i) and (iv).
STEP 2: Facts on (SLD, CCcircumcenter). The proof of facts (i), (iv), and

(v) for (SLD, CCcircumcenter) is analogous to the proof of these facts for
(Sdisk, CCcircumcenter), and we leave it to the reader.

STEP 3: Facts on (S∞-disk, CCpll-crcmcntr). From the expression for the
control function of CCpll-crcmcntr, we deduce that the evolution under CCpll-crcmcntr

of the robotic network S∞-disk (in d dimensions) can be alternatively described
as the evolution under CCcircumcenter of d robotic networks Sdisk in R, see
Exercise E4.4. Therefore, facts (i), (iv), and (v) for (S∞-disk, CCpll-crcmcntr)
follow from facts (i), (iv), and (v) for (Sdisk, CCcircumcenter). �

4.5.3 Proof of Theorem 4.18

Proof. Let P0 = (p[1](0), . . . , p[n](0)) ∈ Rn denote the initial condition.
Fact (i). For d = 1, the connectivity constraints on each agent i ∈ {1, . . . , n}
imposed by the constraint set

Xdisk(p
[i], {prcvd | for all non-null prcvd ∈ y[i]}) (4.5)

are superfluous. In other words, the goal configuration resulting from the
evaluation by agent i of the control function of the circumcenter law belongs
to the constraint set in (4.5). Moreover, the order of the robots on the real
line is preserved from one time step to the next one. Both observations are a
consequence of Exercise E4.3.

Let us first establish the upper bound in fact (i). Consider the case when
Gdisk(r) is connected at P0. Without loss of generality, assume that the agents
are ordered from left to right according to their identifier, that is, p[1](0) ≤
· · · ≤ p[n](0). Let α ∈ {3, . . . , n} have the property that agents {2, . . . , α− 1}
are neighbors of agent 1, and agent α is not. (If instead all agents are within
an interval of length r, then rendezvous is achieved after one time step, and
the upper bound in fact (i) is easily seen to be true.) Figure 4.8 presents
an illustration of the definition of α. Note that we can assume that agents
{2, . . . , α− 1} are also neighbors of agent α. If this is not the case, then those
agents that are neighbors of agent 1 and not of agent α, rendezvous with agent
1 after one time step. At the time instant ℓ = 1, the new updated positions
satisfy

p[1](1) =
p[1](0) + p[α−1](0)

2
,

p[γ](1) ∈
[
p[1](0) + p[α](0)

2
,
p[1](0) + p[γ](0) + r

2

]

,
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p[1](0) p[α−1](0) p[α](0)

r

Fig. 4.8. Definition of α ∈ {3, . . . , n} for an initial network configuration.

for γ ∈ {2, . . . , α − 1}. These equalities imply that p[1](1) − p[1](0) =
1
2

(
p[α−1](0) − p[1](0)

)
≤ 1

2r. Analogously, we deduce p[1](2) − p[1](1) ≤ 1
2r,

and therefore

p[1](2) − p[1](0) ≤ r. (4.6)

On the other hand, from p[1](2) ∈
[
1
2

(
p[1](1) + p[α−1](1)

)
, ∗

]
(where the sym-

bol ∗ represents a certain unimportant point in R), we deduce

p[1](2) − p[1](0) ≥ 1

2

(
p[1](1) + p[α−1](1)

)
− p[1](0)

≥ 1

2

(
p[α−1](1) − p[1](0)

)
≥ 1

2

(p[1](0) + p[α](0)

2
− p[1](0)

)

=
1

4

(
p[α](0) − p[1](0)

)
≥ 1

4
r . (4.7)

Inequalities (4.6) and (4.7) mean that, after at most two time steps, agent 1
has traveled an amount larger than r/4. In turn this implies that

1

r
diam(co(P0)) ≤ TC(Trndzvs, CCcircumcenter, P0) ≤

4

r
diam(co(P0)).

If Gdisk(r) is not connected at P0, note that along the network evolution,
the connected components of the r-disk graph do not change. Using the pre-
vious characterization on the amount traveled by the leftmost agent of each
connected component in at most two time steps, we deduce

TC(Trndzvs, CCcircumcenter, P0) ≤
4

r
max

C∈C(P0)
diam(co(C)),

where C(P0) denotes the collection of connected components of Gdisk(r) at P0.
The connectedness of each C ∈ C(P0) implies that diam(co(C)) ≤ (n − 1)r,
and therefore TC(Trndzvs, CCcircumcenter) ∈ O(n).
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The lower bound in fact (i) is established by considering P0 ∈ Rn such
that p[i+1](0) − p[i](0) = r, i ∈ {1, . . . , n− 1}. For this configuration, we have
diam(co(P0)) = (n−1)r, and therefore TC(Trndzvs, CCcircumcenter, P0) ≥ n−1.
Fact (ii). In the r-limited Delaunay graph, two agents on the line that are
at most at a distance r from each other are neighbors if and only if there
are no other agents between them. Also, note that the r-limited Delaunay
graph and the r-disk graph have the same connected components, cf. Theo-
rem 2.9. A similar argument to the one used in the proof of fact (i) above
guarantees that the connectivity constraints imposed by the constraint sets
Xdisk(p

[i], {prcvd | for all non-null prcvd ∈ y[i]}) are again superfluous.
Consider first the case when GLD(r) is connected at P0. Note that this

is equivalent to Gdisk(r) being connected at P0. Without loss of generality,
assume that the agents are ordered from left to right according to their iden-
tifier, that is, p[1](0) ≤ · · · ≤ p[n](0). The evolution of the network under
CCcircumcenter can then be described as the discrete-time dynamical system

p[1](ℓ+ 1) =
1

2
(p[1](ℓ) + p[2](ℓ)),

p[2](ℓ+ 1) =
1

2
(p[1](ℓ) + p[3](ℓ)),

...

p[n−1](ℓ+ 1) =
1

2
(p[n−2](ℓ) + p[n](ℓ)),

p[n](ℓ+ 1) =
1

2
(p[n−1](ℓ) + p[n](ℓ)).

Note that this evolution respects the ordering of the agents. Equivalently, we
can write P (ℓ+ 1) = AP (ℓ), where A ∈ Rn×n is the matrix given by

A =












1
2

1
2 0 . . . . . . 0

1
2 0 1

2 . . . . . . 0
0 1

2 0 1
2 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

2 0 1
2

0 . . . . . . 0 1
2

1
2












.

Note that A = ATrid+
n

(
1
2 , 0

)
, as defined in Section 1.5.4. Theorem 1.75(i)

implies that, for Pave = 1
n1T

nP0, we have that limℓ→+∞ P (ℓ) = Pave1n, and
that the maximum time required for ‖P (ℓ) − Pave1n

∥
∥

2
≤ η‖P0 − Pave1n‖2

(over all initial conditions in Rn) is Θ
(
n2 log η−1

)
. (Note that this also implies

that agents rendezvous at the location given by the average of their initial
positions. In other words, the asymptotic rendezvous position for this case can
be expressed in closed form, as opposed to the case with the r-disk graph.)

Next, let us convert the contraction inequality on 2-norms into an appro-
priate inequality on ∞-norms. Note that diam(co(P0)) ≤ (n − 1)r because
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GLD(r) is connected at P0. Therefore

‖P0 − Pave1‖∞ = max
i∈{1,...,n}

|p[i](0) − Pave| ≤ |p[1](0) − p[n](0)| ≤ (n− 1)r.

For ℓ of order n2 log η−1, we use this bound on ‖P0 − Pave1‖∞ and the basic
inequalities ‖v‖∞ ≤ ‖v‖2 ≤ √

n‖v‖∞ for all v ∈ Rn, to obtain

‖P (ℓ) − Pave1‖∞ ≤ ‖P (ℓ) − Pave1‖2 ≤ η‖P0 − Pave1‖2

≤ η
√
n‖P0 − Pave1‖∞ ≤ η

√
n(n− 1)r.

This means that (rε)-rendezvous is achieved for η
√
n(n− 1)r = rε, that is, in

time O(n2 log η−1) = O(n2 log(nε−1)).
Next, we show the lower bound. Consider the unit-length eigenvector vn =

√
2

n+1 (sin π
n+1 , . . . , sin

nπ
n+1 )T ∈ Rn of Tridn−1(

1
2 , 0,

1
2 ) corresponding to the

largest singular value cos(π
n ). For µ = −1

10
√

2
rn5/2, we then define the initial

condition

P0 = µP+

[
0

vn−1

]

∈ Rn.

