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Summary Introduction

Motion coordination problem: the rendezvous objective

Constraining multi-robot motion to maintain connectivity

Achieving rendezvous under different assumptions on connectivity,
for convex and non-convex environments

Time complexity of rendezvous algorithms under different
connectivity assumptions in 1D spaces

Method of proof is based on a LaSalle invariance principle for
set-valued maps

,

Rendezvous objective

Objective:
achieve multi-robot rendezvous; i.e. arrive at the same location of space

r-disk connectivity visibility connectivity

,

But we have to be careful...

Blindly “getting closer” to neighboring agents might lead to
disconnection
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Network definition and rendezvous tasks

The objective is applicable for general robotic networks
Sdisk, SLD and S∞-disk,
and the relative-sensing networks Srs

disk and Srs
vis-disk

We adopt the discrete-time motion model

p[i](` + 1) = p[i](`) + u[i](`), i ∈ {1, . . . , n}

Also for the relative-sensing networks

p
[i]
fixed(` + 1) = p

[i]
fixed(`) + R

[i]
fixedu

[i]
i (`), i ∈ {1, . . . , n}

We usually assume no bound on the control or umax

,

The rendezvous task

Let S = ({1, . . . , n},R, Ecmm) be a uniform robotic network
The (exact) rendezvous task Trndzvs : Xn → {true, false} for S is

Trndzvs(x
[1], . . . , x[n])

=

{
true, if x[i] = x[j], for all (i, j) ∈ Ecmm(x[1], . . . , x[n]),

false, otherwise

Suppose that P = {p[1], . . . , p[n]} is the set of agents location in X ⊂ Rd,
P be an array of n points in Rd, and let avrg denote

avrg({q1, . . . , qk}) =
1

k
(q1 + · · ·+ qk)

For ε ∈ R>0, the ε-rendezvous task Tε-rndzvs : (Rd)n → {true, false} is

Tε-rndzvs(P ) = true

⇐⇒ ‖p[i] − avrg
(
{p[j] | (i, j) ∈ Ecmm(P )}

)
‖2 < ε, i ∈ {1, . . . , n}
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Enforcing range-limited links – pairwise connectivity

Pairwise connectivity maintenance problem:
Given two neighbors in the proximity graph Gdisk(r), find a rich set of

control inputs for both agents with the property that, after moving,

both agents are again within distance r

Definition (Pairwise connectivity constraint set)

Consider two agents i and j at positions p[i] ∈ Rd and p[j] ∈ Rd such
that ‖p[i] − p[j]‖2 ≤ r. The connectivity constraint set of agent i with
respect to agent j is

Xdisk

(
p[i], p[j]

)
= B

(p[j] + p[i]

2
,
r

2

)
.



,

Enforcing range-limited links – pairwise connectivity

Note that both robots i and j can independently compute their
respective connectivity constraint sets

If ‖p[i](`)− p[j](`)‖ ≤ r, and remain in the connectivity sets,
then ‖p[i](` + 1)− p[j](` + 1)‖ ≤ r

,

Enforcing range-limited links – multi-agent connectivity

Definition (Connectivity constraint set)

Consider a group of agents at positions P = {p[1], . . . , p[n]} ⊂ Rd. The
connectivity constraint set of agent i with respect to P is

Xdisk(p
[i],P) =

⋂ {
Xdisk(p

[i], q) | q ∈ P \ {p[i]} s.t. ‖q − p[i]‖2 ≤ r
}

,

Enforcing a less conservative connectivity

Recall definitions of other proximity graphs
Relative neighborhood graph GRN, the Gabriel graph GG, and
the r-limited Delaunay graph GLD(r)

The graphs GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r) satisfy:
1 They have the same connected components as Gdisk(r), and
2 they are spatially distributed over Gdisk(r)

Consequences are
1 Sparser graphs imply fewer connectivity constraints, and
2 agents can determine its neighbors in these graphs

,

Enforcing range-limited line-of-sight links

Consider a compact nonconvex environment Q ⊂ R2 and contract this
into Qδ = {q ∈ Q | dist(q, ∂Q) ≥ δ} for a small positive δ.