One can show that p[i](0) < p[i+1](0) for i ∈ {1, . . . , n−1}, that Pave = 0, and
that max{p[i+1](0) − p[i](0) | i ∈ {1, . . . , n− 1}} ≤ r. Using Lemma 1.77 and
because ‖w‖∞ ≤ ‖w‖2 ≤ √

n‖w‖∞ for all w ∈ Rn, we compute

‖P0‖∞ =
rn5/2

10
√

2

∥
∥
∥
∥
∥
P+

[
0

vn−1

]
∥
∥
∥
∥
∥
∞

≥ rn2

10
√

2

∥
∥
∥
∥
∥
P+

[
0

vn−1

]
∥
∥
∥
∥
∥

2

≥ rn

10
√

2
‖vn−1‖2 =

rn

10
√

2
.

The trajectory P (ℓ) = (cos(π
n ))ℓP0 therefore satisfies

‖P (ℓ)‖∞ =
(

cos
(π

n

))ℓ

‖P0‖∞ ≥ rn

10
√

2

(

cos
(π

n

))ℓ

.

Therefore, ‖P (ℓ)‖∞ is larger than 1
2rε so long as 1

10
√

2
n(cos(π

n ))ℓ > 1
2ε, that

is, so long as

ℓ <
log(ε−1n) − log(5

√
2)

− log
(
cos(π

n )
) .

Exercise E4.7 asks the reader to show that the asymptotics of this bound
corresponds to the lower bound in fact (i).

Now consider the case when GLD(r) is not connected at P0. Note that the
connected components do not change along the network evolution. Therefore,
the previous reasoning can be applied to each connected component. Since
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the number of agents in each connected component is strictly less that n, the
time complexity can only but improve. Therefore, we conclude that

TC(Trndzvs, CCcircumcenter) ∈ Θ(n2 log(nε−1)).

Fact (iii). Recall from the proof of Theorem 4.5.2 that the evolution under
CCpll-crcmcntr of the robotic network S∞-disk (in d dimensions) can be alter-
natively described as the evolution under CCcircumcenter of d robotic networks
Sdisk in R, see Exercise E4.4. Fact (iii) now follows from fact (i). �

4.6 Exercises

E4.1 Prove Lemma 4.8.
Hint: Use Lemma 4.2 and the fact that G and Gdisk(r) have the same con-
nected components.

E4.2 Prove Lemma 4.11.
Hint: Use Proposition 4.9.

E4.3 (Enforcing range-limited links is unnecessary for the circumcenter
law on R). Let P = {p1, . . . , pn} ∈ F(R). For r ∈ R>0, we work with the r-
disk proximity graph Gdisk(r) evaluated at P. Let i ∈ {1, . . . , n} and consider
the circumcenter of the set comprised of pi and of its neighbors,

(pgoal)i = CC({pi}∪NGdisk(r),pi
(P)).

Show that:
(i) If pi and pj are neighbors in Gdisk(r), then (pgoal)i belongs to B(

pi+pj

2
, r

2
);

(ii) If pi and pj are neighbors in Gdisk(r) and pi ≤ pj , then (pgoal)i ≤ (pgoal)j ;
(iii) Discuss the implication of (i) and (ii) in the execution of the circum-

center law on the 1-dimensional space R.
Hint: Express (pgoal)i as a function of the position of the leftmost and right-
most points among the neighbors of pi.

E4.4 (Enforcing range-limited links is unnecessary for the pll-crcmcntr
law). Let P = {p1, . . . , pn} ∈ F(Rd) and r ∈ R>0. For k ∈ {1, . . . , d}, denote
by πk : Rd → R the projection onto the kth component. Do the following:
(i) Show that pi and pj are neighbors in G∞-disk(r) if and only if, for all

k ∈ {1, . . . , d}, πk(pi) and πk(pj) are neighbors in Gdisk(r);
(ii) For S ⊂ Rd, justify that the parallel circumcenter PCC(S) ∈ Rd of S

can be described as

πk(PCC(S)) = CC(πk(S)), for k ∈ {1, . . . , d};

(iii) Use (i), (ii), and Exercise E4.3(i) to justify that no constraint is required
to maintain connectivity of the ∞-disk graph in the pll-crcmcntr law.
In other words, show that if pi and pj are neighbors in G∞-disk(r),
then PCC({pi}∪NG∞-disk(r),pi

(P)) and PCC({pj}∪NG∞-disk(r),pj
(P))

are also neighbors in G∞-disk(r).
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E4.5 (Finite-time convergence of the circumcenter law on Sdisk). For
umax, r ∈ R>0, let a = min{umax,

r
2
}. Let P = {p1, . . . , pn} ∈ F(Rd), and

assume there exists p ∈ Rd such that

{p1, . . . , pn} ⊂ B(p, a).

Do the following:
(i) Show that Gdisk(r) evaluated at {p1, . . . , pn} is the complete graph;
(ii) Justify why ‖pi − CC({p1, . . . , pn})‖2 ≤ a, for all i ∈ {1, . . . , n};
(iii) Show that CC({p1, . . . , pn}) ∈ Xdisk(pi,P)∩B(pi, umax);
(iv) What is the evolution of (Sdisk, CCcircumcenter) (with control magnitude

bounds) starting from (p1, . . . , pn)?

E4.6 (Variation of the circumcenter law). Let P = {p1, . . . , pn} ∈ F(Rd). For
r ∈ R>0, we work with the r-disk proximity graph Gdisk(r) evaluated at P.
For each i ∈ {1, . . . , n}, consider the circumcenter of the set comprised of pi

and of the mid-points with its neighbors,

(pgoal)i = CC({pi}∪
˘pi + pj

2

˛̨
pj ∈ NGdisk(r),pi

(P)
¯
).

Show that:
(i) If pi and pj are neighbors in Gdisk(r), then (pgoal)i and (pgoal)j are neigh-

bors in Gdisk(r);
(ii) Use (i) to design a control and communication law on the network Sdisk

in Rd that, while not enforcing any connectivity constraints, preserves
all neighboring relationships in Gdisk(r) and achieves the ε-rendezvous
task Tε-rndzvs;

(iii) Justify why the law designed in (ii) does not achieve the exact rendezvous
task Trndzvs.

E4.7 (Asymptotics of the lower bound in Theorem 4.18(ii)). Show that,
as n → +∞,

log(ε−1n) − log(5
√

2)

− log
`
cos(π

n
)
´ =

n2

π2

`
log(ε−1n) − log(5

√
2)

´
+ O(1).

Use this fact to complete the proof of the lower bound in the proof of Theo-
rem 4.18(ii).
Hint: Use the Taylor series expansion of log(cos(x)) at x = 0.
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5

Deployment

The aim of this chapter is to present various solutions to the deployment
problem. The deployment objective is to optimally place a group of robots in
an environment of interest. The approach taken here consists of identifying
aggregate functions that measure the quality-of-deployment of a given network
configuration and designing control and communication laws that optimize
these measures.

The variety of algorithms presented in the chapter stems from two rea-
sons. First, different solutions arise from the interplay between the spatially
distributed character of the coordination algorithms and the limited sensing
and communication capabilities of the robotic network. As an example, dif-
ferent solutions are feasible when agents have limited-range communication
capabilities or when agents have omnidirectional line-of-sight visibility sen-
sors. Second, there is no universal notion of deployment. Different scenarios
give rise to different ways of measuring what constitutes a good deployment.
As an example, a robotic network might follow a different strategy depending
on whether it has information about areas of importance in the environment
or not. In the first case, by incorporating the knowledge on the environment.
In the second, by assuming a worst-case scenario, where important things
can be happening precisely at the furthest away location from the network
configuration.

Our exposition here follows [Cortés et al., 2004, 2005, Cortés and Bullo,
2005]. Our approach makes extensive use of the multicenter functions from ge-
ometric optimization introduced in Chapter 2. It is not difficult to synthesize
continuous-time gradient ascent algorithms using the smoothness results pre-
sented in Section 2.3, and characterize its asymptotic convergence properties
(as we ask the reader to do in Exercises E2.11 and E2.12). However, following
the robotic network model of Chapter 3, we are interested in discrete-time
algorithms. In general, gradient ascent algorithms implemented in discrete
time require the selection of appropriate step sizes that guarantee the mono-
tonic evolution of the objective function. This is usually accomplished via line
search procedures, e.g., see Bertsekas and Tsitsiklis [1997]. In this chapter we
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show that the special geometric properties of the multicenter functions and
their gradients allow us to identify natural target locations for the robotic
agents without the need to perform any line search.

The chapter is organized as follows. In Section 5.1 we formally define the
notions of deployment via task maps and multicenter functions. In Section 5.2
we present motion coordination algorithms to achieve each deployment task.
Specifically, we introduce control and communication laws based on various
notions of geometric centers. In Section 5.2.3 we present convergence and com-
plexity results on the proposed algorithms, along with simulations illustrating
our analysis. Finally, in Section 5.5 we gather the proofs of the main results
of the paper. Throughout the exposition, we make extensive use of proximity
graphs, multicenter functions, and geometric optimization. The convergence
and complexity analysis are based on the LaSalle Invariance Principle and on
linear dynamical systems defined by Toeplitz matrices.

5.1 Problem statement

Here, we introduce various notions of deployment. Let S = ({1, . . . , n},R, Ecmm)
be a uniform robotic network, where the robots’ physical state space is a (sim-
ple convex) polytope Q ⊂ Rd that describes an environment of interest. We
define our notions of deployment relying upon the geometric optimization
problems discussed in Section 2.3. Loosely speaking, we aim to deploy the
robots in such a way as to optimize one of the multicenter functions, such
as the the expected-value multicenter function Hexp, the disk-covering multi-
center function Hdc, or the sphere-packing multicenter function Hsp. Indeed
these functions can be interpreted as quality-of-service measures for different
scenarios. In order to formally define the task maps encoding the deployment
objective, we take the following approach: since the optimizers of these mea-
sures are critical points, and these critical points are network configurations
that make the gradients vanish, we define the task map to take the true value
at these configurations.

The distortion, area, and mixed distortion-area deployment tasks

Here we define various notions of deployment originating from the expected-
value multicenter function Hexp. Recall the concepts of density and perfor-
mance introduced in Section 2.3. Let φ : Rd → R>0 be a density func-
tion on Rd with support Q. One can interpret φ as a function measur-
ing the probability that some event takes place over the environment. Let
f : R≥0 → R be a performance, i.e., a non-increasing and piecewise dif-
ferentiable function possibly with finite jump discontinuities. Performance
functions describe the utility of placing a robot at a certain distance from
a location in the environment. Here, we restrict our attention to the cases
f(x) = −x2 (distortion problem), f(x) = 1[0,a](x), a ∈ R>0 (area problem),
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and f(x) = −x2 1[0,a](x)−a2 ·1]a,+∞[(x), with a ∈ R>0 (mixed distortion-area
problem).

For ε ∈ R>0, the ε-distortion deployment task Tε-distor-dply : Qn →
{true, false} is defined as follows:

Tε-distor-dply(P ) =

{

true, if
∥
∥p[i] − CMφ(V [i](P ))

∥
∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise,

where V [i](P ) denotes the Voronoi cell of robot i, and CMφ(V [i](P )) de-
notes its centroid computed according to φ, see Section 2.1. In other words,
Tε-distor-dply is true for those network configurations where each robot is suf-
ficiently close to the centroid of its Voronoi cell. According to Theorem 2.17,
centroidal Voronoi configurations are the critical points of the multicenter
function Hdistor.

For r, ε ∈ R>0, the ε-r-area deployment task Tε-r-area-dply : Qn →
{true, false} is defined as follows:

Tε-r-area-dply(P )

=

{

true, if
∥
∥

∫

V [i](P )∩ ∂B(p[i], r
2 )

nout,B(p[i], r
2 )(q)φ(q)dq

∥
∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise.

In other words, Tε-r-area-dply is true for those network configurations where
each agent is sufficiently close to a local maximum for the area of its r

2 -limited

Voronoi cell V
[i]
r
2

(P ) = V [i](P )∩B(p[i], r
2 ) at fixed V [i](P ). According to Theo-

rem 2.17, r
2 -limited area-centered Voronoi configurations are the critical points

of the multicenter function Harea, r
2
.

For r, ε ∈ R>0, the ε-r-distortion-area deployment task Tε-r-distor-area-dply :
Qn → {true, false} is defined as follows:

Tε-r-distor-area-dply(P )

=

{

true, if
∥
∥p[i] − CMφ(V

[i]
r
2

(P )))
∥
∥

2
≤ ε, i ∈ {1, . . . , n},

false, otherwise.

In other words, Tε-r-distor-area-dply is true for those network configurations
where each robot is sufficiently close to the centroid of its r

2 -limited Voronoi
cell. According to Theorem 2.17, r

2 -limited centroidal Voronoi configurations
are the critical points of the multicenter function Hdistor-area, r

2
.

The disk-covering and sphere-packing deployment tasks

Here we provide two additional notions of deployment based on the multicen-
ter functions Hdc and Hsp, respectively.

For ε ∈ R>0, the ε-disk-covering deployment task Tε-dc-dply : Qn →
{true, false} is defined as follows:
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Tε-dc-dply(P ) =

{

true, if ‖p[i] − CC(V [i](P ))‖2 ≤ ε, i ∈ {1, . . . , n},
false, otherwise,

where CC(V [i](P )) denotes the circumcenter of the Voronoi cell of robot i.
In other words, Tε-dc-dply is true for those network configurations where each
robot is sufficiently close to the circumcenter of its Voronoi cell. According to
Section 2.3.2, circumcenter Voronoi configurations are, under certain technical
conditions, critical points of the multicenter function Hdc.

For ε ∈ R>0, the ε-sphere-packing deployment task Tε-sp-dply : Qn →
{true, false} is defined as follows:

Tε-sp-dply(P ) =

{

true, if dist2(p
[i], IC(V [i](P ))) ≤ ε, i ∈ {1, . . . , n},

false, otherwise,

where IC(V [i](P )) denotes the incenter set of the Voronoi cell of robot i. In
other words, Tε-sp-dply is true for those network configurations where each
robot is sufficiently close to the incenter set of its Voronoi cell. According
to Section 2.3.3, incenter Voronoi configurations are, under certain technical
conditions, critical points of the multicenter function Hsp.

5.2 Deployment algorithms

In this section we present algorithms that can be used by a robotic network to
achieve the various notions of deployment introduced in the previous section.
Throughout the discussion we mainly focus on the uniform networks SD and
SLD of locally-connected first-order agents in a polytope Q ⊂ Rd with the De-
launay and r-limited Delaunay graphs as communication graphs, respectively;
these robotic networks were introduced in Example 3.4.

All the laws presented in this chapter share a similar structure, that we
loosely describe as follows.

[Informal description] At each communication round each agent per-
forms the following tasks: (i) it transmits its position and receives
its neighbors’ positions; (ii) it computes a notion of geometric center
of its own cell determined according to some notion of partition of
the environment. Between communication rounds, each robot moves
toward this center.

The notions of geometric center and of partition of the environment are dif-
ferent for each algorithm, and specifically tailored to the deployment task at
hand. Let us examine them for each case.

5.2.1 Geometric-center laws

We present control and communication laws defined on the network SD. All
the laws share in common the use of the notion of Voronoi partition of the
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environment Q. We first introduce the Vrn-cntrd law, which makes use of
the notion of centroid of a Voronoi cell. We then propose two sets of variations
to this law. On the one hand, we present the Vrn-cntrd-dynmcs law, which
implements the same centroid strategy on a network of planar vehicles. On the
other hand, we introduce the Vrn-crcmcntr and Vrn-ncntr laws, which
instead make use of the notions of circumcenter and incenter of a Voronoi cell,
respectively.

Voronoi-centroid control and communication law

Here we define the Vrn-cntrd control and communication law for the net-
work SD, that we denote by CCVrn-cntrd. This law was introduced by Cortés
et al. [2004]. We formulate the algorithm using the description model of Chap-
ter 3. The law is uniform, static, and data-sampled, with standard message-
generation function.