Suppose robots are deployed in Qδ and constitute a
visibility-based network Svis-disk. That is, j is a neighbor of i iff

p[j](`) ∈ Vidisk(p
[i](`);Qδ) = Vi(p[i](`);Qδ)∩B(p[i](`), r)
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Enforcing range-limited line-of-sight links

The following algorithm computes a sufficient constraint set

function iterated truncation(p[i], p[j];Qδ)
%Executed by robot i at position p[i] assuming that robot j is at
position p[j] within range-limited line of sight of p[i]

1: Xtemp := Vidisk(p
[i];Qδ)∩B

(
1
2 (p[i] + p[j]), r

2

)
2: while ∂Xtemp contains a concavity do
3: v := a strictly concave point of ∂Xtemp closest to [p[i], p[j]]
4: Xtemp := Xtemp ∩HQδ

(v)
5: return Xtemp

,

Enforcing range-limited line-of-sight links

,

Enforcing range-limited line-of-sight links

Theorem (Properties of the iterated truncation algorithm)

Consider the δ-contraction of a compact allowable environment Qδ with
κ strict concavities, and let (p[i], p[j]) ∈ J . The following holds:

1 The iterated truncation algorithm, invoked with arguments
(p[i], p[j];Qδ), terminates in at most κ steps; denote its output by
Xvis-disk(p

[i], p[j];Qδ);
2 Xvis-disk(p

[i], p[j];Qδ) is nonempty, compact and convex;

3 Xvis-disk(p
[i], p[j];Qδ) = Xvis-disk(p

[j], p[i];Qδ); and
4 the set-valued map (p, q) 7→ Xvis-disk(p, q;Qδ) is closed at all

(p, q) ∈ J .

Proof: (Item 3) all relevant concavities in the computation of
Xvis-disk(p

[i], p[j];Qδ) are visible from both agents p[i] and p[j]

,

Enforcing range-limited line-of-sight constraints

Definition (Line-of-sight connectivity constraint set)

Consider a nonconvex allowable environment Qδ and two agents i and j
within range-limited line of sight. We call:

Xvis-disk(p
[i], p[j];Qδ) the pairwise line-of-sight connectivity

constraint set of agent i with respect to agent j

the line-of-sight connectivity constraint sets of agent i with
respect to P is

Xvis-disk(p
[i],P;Qδ) =

⋂ {
Xvis-disk(p

[i], q;Qδ) | q ∈ P \ {p[i]}
}
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Averaging control and communication law

Averaging behavior: move towards a position computed as the
average of the received messages

Relation to Vicsek’s model for fish flocking and employed to model
“opinion dynamics under bounded confidence”

[Informal description:]
At each communication round each agent performs
the following tasks: (i) it transmits its position and receives its
neighbors’ positions; (ii) it computes the average of the point set
comprised of its neighbors and of itself. Between communication

rounds, each robot moves toward the average point it computed.

The law is uniform, static, and data-sampled, with standard
message-generation function

,

Averaging control and communication law

Robotic Network: Sdisk with “discrete-time” motion in Rd,
with absolute sensing of own position, and
with communication range r

Distributed Algorithm: averaging
Alphabet: A = Rd ∪{null}

function msg(p, i)

1: return p

function ctl(p, y)

1: return avrg({p}∪{prcvd | prcvd is a non-null message in y})− p

,

Averaging CC law – an implementation in d = 1

Note that, along the evolution,
several robots rendezvous
some robots are connected at the simulation’s beginning and
not connected at the simulation’s end

,

Averaging CC law – correctness

Theorem (Correctness and time complexity of averaging law)

For d = 1, the network Sdisk, the law CCaveraging achieves the task
Trndzvs with time complexity

TC(Trndzvs, CCaveraging) ∈ O(n5),

TC(Trndzvs, CCaveraging) ∈ Ω(n).
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Circumcenter control and communication laws

Recall the circumcenter definition:

For X = Rd, X = Sd or X = Rd1 × Sd2 , d =
d1+d2, circumcenter CC(W ) of a bounded set
W ⊂ X is center of closed ball of minimum ra-
dius that contains W . Circumradius CR(W )
is radius of this ball

Lemma (Properties of the circumcenter in Euclidean space)

Let S ∈ F(Rd). Then, the following holds:
1 CC(S) ∈ co(S) \ Ve(co(S))

2 if p ∈ co(S) \ {CC(S)} and r ∈ R>0 are such that S ⊂ B(p, r), then
]p, CC(S)[ has a nonempty intersection with B(p+q

2 , r
2 ) for all

q ∈ co(S)

,

Circumcenter control and communication law

Basic Idea:
each agent minimizes “local version” of objective function

max{‖pi − pj‖ | pj is neighbor of pi}

i.e., each agent goes toward circumcenter of neighbors and itself
(which is the closest point to all these locations)
each agent maintains connectivity by moving inside constraint set

[Informal description:]
At each communication round each agent performs the following
tasks: (i) it transmits its position and receives its neighbors’ positions;
(ii) it computes the circumcenter of the point set comprised of its
neighbors and of itself. Between communication rounds, each robot
moves toward this circumcenter point while maintaining connectivity

with its neighbors using appropriate connectivity constraint sets.