Robotic Network: SD with discrete-time motion model (4.1) in Q,
with absolute sensing of own position

Distributed Algorithm: Vrn-cntrd

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
( ⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CMφ(V ) − p

Recall that Hp,x is the half-space of points q in Rd with the property that
‖q−p‖2 ≤ ‖q−x‖2. Since the centroid of a Voronoi cell belongs to the cell itself,
the robots never leave the set Q or, in other words, the set Qn is positively
invariant with respect to the control and communication law CCVrn-cntrd.
Moreover, note that the direction of motion specified by the control function
ctl coincides with the gradient of the distortion multicenter function Hdistor.
Hence, this law prescribes a gradient ascent strategy for each robot that, as
we will show later, monotonically optimizes Hdistor.

Voronoi-centroid law on planar vehicles

Next, we provide an interesting variation of the Vrn-cntrd law defined on
the network Svehicles introduced in Example 3.5. Accordingly, we adopt the
continuous-time motion model for the unicycle vehicle

ṗ[i](t) = v[i](t) (cos(θ[i](t)), sin(θ[i](t))),

θ̇[i](t) = ω[i](t), i ∈ {1, . . . , n}, (5.1)
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where we assume that forward and angular velocities are upper bounded. We
refer to this law as Vrn-cntrd-dynmcs, and we denote it by CCVrn-cntrd-dynmcs.
The law was introduced by Cortés et al. [2004], is uniform and static, but not
data-sampled.

Robotic Network: Svehicles with motion model (5.1) in Q,
with absolute sensing of own position

Distributed Algorithm: Vrn-cntrd-dynmcs

Alphabet: A = R2 ∪{null}
function msg((p, θ), i)

1: return p

function ctl((p, θ), (psmpld, θsmpld), y)

1: V := Q ∩
( ⋂{Hpsmpld,prcvd

| for all non-null prcvd ∈ y}
)

2: v := −kprop(cos θ, sin θ) · (p− CMφ(V ))

3: ω := 2kprop arctan
(− sin θ, cos θ)·(p−CMφ(V ))
(cos θ, sin θ)·(p−CMφ(V ))

4: return (v, ω)

This algorithm is illustrated in Figure 5.1.

Fig. 5.1. Illustration of the execution of Vrn-cntrd-dynmcs. Each row of plots
represents an iteration of the law. At each round, each agent first computes its
Voronoi cell, then determines the centroid, and then moves towards it.

In the above description, we require the feedback gain kprop to belong
to the interval ]0, 1

max{π,diam(Q)} ]. This guarantees that the controls v, ω in

188

“Distributed Control of Robotic Networks” by F. Bullo, J. Cortés and S. Mart́ınez
Copyright c© 2006-2008. Manuscript preprint. This version: June 4, 2008



DCRN June 4, 2008

the definition of ctl belong to the closed interval [−1, 1], and are therefore
implementable in the unicycle and the differential drive robot models.

Remark 5.1 (Vehicles with general dynamics). The definition of the
control function ctl is based on the stabilizing feedback law by Astolfi [1999].
The robot position p is guaranteed to monotonically approach the target po-
sition CMφ(V ). In general, the Vrn-cntrd-dynmcs law can be implemented
over a network of vehicles with arbitrary dynamics, as long as these vehicles
are capable of strictly decreasing the distance to any specified position in Q
in the time intervals between communication rounds. Under this assumption,
the Vrn-cntrd-dynmcs law enjoys the same convergence guarantees as the
Vrn-cntrd law, see Theorem 5.5 below. •

Voronoi-circumcenter control and communication law

Here we define the Vrn-crcmcntr control and communication law for the
network SD, that we denote by CCVrn-crcmcntr. This law was introduced
by Cortés and Bullo [2005]. The law is uniform, static, and data-sampled,
with standard message-generation function.

Robotic Network: SD with discrete-time motion model (4.1) in Q,
with absolute sensing of own position

Distributed Algorithm: Vrn-crcmcntr

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
( ⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return CC(V ) − p

Since the circumcenter of a Voronoi cell belongs to the cell itself, the
set Qn is positively invariant with respect to the control and communication
law CCVrn-crcmcntr. From a geometric perspective, this law makes sense as a
strategy to optimize the disk-covering multicenter function Hdc. From Sec-
tion 2.1.3, for fixed V , the circumcenter location minimizes the cost given by
the maximum distance to all points in V . From Section 2.3.2, Hdc can be
expressed (2.14) as the maximum over the network of each robot’s individual
cost.

Voronoi-incenter control and communication law

Here we define the Vrn-ncntr control and communication law for the net-
work SD, that we denote by CCVrn-ncntr. This law was introduced by Cortés
and Bullo [2005]. The law is uniform, static, and data-sampled, with standard
message-generation function.
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Robotic Network: SD with discrete-time motion model (4.1) in Q,
with absolute sensing of own position

Distributed Algorithm: Vrn-crcmcntr

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
( ⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: return x ∈ IC(V ) − p

Since the incenter set of a Voronoi cell belongs to the cell itself, the set Qn

is positively invariant with respect to the control and communication law
CCVrn-ncntr. From a geometric perspective, this law makes sense as a strategy
to optimize the sphere-packing multicenter function Hsp. From Section 2.1.3,
for fixed V , the incenter locations maximize the cost given by the minimum
distance to the boundary of V . From Section 2.3.3, Hsp can be expressed (2.17)
as the minimum over the network of each robot’s individual cost.

Remark 5.2 (“Move-toward-furthest-vertex” and “away-from-closest-
neighbor” coordination algorithms). Consider the coordination algo-
rithm where, at each time step, each robot moves towards the furthest-away
vertex of its own Voronoi cell. Alternatively, consider the coordination al-
gorithm where, at each time step, each robot moves away from its closest
neighbor. Both coordination algorithms define maps which depend discon-
tinuously on the robots’ positions. Cortés and Bullo [2005] study the asymp-
totic behavior of these laws, and show that the “move-toward-furthest-vertex”
algorithm monotonically optimizes the multicenter function Hdc, while the
“away-from-closest-neighbor” algorithm monotonically optimizes the multi-
center function Hsp. •

5.2.2 Geometric-center laws with range-limited interactions

Next, we present two control and communication laws on the network SLD.
Both laws prescribe a geometric centering strategy for each robot and accom-
plish specific forms of expected-value optimization. The Lmtd-Vrn-nrml law
optimizes the area multicenter function Harea, r

2
, while the Lmtd-Vrn-cntrd

law optimizes the mixed distortion-area multicenter function Hdistor-area, r
2
.

Limited-Voronoi-normal control and communication law

Here we define the Lmtd-Vrn-nrml control and communication law for the
network SLD. This law was introduced by Cortés et al. [2005]. The Lmtd-

Vrn-nrml law, that we denote by CCLmtd-Vrn-nrml, uses the notion of r
2 -

limited Voronoi partition inside Q. The law is uniform, static, and data-
sampled, with standard message-generation function.
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Robotic Network: SLD with discrete-time motion model (4.1) in Q,
with absolute sensing of own position, and
with communication range r

Distributed Algorithm: Lmtd-Vrn-nrml

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
( ⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: v :=
∫

V ∩∂B(p, r
2 )

nout,B(p, r
2 )(q)φ(q)dq

3: λ∗ := max{λ | δ 7→
∫

V ∩B(p+δv, r
2 )
φ(q)dq is strictly increasing on [0, λ]}

4: return λ∗v

Note that the direction of motion v specified by the control function ctl
coincides with the gradient of the multicenter function Harea, r

2
. The parame-

ter λ∗ corresponds to performing a line search procedure along the direction v.
The control function has the property that the point p+ctl(p, y) is guaran-

teed to be in the interior of V . This can be justified by noting that for fixed V ,
the gradient of the function p →

∫

V ∩B(p, r
2 )
φ(q)dq at points in the boundary

of V is non-vanishing and points toward the interior of V (cf. Exercise E2.4).
As a consequence, the line search procedure terminates before reaching the
boundary of V . This discussion guarantees that the set Qn is positively in-
variant with respect to the control and communication law CCLmtd-Vrn-nrml.

Limited-Voronoi-centroid control and communication law

Here we define the Lmtd-Vrn-cntrd control and communication law for
the network SLD. This law was introduced by Cortés et al. [2005]. The Lmtd-

Vrn-cntrd law, that we denote by CCLmtd-Vrn-cntrd, uses the notion of r
2 -

limited Voronoi partition inside Q and of centroid of the individual r
2 -limited

Voronoi cells. The law is uniform, static, and data-sampled, with standard
message-generation function.

Robotic Network: SLD with discrete-time motion model (4.1) in Q,
with absolute sensing of own position, and
with communication range r

Distributed Algorithm: Lmtd-Vrn-cntrd

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩B(p, r
2 ) ∩

(⋂{Hp,prcvd
| for all non-null prcvd ∈ y}

)
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2: return CMφ(V ) − p

The centroid of a r
2 -limited Voronoi cell belongs to the cell itself, and

this fact guarantees that the set Qn is positively invariant with respect to
the control and communication law CCLmtd-Vrn-cntrd. Moreover, note that the
direction of motion specified by the control function ctl coincides with the
gradient of the multicenter function Hdistor-area, r

2
.

Remark 5.3 (Relative sensing version). It is possible to implement the
limited-Voronoi-normal and limited-Voronoi-centroid laws as static relative-
sensing control laws on the relative-sensing network Srs

disk. This is a conse-
quence of the fact that the r-limited Delaunay graph is spatially distributed
over the r-disk graph (cf. Theorem 2.7(iii)). Let us present one of these ex-
amples for completeness.

Relative Sensing Network: Srs
disk with motion model (4.2) in Q,

no communication, relative sensing for robot i given by:

robot measurements y contains p
[j]
i ∈ B(02, r) for all j 6= i

environment measurement is yenv = (Qε)i ∩B(0d, r)

Distributed Algorithm: relative-sensing Lmtd-Vrn-cntrd

function ctl(y, yenv)

1: V := yenv ∩B(0d,
r
2 ) ∩

( ⋂{H0d,psnsd
| for all non-null psnsd ∈ y}

)

2: return CMφ(V )

Note that only the positions of neighboring robots in the r-limited Delaunay
graph have an effect in the computation of the set V . •

Remark 5.4 (Range-limited version of Vrn-cntrd). The Lmtd-Vrn-

nrml and Lmtd-Vrn-cntrd laws can be combined into a single control and
communication law to synthesize an algorithm that monotonically optimizes
the function Hdistor-area, r

2 ,b, with b = −diam(Q)2. The law is uniform, static,
and data-sampled, with standard message-generation function. This law, that
we term Rng-Vrn-cntrd, is uniform, static, and data-sampled, with stan-
dard message-generation function.

Robotic Network: SLD with discrete-time motion model (4.1) in Q,
with absolute sensing of own position, and
with communication range r

Distributed Algorithm: Rng-Vrn-cntrd

Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: V := Q ∩
( ⋂{Hp,prcvd

| for all non-null prcvd ∈ y}
)

2: v1 := 2Aφ(V ∩B(p, r
2 ))(CMφ(V ∩B(p, r

2 )) − p)
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3: v2 := (diam(Q)2 − r2

4 )
∫

V ∩∂B(p, r
2 )

nout,B(p, r
2 )(q)φ(q)dq

4: λ∗ := argmax{δ 7→ HV (p+ δ(v1 + v2), B(p+ δ(v1 + v2),
r
2 ))

is strictly increasing on (0, ε)}
5: return λ∗(v1 + v2)

In the above algorithm, HV is defined as in Exercise E2.7. For a point
p ∈ V and a closed ball B centered at a point in V with radius r

2 , we define

HV (p,B) = −
∫

V ∩B

‖q − p‖2
2φ(q)dq −

∫

V ∩(Q\B)

a2φ(q)dq.

The Rng-Vrn-cntrd law is relevant because of the following discussion.
Recall from Proposition 2.18 that the general mixed distortion-area mul-
ticenter function can be used to provide constant-factor approximations of
the distortion function Hdistor. As we discussed in Section 2.3.1, robots with
range-limited interactions cannot implement Vrn-cntrd because, for a given
r ∈ R>0, GD is not in general spatially distributed over Gdisk(r) (cf. Re-
mark 2.11). However, robotic agents with range-limited interactions can im-
plement the computations involved in Lmtd-Vrn-nrml and Lmtd-Vrn-

cntrd, and hence can optimize Hdistor-area, r
2 ,b. Assuming r ≤ 2 diam(Q), it

is fair to say that the above algorithm can be understood as a range-limited
version of the Vrn-cntrd law. •

5.2.3 Correctness and complexity of geometric-center laws

In this section we characterize convergence and complexity properties of the
geometric-center laws. The asynchronous execution of the Voronoi-centroid
control and communication law can be studied as an asynchronous gradient
dynamical system; see Cortés et al. [2004].

The following theorem summarizes the results known in the literature
about the asymptotic properties of these laws.

Theorem 5.5 (Correctness of the geometric-center algorithms). For
d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold:

(i) on the network SD, the law CCVrn-cntrd and on the network Svehicles,
the law CCVrn-cntrd-dynmcs both achieve the ε-distortion deployment task
Tε-distor-dply. Moreover, any execution of CCVrn-cntrd and CCVrn-cntrd-dynmcs

monotonically optimizes the multicenter function Hdistor;
(ii) on the network SD, any execution of the law CCVrn-crcmcntr monotonically

optimizes the multicenter function Hdc;
(iii) on the network SD, any execution of the law CCVrn-ncntr monotonically

optimizes the multicenter function Hsp;
(iv) on the network SLD, the law CCLmtd-Vrn-nrml achieves the ε-r-area de-

ployment task Tε-r-area-dply. Moreover, any execution of CCLmtd-Vrn-nrml

monotonically optimizes the multicenter function Harea, r
2
;
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(v) on the network SLD, the law CCLmtd-Vrn-cntrd achieves the ε-r-distortion-
area deployment task Tε-r-distor-area-dply. Moreover, any execution of CCLmtd-Vrn-cntrd

monotonically optimizes the multicenter function Hdistor-area, r
2
.

The results on CCVrn-cntrd and CCVrn-cntrd-dynmcs appeared originally
in [Cortés et al., 2004]. Note that an execution of CCVrn-cntrd can be viewed as
an alternating sequence of configuration of points and partitions of the space
with the properties that (i) each configuration of points corresponds to the set
of centroid locations of the immediately preceding partition in the sequence,
and (ii) each partition corresponds to the Voronoi partition determined by
the immediately preceding configuration of points in the sequence. The mono-
tonic behavior of Hdistor now follows from Propositions 2.14 and 2.15. Sim-
ilar interpretations can be given to all other laws. In particular, the mono-
tonic behavior of Hdc along executions of CCVrn-crcmcntr can be established
via Proposition 2.20, and the monotonic behavior of Hsp along executions of
CCVrn-ncntr can be established via Proposition 2.22. Versions of these laws that
run in continuous time, together with their asymptotic convergence proper-
ties, are studied by Cortés and Bullo [2005] via nonsmooth stability analysis.
It is an open research question to show that the laws CCVrn-crcmcntr and
CCVrn-ncntr achieve the ε-disk-covering deployment task Tε-dc-dply and the ε-
sphere-packing deployment task Tε-sp-dply, respectively. Finally, the results
on CCLmtd-Vrn-nrml and CCLmtd-Vrn-cntrd appeared in [Cortés et al., 2005].

Next, we analyze the time complexity of CCLmtd-Vrn-cntrd. We provide
complete results only for the case d = 1 and uniform density. We assume that
diam(Q) is independent of n, r and ε.

Theorem 5.6 (Time complexity of Lmtd-Vrn-cntrd law). Assume the
robots evolve in a closed interval Q ⊂ R, that is, d = 1, and assume that the
density is uniform, that is, φ ≡ 1. For r ∈ R>0 and ε ∈ R>0, on the network
SLD TC(Tε-r-distor-area-dply, CCLmtd-Vrn-cntrd) ∈ O(n3 log(nε−1)).

The proof of this result is contained in Mart́ınez et al. [2007b].

Remark 5.7 (Congestion effects). Interestingly, Theorem 5.6 also holds if,
motivated by wireless congestion considerations, we take the communication
range r to be a monotone non-increasing function r : N → ]0, 2π[ of the
number of robotic agents n. •

5.3 Simulation results

In this section, we illustrate the execution of the various control and commu-
nication laws introduced in this chapter.
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Geometric-center algorithms for expected-value optimization

The Vrn-cntrd, Lmtd-Vrn-nrml, and Lmtd-Vrn-cntrd control and
communication laws are implemented in MathematicaR© as a library of rou-
tines and a main program running the simulation.

The objective of a first routine is to compute the r
2 -limited Voronoi par-

tition and parameterize each cell Vi, r
2
, i ∈ {1, . . . , n} in polar coordinates.