,

Circumcenter control and communication law

Illustration of the algorithm execution

,

Circumcenter control and communication law

Formal algorithm description

Robotic Network: Sdisk with a discrete-time motion model,
with absolute sensing of own position, and
with communication range r, in Rd

Distributed Algorithm: circumcenter
Alphabet: A = Rd ∪{null}
function msg(p, i)

1: return p

function ctl(p, y)

1: pgoal := CC({p}∪{prcvd | for all non-null prcvd ∈ y})
2: X := Xdisk(p, {prcvd | for all non-null prcvd ∈ y})
3: return fti(p, pgoal,X )− p



,

Circumcenter control and communication law

Relaxations:
Can also be run over any other proximity graph which is spatially
distributed over Gdisk(r) or over Gvis-disk,Qδ

Bounds can be applied to the control magnitude
Other alternatives are available where the constraint set is not
necessary

Use a “parallel circumcenter control and communication law”
Use a “1/2 circumcenter algorithm”

,

Simulations

axisx

axisy

axisz

,

Correctness

Theorem (Correctness of the circumcenter laws)

For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following statements hold:
1 on Sdisk, the law CCcircumcenter (with control magnitude bounds and

relaxed G-connectivity constraints) achieves Trndzvs;
2 on SLD, the law CCcircumcenter achieves Tε-rndzvs

Similar result for the parallel circumcenter algorithm and for visibility
networks in non-convex environments

,

Correctness

Theorem (Correctness of the circumcenter laws)

Furthermore, the evolutions of (Sdisk, CCcircumcenter), of
(SLD, CCcircumcenter), and of (S∞-disk, CCpll-crcmcntr) have the following
properties:

1 if any two agents belong to the same connected component at
` ∈ Z≥0, then they continue to belong to the same connected
component subsequently; and

2 for each evolution, there exists P ∗ = (p∗1 , . . . , p
∗
n) ∈ (Rd)n such that:

1 the evolution asymptotically approaches P ∗, and
2 for each i, j ∈ {1, . . . , n}, either p∗i = p∗j , or ‖p∗i − p∗j‖2 > r (for the

networks Sdisk and SLD) or ‖p∗i − p∗j‖∞ > r (for the network
S∞-disk).
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Correctness – Time complexity

Theorem (Time complexity of circumcenter laws)

For r ∈ R>0 and ε ∈ ]0, 1[, the following statements hold:
1 on the network Sdisk, evolving on the real line R (i.e., with d = 1),

TC(Trndzvs, CCcircumcenter) ∈ Θ(n);
2 on the network SLD, evolving on the real line R (i.e., with d = 1),

TC(T(rε)-rndzvs, CCcircumcenter) ∈ Θ(n2 log(nε−1)); and
3 on the network S∞-disk, evolving on Euclidean space (i.e., with

d ∈ N), TC(Trndzvs, CCpll-crcmcntr) ∈ Θ(n).

Results hold for constant comm range, but allow for the diameter of the
initial network configuration (the maximum inter-agent distance) to
grow unbounded with the number of robots

Extension to visibility network is possible

,

Some bad news...

Circumcenter algorithms are nonlinear discrete-time dynamical systems

x`+1 = f(x`)

To analyze convergence, we need at least f continuous – to use classic
Lyapunov/LaSalle results

But circumcenter algorithms are discontinuous because of changes in
interaction topology

,

Alternative idea

Fixed undirected graph G, define fixed-topology circumcenter
algorithm

fG : (Rd)n → (Rd)n, fG,i(p1, . . . , pn) = fti(p, pgoal,X )− p

Now, there are no topological changes in fG, hence fG is continuous

Define set-valued map TCC : (Rd)n → P((Rd)n)

TCC(p1, . . . , pn) = {fG(p1, . . . , pn) | G connected}

,

Non-deterministic dynamical systems

Given T : X → P(X), a trajectory of T is
sequence {xm}m∈Z≥0

⊂ X such that

xm+1 ∈ T (xm) , m ∈ Z≥0

T is closed at x if xm → x, ym → y with ym ∈ T (xm) imply y ∈ T (x)
Every continuous map T : Rd → Rd is closed on Rd

A set C is
weakly positively invariant if, for any p0 ∈ C, there exists
p ∈ T (p0) such that p ∈ C

strongly positively invariant if, for any p0 ∈ C, all p ∈ T (p0)
verifies p ∈ C

A point p0 is a fixed point of T if p0 ∈ T (p0)
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LaSalle Invariance Principle – set-valued maps

V : X → R is non-increasing along T on S ⊂ X if

V (x′) ≤ V (x) for all x′ ∈ T (x) and all x ∈ S

Theorem (LaSalle Invariance Principle)

For S compact and strongly invariant with V continuous and non-
increasing along closed T on S

Any trajectory starting in S converges to largest weakly invariant
set contained in {x ∈ S | ∃x′ ∈ T (x) with V (x′) = V (x)}