The objective of a second routine is to compute the surface integrals on these
sets and the line integrals on their boundaries via the numerical integration
routine NIntegrate. We pay careful attention to numerical accuracy issues in
the computation of the Voronoi diagram and in the integration.

Measuring displacements in meters, we consider the polygon Q determined
by the vertices

{(0, 0), (2.125, 0), (2.9325, 1.5), (2.975, 1.6),

(2.9325, 1.7), (2.295, 2.1), (0.85, 2.3), (0.17, 1.2)}.
The diameter of Q is diam(Q) = 3.37796. In all figures, the density function φ
is the sum of four Gaussian functions of the form 11 exp(6(−(x− xcenter)

2 −
(y − ycenter)

2)) and is represented by means of its contour plot. Darker
blue areas correspond to higher values of the density function. The centers
(xcenter, ycenter) of the Gaussians are given by (2.15, .75), (1., .25), (.725, 1.75)
and (.25, .7), respectively. The area of the polygon is Aφ(Q) = 17.6352.

We show evolutions of (SD,Vrn-cntrd) and (SD,Vrn-cntrd-dynmcs)
in Figures 5.2 and 5.3, respectively. One can verify that the final network
configurations are centroidal Voronoi configuration. In other words, the task
Tε-distor-dply is achieved, as guaranteed by Theorem 5.5(i).

Fig. 5.2. Evolution of (SD,Vrn-cntrd) with n = 20 robots. The left (respec-
tively, right) figure illustrates the initial (respectively, final) locations and Voronoi
partition. The central figure illustrates the evolution of the robots. After 13 sec-
onds, the value of the multicenter function Hdistor has monotonically increased to
approximately −.515.

We show an evolution of (SLD,Lmtd-Vrn-nrml) in Figure 5.4. One can
verify that the final network configuration is a r

2 -limited area-centered Voronoi
configuration. In other words, the task Tε-r-area-dply is achieved, as guaranteed
by Theorem 5.5(ii).
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Fig. 5.3. Evolution of (SD,Vrn-cntrd-dynmcs) with n = 20 robots. The feed-
back gain is kprop = 3.5. The left (respectively, right) figure illustrates the initial
(respectively, final) locations and Voronoi partition. The central figure illustrates
the evolution of the robots. After 20 seconds, the value of the multicenter func-
tion Hdistor has monotonically increased to approximately −.555.

Fig. 5.4. Evolution of (SLD,Lmtd-Vrn-nrml) with n = 20 robots and r = 0.4.
The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the evolution of the robots. The
r
2
-limited Voronoi cell of each robot is plotted in light gray. After 36 seconds, the

value of the multicenter function Harea, r
2

is approximately 14.141.

We show an evolution of (SLD,Lmtd-Vrn-cntrd) in Figure 5.5. One can
verify that the final network configuration is a r

2 -limited centroidal Voronoi
configuration. In other words, the task Tε-r-distor-area-dply is achieved, as guar-
anteed by Theorem 5.5(iii).

Fig. 5.5. Evolution of (SLD,Lmtd-Vrn-cntrd) with n = 20 robots and r = 0.4.
The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the evolution of the robots. The
r
2
-limited Voronoi cell of each robot is plotted in light gray. After 90 seconds, the

value of the multicenter function Hdistor-area, r
2

is approximately −.386.
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We show an evolution of (SLD,Rng-Vrn-cntrd) in Figure 5.6. One
can verify that the final network configuration corresponds to a critical
point of the mixed distortion-area multicenter function Hdistor-area, r

2 ,b, with

b = −diam(Q)2, see Exercise E5.3.

Fig. 5.6. Evolution of (SLD,Rng-Vrn-cntrd) with n = 20 robots and r = 0.47.
The left (respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the evolution of the robots. The
r
2
-limited Voronoi cell of each robot is plotted in light gray. After 13 seconds, the

value of the multicenter function Hdistor-area, r
2

,b, with b = − diam(Q)2, is approxi-
mately −4.794.

As discussed in Remark 5.4, the Rng-Vrn-cntrd can be understood as
a limited-range implementation of Vrn-cntrd in a network of robots with
limited-range interactions. Let us briefly compare the evolutions depicted in
Figures 5.2 and 5.6. According to Proposition 2.18, we compute

β =
r
2

diamQ
≈ 0.06957.

From the constant-factor approximation (2.9), the absolute error is guaranteed
to be less than or equal to (β2 − 1)Hdistor-area, r

2 ,b(Pfinal) ≈ 4.77, where Pfinal

denotes the final configuration in Figure 5.6. The percentage error in the
value of the multicenter function Hdistor between the final configuration of
the evolution in Figure 5.2 and the final configuration of the evolution in
Figure 5.6 is approximately equal to 3.277%. As expected, one can verify in
simulations that the percentage error of the performance of the limited-range
implementation improves with higher values of the ratio r

diam Q .

Geometric-center algorithms for disk-covering and sphere-packing

The Vrn-crcmcntr and Vrn-ncntr control and communication laws are
implemented in MathematicaR© as a single centralized program running the
simulation. We compute the bounded Voronoi diagram of a collection of points
using the package ComputationalGeometry. We compute the circumcenter of
a polygon via the algorithm in [Skyum, 1991] and the incenter set via the
LinearProgramming solver in Mathematica.
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Measuring displacements in meters, we consider the polygon determined
by the vertices

{(0, 0), (2.5, 0), (3.45, 1.5), (3.5, 1.6), (3.45, 1.7), (2.7, 2.1), (1., 2.4), (.2, 1.2)}.
We show an evolution of (SD,Vrn-crcmcntr) in Figure 5.7. One can verify
that at the final configuration all robots are at the circumcenter of their own
Voronoi cell. In other words, the task Tε-dc-dply is achieved by this evolution.
As stated in Section 5.2.3, it is an open research question to show that this fact
holds in general for CCVrn-crcmcntr. Cortés and Bullo [2005] prove a similar
result for a continuous-time implementation of this law.

Fig. 5.7. Evolution of (SD,Vrn-crcmcntr) with n = 16 robots. The left (respec-
tively, right) figure illustrates the initial (respectively, final) locations and Voronoi
partition. The central figure illustrates the evolution of the robots. After 20 seconds,
the value of the multicenter function Hdc has monotonically decreased to approxi-
mately 0.43273 meters.

We show an evolution of (SD,Vrn-ncntr) in Figure 5.8. One can verify
that at the final configuration all robots are at the incenter of their own
Voronoi cell. In other words, the task Tε-sp-dply is achieved by this evolution.
As stated in Section 5.2.3, it is an open research question to show that this
fact holds in general for CCVrn-ncntr. Cortés and Bullo [2005] prove a similar
result for a continuous-time implementation of this law.

5.4 Notes

The deployment problem studied in this chapter is related to the literature
on facility location [Drezner, 1995, Okabe et al., 2000, Du et al., 1999] and
geometric optimization [Agarwal and Sharir, 1998, Boltyanski et al., 1999], see
also Section 2.4. These disciplines study spatial resource allocation problems
and play an important role in quantization theory, mesh and grid optimiza-
tion methods, clustering analysis, data compression, and statistical pattern
recognition.

Dispersion laws have been traditionally studied in behavior control, see
e.g., [Arkin, 1998, Schultz and Parker, 2002, Balch and Parker, 2002]. De-
ployment algorithms that make use of potential field methods are proposed
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Fig. 5.8. Evolution of (SD,Vrn-ncntr) with n = 16 robots. The left (respectively,
right) figure illustrates the initial (respectively, final) locations and Voronoi parti-
tion. The central figure illustrates the evolution of the robots. After 20 seconds, the
value of the multicenter function Hsp has monotonically increased to approximately
0.2498 meters.

by Payton et al. [2001], Howard et al. [2002]. Other works include [Winfield,
2000] on distributed sensing in ad-hoc wireless networks, [Bulusu et al., 2001]
on adaptive beacon placement for localization, [Poduri and Sukhatme, 2004]
on network deployments that satisfy a pre-specified constraint in the number
of neighbors of each robot, [Arsie and Frazzoli, 2007] on deployment strategies
that minimize the expected time needed for any robot to service a newly-
appeared target point in the environment, and [Hussein and Stipanovic̀, 2007]
on dynamically surveying a known environment.

Deployment algorithms for coverage control are a subject of active re-
search. Among the most recent works, Mart́ınez [2007], Schwager et al. [2008b]
consider coverage problems where the density function is unknown, Lekien
and Leonard [2007] propose centralized laws for non-uniform coverage using
cartograms, de Silva and Ghrist [2007] study static coverage problems with
minimal assumptions on the capabilities of individual sensors using algebraic
topology, Kwok and Mart́ınez [2008] propose distributed deployment strate-
gies for energy-constrained networks, Laventall and Cortés [2008] design dis-
tributed algorithms for networks of robots whose sensors have range-limited
wedge-shaped footprints, Gao et al. [2008] consider discrete coverage prob-
lems, Schwager et al. [2008a] consider combined exploration and deployment
problems, and Cassandras and Zhong [2008], Pimenta et al. [2008], Caicedo-
Nùñez and Žefran [2008] deal with centroidal Voronoi tessellations in noncon-
vex environments. Graham and Cortés [2007] study the optimality of circum-
center and incenter Voronoi configurations for the estimation of stochastic
spatial fields. Susca et al. [2007] consider some planar interpolation problems.

Deployment problems play a relevant role in other coordination tasks,
such as surveillance, search and rescue, and exploration and map building
of unknown environments. Choset [2001] considers sweep coverage problems,
where one or more robots equipped with limited footprint sensors have to visit
all points in the environment. In [Simmons et al., 2000], deployment locations
for a network of heterogeneous robots are user-specified after an initial map
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of the unknown environment has been built. Gupta et al. [2006a] consider a
combined sensor coverage and selection problem.

Deployment of robotic agents with visibility sensors has been studied un-
der a variety of assumptions. When the environment is known a priori, the
problem can be casted as the classical Art Gallery Problem [Chvátal, 1975]
from computational geometry, where one is interested in achieving complete
visibility with the minimum number of agents possible. The Art Gallery Prob-
lem is computationally hard [Lee and Lin, 1986, Eidenbenz et al., 2001] and
the best known approximation algorithms yield solutions within a logarithmic
factor of the optimum number of agents [Ghosh, 1987, Efrat and Har-Peled,
2006]. Hernández-Peñalver [1994], Pinciu [2003] study the problem of achiev-
ing full visibility while guaranteeing that the final network configuration will
have a connected visibility graph. Recent works on multi-robot exploration of
unknown environments include [Batalin and Sukhatme, 2004, Burgard et al.,
2005, Howard et al., 2006]. Topological exploration of graph-like environments
by single and multiple robots is studied in [Rekleitis et al., 2001, Dynia et al.,
2006, Fraigniaud et al., 2004]. A simple one-step strategy for visibility deploy-
ment, without the need for synchronization, achieving the worst-case optimal
bounds in terms of number of robots required, and under limited communi-
cation is presented in [Ganguli et al., 2007a].

5.5 Proofs

This section gathers the proofs of the main results presented in the chapter.

5.5.1 Proof of Theorem 5.5

Proof. Let P0 = (p[1](0), . . . , p[n](0)) ∈ Qn denote the initial condition. The
proof strategy for all five facts is similar. We first establish the monotonic
behavior of the corresponding multicenter function along the executions of the
control and communication law. Then, we use the LaSalle Invariance Principle
to determine the sets of asymptotic convergence of the executions. Finally, we
characterize these sets using geometric properties of the multicenter functions.

Fact (i). Let us start by showing that executions of CCVrn-cntrd monotoni-
cally optimize the function Hdistor. For convenience, we denote by fVrn-cntrd :
Qn → Qn the map induced by the execution of one step of the law CCVrn-cntrd.
Using the extension of the multicenter function defined over set of points and
partitions of Q, we deduce from Proposition 2.14 that, for P ∈ Qn,

Hdistor(fVrn-cntrd(P )) = Hdistor(fVrn-cntrd(P ),V(fVrn-cntrd(P )))

≥ Hdistor(fVrn-cntrd(P ),V(P )).

The application of Proposition 2.15 yields
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Hdistor(fVrn-cntrd(P ),V(P )) ≥ Hdistor(P,V(P )),

and hence Hdistor(fVrn-cntrd(P )) ≥ Hdistor(P ). Since all Voronoi cells have
non-vanishing areas, the inequality is strict unless fVrn-cntrd(P ) = P .

The result on the monotonic evolution of Hdistor along the executions of
CCVrn-cntrd-dynmcs can be established in a similar way making use of Propo-
sition 2.14 and Exercise E2.5. The key property of Vrn-cntrd-dynmcs (see
Remark 5.1) is that, when run over a finite time interval [t, t+ 1], the control
function ctl guarantees that, for each robot i ∈ {1, . . . , n},

‖p[i](t+ 1) − CMφ(V )‖2 ≤ ‖p[i](t) − CMφ(V )‖2,

with strict inequality unless p[i](t) = CMφ(V ).
The convergence result for both laws is established in the same way us-

ing the LaSalle Invariance Principle stated in Theorem 1.16. Here, we state
the proof for Vrn-cntrd. Since the set Qn is compact and −Hdistor is non-
increasing along fVrn-cntrd, we deduce that the execution of CCVrn-cntrd start-
ing from P0 tends to the largest positively invariant set M contained in

{P ∈ Qn | Hdistor(fVrn-cntrd(P )) = Hdistor(P )}.
The set M is precisely the set of centroidal Voronoi configurations. This is
a consequence of the fact that Hdistor(fVrn-cntrd(P )) = Hdistor(P ) implies
fVrn-cntrd(P ) = P , i.e., P is a centroidal Voronoi configuration.

Facts (ii) and (iii). The proof of these facts runs parallely to the proof
of fact (i). Propositions 2.20 and 2.22 are key in establishing the monotonic
evolution of Hdc and Hsp, respectively.

Fact (iv). For convenience, we denote by fLmtd-Vrn-nrml : Qn → Qn the
map induced by the execution of one step of the law CCLmtd-Vrn-nrml. Let us
show that executions of CCLmtd-Vrn-nrml monotonically optimize the function
Harea, r

2
. Using the extension of the multicenter function defined over set of

points and partitions of Q, we deduce from Proposition 2.14 that, for P ∈ Qn,

Harea, r
2
(fLmtd-Vrn-nrml(P )) = Harea, r

2
(fLmtd-Vrn-nrml(P ),V(fLmtd-Vrn-nrml(P )))

≥ Harea, r
2
(fLmtd-Vrn-nrml(P ),V(P )).

The line search procedure for each robot embedded in the definition of the
control function of CCLmtd-Vrn-nrml ensures that

Harea, r
2
(fLmtd-Vrn-nrml(P ),V(P )) ≥ Harea, r

2
(P,V(P )),

and hence Harea, r
2
(fLmtd-Vrn-nrml(P )) ≥ Harea, r

2
(P ). Note that the inequality

is strict unless fLmtd-Vrn-nrml(P ) = P . The application of the LaSalle Invari-
ance Principle as in the proof of fact (i) leads us now to the result.

Fact (v). The proof of this facts runs parallely to the proof of facts (i) and
(iv). Propositions 2.14 and 2.16 are key in establishing the monotonic evolu-
tion of Hdistor-area, r

2
. The convergence result is established using the LaSalle

Invariance Principle. �
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5.5.2 Proof of Theorem 5.6

Proof. For d = 1, Q is a compact interval on R, say Q = [q−, q+]. We start
with a brief discussion about connectivity. In the r-limited Delaunay graph,
two agents that are at most at a distance r from each other are neighbors if
and only if there are no other agents between them. Additionally, we claim
that, if agents i and j are neighbors, then |CMφ(V [i]) − CMφ(V [j])| ≤ r,
where V [i] denotes the set defined by the control function ctl when evaluated
by agent i. To show this fact, assume without loss of generality that p[i] ≤ p[j].
Let us consider the case where the agents have neighbors on both sides (the

other cases can be treated analogously). Let p
[i]
− (respectively, p

[j]
+ ) denote the

position of the neighbor of agent i to the left (respectively, of agent j to the
right). Now,

CMφ(V [i]) =
1

4
(p

[i]
− + 2p[i] + p[j]),

CMφ(V [j]) =
1

4
(p[i] + 2p[j] + p

[j]
+ ),

where we have used the fact that φ ≡ 1. Therefore,

|CMφ(V [i]) − CMφ(V [j])| ≤ 1

4

(
|p[i]

− − p[i]| + 2|p[i] − p[j]| + |p[j] − p
[j]
+ |

)
≤ r.