,

Correctness – TCC is closed

Recall set-valued map TCC : (Rd)n → P((Rd)n)

TCC(p1, . . . , pn) = {fG(p1, . . . , pn) | G connected}

TCC is closed: finite combination of individual continuous maps

In addition,

co(P ′) ⊂ co(P )

for all P ′ ∈ TG(P ) and P ∈ (Rd)n

,

Correctness – diameter as non-increasing function

Vdiam = diam ◦ co : (Rd)n → R+, by

Vdiam(P ) = diam(co(P )) = max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}

Let diag((Rd)n) = {(p, . . . , p) ∈ (Rd)n | p ∈ Rd}

Lemma
The function Vdiam = diam ◦ co : (Rd)n → R+ verifies:

1 Vdiam is continuous and invariant under permutations;
2 Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n);
3 Vdiam is non-increasing along TCC

,

Correctness via LaSalle Invariance Principle

To recap
1 TCC is closed
2 V = diam is non-increasing along TCC

3 Evolution starting from P0 is contained in co(P0) (compact and
strongly invariant)

Application of LaSalle Invariance Principle: trajectories starting at
P0 converge to M , largest weakly positively invariant set contained in

{P ∈ co(P0) | ∃P ′ ∈ TCC(P ) such that diam(P ′) = diam(P )}

Have to identify M ! Ideally, M = diag((Rd)n) ∩ co(P0)

Clearly diag((Rd)n) ∩ co(P0) ⊂ M – other inclusion by contradiction
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LaSalle Invariance Principle – identifying M

Assume P ∈ M \ (diag((Rd)n) ∩ co(P0)), and thus diam(P ) > 0
Let G be a connected directed graph and consider TG(P )

1 All non vertices of co(P ) remain in co(P ) \ vertices(co(P ))

2 Argument has to be extended to the case where there is more than
one agent at a vertex

After a finite number of iterations, all agents in configuration
TG1,r(TG2,r(. . . TGN ,r(P ))) are contained in co(P ) \ V(co(P ))
Therefore, diam(TG1,r(TG2,r(. . . TGN ,r(P )))) < diam(P ), which
contradicts M weakly invariant

Convergence to a point can be concluded with a little bit of extra work

Corollary: Circumcenter algorithm achieves rendezvous

,

Robustness of circumcenter algorithms

Push whole idea further!, e.g., for robustness against link failures

topology G1 topology G2 topology G3

Look at evolution under link failures as outcome of
nondeterministic evolution under multiple interaction topologies

P −→ {evolution under G1, evolution under G2, evolution under G3}

,

Rendezvous

Corollary (Circumcenter algorithm over Gdisk(r) on Rd)

For {Pm}m∈Z≥0
synchronous execution with link failures such that union

of any ` ∈ N consecutive graphs in execution has globally reachable node

Then, there exists (p∗, . . . , p∗) ∈ diag((Rd)n) such that

Pm → (p∗, . . . , p∗) as m → +∞

Proof uses

TCC,`(P ) = {fG`
◦ · · · ◦ fG1(P ) |

∪`
s=1 Gi has globally reachable node}

,

Rendezvous: example complexity analysis

1 first-order agents with disk graph, for d = 1,

TC(Trndzvs, CCcircumcenter) ∈ Θ(n)

2 first-order agents with limited Delaunay graph, for d = 1,

TC(T(rε)-rndzvs, CCcircumcenter) ∈ Θ(n2 log(nε−1))

Complexity analysis via tridiagonal Toeplitz and circulant matrices



,

Summary and conclusions

Rendezvous objective
1 Discussed possible algorithms to achieve rendezvous for different

networks
2 Constraints to maintain connectivity
3 Results on time complexity
4 Analyzed convergence via nondeterministic dynamical systems
5 Established robustness properties

Set of ideas can be further developed to provide broadly applicable tools
for correctness and robustness analysis beyond rendezvous

,

References

Circumcenter algorithms:
H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless

point convergence algorithm for mobile robots with limited

visibility. IEEE Transactions on Robotics and Automation,

15(5):818--828, 1999

J. Cortés, S. Martı́nez, and F. Bullo. Robust rendezvous for mobile

autonomous agents via proximity graphs in arbitrary dimensions. IEEE

Transactions on Automatic Control, 51(8):1289--1298, 2006

Robustness via non-deterministic dynamical systems:
J. Cortés. Characterizing robust coordination algorithms via

proximity graphs and set-valued maps. In American Control Conference,

pages 8--13, Minneapolis, MN, June 2006

Flocking algorithms:
A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of

mobile autonomous agents using nearest neighbor rules. IEEE

Transactions on Automatic Control, 48(6):988--1001, 2003

L. Moreau. Stability of multiagent systems with time-dependent

communication links. IEEE Transactions on Automatic Control,

50(2):169--182, 2005