This implies that agents i and j belong to the same connected component of
the r-limited Delaunay graph at the next time step.

Next, let us consider the case when GLD(r) is connected at the initial
network configuration P0 = (p[1](0), . . . , p[n](0)). Without loss of generality,
assume that the agents are ordered from left to right according to their unique
identifier, that is, p[1](0) ≤ · · · ≤ p[n](0). We distinguish three cases depending
on the proximity of the leftmost and rightmost agents 1 and n, respectively, to
the boundary of the environment: case (a) both agents are within a distance r

2
of ∂Q; case (b) none of the two is within a distance r

2 of ∂Q; and case (c) only
one of the agents is within a distance r

2 of ∂Q. Here is an important obser-
vation: from one time instant to the next one, the network configuration can
fall into any of the cases described above. However, because of the discussion
on connectivity, transitions can only occur from case (b) to either case (a) or
(c); and from case (c) to case (a). As we show below, for each of these cases,
the network evolution under CCVrn-cntrd can be described as a discrete-time
linear dynamical system which respects agents’ ordering.

Let us consider case (a). In this case, we have
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p[1](ℓ+ 1) =
1

4
(p[1](ℓ) + p[2](ℓ)) +

1

2
q−,

p[2](ℓ+ 1) =
1

4
(p[1](ℓ) + 2p[2](ℓ) + p[3](ℓ)),

...

p[n−1](ℓ+ 1) =
1

4
(p[n−2](ℓ) + 2p[n−1](ℓ) + p[n](ℓ)),

p[n](ℓ+ 1) =
1

4
(p[n−1](ℓ) + p[n](ℓ)) +

1

2
q+ .

Equivalently, we can write P (ℓ + 1) = A(a) · P (ℓ) + b(a), where the matrix
A(a) ∈ Rn×n and the vector b(a) ∈ Rn are given by

A(a) =












1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

1
4












, b(a) =










1
2q−
0
...
0

1
2q+










.

Note that the only equilibrium network configuration P∗ respecting the or-
dering of the agents is given by

p
[i]
∗ = q− +

1

2n
(1 + 2(i− 1))(q+ − q−) , i ∈ {1, . . . , n} ,

and note that this is a r
2 -centroidal Voronoi configuration (under the assump-

tion of case (a)). We can therefore write (P (ℓ + 1) − P∗) = A(a)(P (ℓ) −
P∗). Now, note that A(a) = ATrid−

n

(
1
4 ,

1
2

)
. Theorem 1.75(ii) implies that

limℓ→+∞
(
P (ℓ) − P∗

)
= 0n, and that the maximum time required for

‖P (ℓ)−P∗
∥
∥

2
≤ ε‖P0−P∗‖2 (over all initial conditions in Rn) is Θ

(
n2 log ε−1

)
.

It is not obvious, but it can be verified, that the initial condition providing the
lower bound in the time complexity estimate does indeed have the property
of respecting the agents’ ordering; this fact holds for all three cases (a), (b)
and (c).

The case (b) can be treated in the same way. The network evolution takes
now the form P (ℓ + 1) = A(b) · P (ℓ) + b(b), where the matrix A(b) ∈ Rn×n

and the vector b(b) ∈ Rn are given by

A(b) =












3
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

3
4












, b(b) =










− 1
4r
0
...
0
1
4r










.
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In this case, a (non-unique) equilibrium network configuration respecting the
ordering of the agents is of the form

p
[i]
∗ = ir − 1 + n

2
r , i ∈ {1, . . . , n} .

Note that this is a r
2 -centroidal Voronoi configuration (under the assumption of

case (b)). We can therefore write (P (ℓ+1)−P∗) = A(b)(P (ℓ)−P∗). Now, note

that A(b) = ATrid+
n

(
1
4 ,

1
2

)
. We compute Pave = 1

n1T
n (P0−P∗) = 1

n1T
nP0. With

this calculation, Theorem 1.75(i) implies that limℓ→+∞
(
P (ℓ)−P∗−Pave1n

)
=

0n, and that the maximum time required for ‖P (ℓ)−P∗−Pave1n

∥
∥

2
≤ ε‖P0 −

P∗ − Pave1n‖2 (over all initial conditions in Rn) is Θ
(
n2 log ε−1

)
.

Case (c) needs to be handled differently. Without loss of generality, assume
that agent 1 is within distance r

2 of ∂Q and agent n is not (the other case is
treated analogously). Then, the network evolution takes now the form P (ℓ+
1) = A(c) ·P (ℓ)+b(c), where the matrix A(c) ∈ Rn×n and the vector b(c) ∈ Rn

are given by

A(c) =












1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . 1

4
1
2

1
4

0 . . . . . . 0 1
4

3
4












, b(c) =










1
2q−
0
...
0
1
4r










.

Note that the only equilibrium network configuration P∗ respecting the or-
dering of the agents is given by

p
[i]
∗ = q− +

1

2
(2i− 1)r , i ∈ {1, . . . , n} ,

and note that this is a r
2 -centroidal Voronoi configuration (under the as-

sumption of case (c)). In order to analyze A(c), we recast the n-dimensional
discrete-time dynamical system as a 2n-dimensional one. To do this, we define
a 2n-dimensional vector y by

y[i] = p[i], i ∈ {1, . . . , n}, and y[n+i] = p[n−i+1], i ∈ {1, . . . , n}. (5.2)

Now, one can see that the network evolution can be alternatively described
in the variables (y[1], . . . , y[2n]) as a linear dynamical system determined by
the 2n× 2n matrix ATrid−

2n( 1
4 ,

1
2 ). Using Theorem 1.75(ii), and exploiting the

chain of equalities (5.2), we can infer that, in case (c), the maximum time
required for ‖P (ℓ) − P∗

∥
∥

2
≤ ε‖P0 − P∗‖2 (over all initial conditions in Rn) is

Θ
(
n2 log ε−1

)
.

In summary, for all three cases (a), (b) and (c), our calculations show that,
in time O

(
n2 log ε−1

)
, the error 2-norm satisfies the contraction inequality
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‖P (ℓ) − P∗
∥
∥

2
≤ ε‖P0 − P∗‖2. We convert this inequality on 2-norms into

an appropriate inequality on ∞-norms as follows. Note that ‖P0 − P∗‖∞ =

maxi∈{1,...,n} |p[i](0) − p
[i]
∗ | ≤ (q+ − q−). For ℓ of order n2 log η−1, we have

‖P (ℓ) − P∗‖∞ ≤ ‖P (ℓ) − P∗‖2 ≤ η‖P0 − P∗‖2

≤ η
√
n‖P0 − P∗‖∞ ≤ η

√
n(q+ − q−).

This means that ε-r-deployment is achieved for η
√
n(q+ − q−) = ε, that is, in

time O(n2 log η−1) = O(n2 log(nε−1)).
Up to here we have proved that, if the graph GLD(r) is connected at P0,

then TC(Tε-r-dply, CCVrn-cntrd, P0) ∈ O(n2 log(nε−1)). If GLD(r) is not con-
nected at P0, note that along the network evolution there can only be a finite
number of time instants, at most n−1 where a merging of two connected com-
ponents occurs. Therefore, the time complexity is at most O(n3 log(nε−1)),
as claimed. �

5.6 Exercises

E5.1 (Monotonic evolution of Hdc and Hsp). Prove statements (ii) and (iii)
in Theorem 5.5.
Hint: Make use of the optimality of the Voronoi partition and of center
locations stated in Propositions 2.20 and 2.22.

E5.2 Prove statement (v) in Theorem 5.5.
Hint: To establish the monotonic evolution of the multicenter function, make
use of the optimality of the Voronoi partition stated in Proposition 2.14 and
of centroid locations stated in Proposition 2.16. To establish the convergence
result, make use of the LaSalle Invariance Principle stated in Theorem 1.16.

E5.3 (Correctness of Rng-Vrn-cntrd). Mimic the proof of Theorem 5.5(iv)
to show that the evolutions of Rng-Vrn-cntrd monotonically optimize the
mixed distortion-area multicenter function

Hdistor-area, r
2

,b, with b = − diam(Q)2,

and asymptotically approach its set of critical points.
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