
Lecture #2:
Models and Complexity of Robotic Networks

Francesco Bullo1 Jorge Cortés2 Sonia Mart́ınez2

1Department of Mechanical Engineering
University of California, Santa Barbara
bullo@engineering.ucsb.edu

2Mechanical and Aerospace Engineering
University of California, San Diego
{cortes,soniamd}@ucsd.edu

Workshop on “Distributed Control of Robotic Networks”
IEEE Conference on Decision and Control

Cancun, December 8, 2008

Acknowledgements: Emilio Frazzoli

Summary introduction

Model for robotic networks that communicate and process information at
discrete time instants, and move in continuous time

Draw analogies with treatment on distributed algorithms for synchronous
networks in previous lecture

Special attention to spatial component – proximity graphs

Illustrate complexity notions in simple agree-and-pursue example

2 / 49

Direction agreement and equidistance

Network size is un-
known to agents

Problem (Direction agreement &
equidistance)

Assume agents move in circle according to first-order
integrator dynamics. Some move clockwise, others
counterclockwise

Agents talk to other agents within distance r

Objective: agree on a common direction of motion
and uniformly deploy over circle

3 / 49

The agree-and-pursue algorithm

To solve the direction agreement and equidistance problem, each agent
sets max UID received so far to its own UID

initially transmits its direction of motion and UID to neighbors

at each communication round: listens to messages from other agents
and compares the received UIDs from agents moving toward its position
with its own UID. If max UID is larger than own UID, resets UID and
direction of motion

between communication rounds: moves kprop ∈ (0, 1/2) times the
distance to the immediately next neighbor in chosen direction, or, if no
neighbors, kprop times communication range r

4 / 49

The agree-and-pursue algorithm – cont

The agree-and-pursue algorithm solves the direction agreement and
equidistance problem on a circle

all agents agree on a common direction of motion – either clockwise or
counterclockwise
network asymptotically achieves uniform, equally-spaced rotating
configuration

New issues arise when considering robotic networks

As agents move, interconnection topology changes (e.g., network might be
disconnected, and then leader election would not work)
Tasks might not be achieved exactly, but asymptotically (e.g., equidistance)
Need to rethink model and notions of complexity to account for
spatial component

5 / 49

Proximity graphs model interconnection topology

Proximity graph
graph whose vertex set is a set of distinct points and
whose edge set is a function of the relative locations of the point set

Appear in computational geometry and topology control of wireless networks

Definition (Proximity graph)

Let X be a d-dimensional space chosen among Rd, Sd, and Rd1 × Sd2 , with
d1 + d2 = d. Let G(X) be the set of all undirected graphs whose vertex set is an
element of F(X) (finite subsets of X)
A proximity graph G : F(X) → G(X) associates to P = {p1, . . . , pn} ⊂ X an
undirected graph with vertex set P and edge set
EG(P) ⊆ {(p, q) ∈ P × P | p 6= q}.

6 / 49

Examples of proximity graphs

On (Rd, dist2), (Sd, distg), or (Rd1 × Sd2 , (dist2, distg))
1 the r-disk graph Gdisk(r), for r ∈ R>0, with (pi, pj) ∈ EGdisk(r)(P) if

dist(pi, pj) ≤ r
2 the Delaunay graph GD, with (pi, pj) ∈ EGD(P) if Vi(P) ∩ Vj(P) 6= ∅

Definition

3 the r-limited Delaunay graph GLD(r), for r ∈ R>0, with
(pi, pj) ∈ EGLD(r)(P) if Vi, r

2
(P)∩Vj, r

2
(P) 6= ∅ Definition

4 the relative neighborhood graph GRN, with (pi, pj) ∈ EGRN(P) if
pk 6∈ B(pi, dist(pi, pj))∩B(pj , dist(pi, pj)) for all pk ∈ P

Gdisk(r) GD GLD(r) GRN

7 / 49

More examples of proximity graphs on Euclidean space

1 the Gabriel graph GG, with (pi, pj) ∈ EGG(P) if pk 6∈ B
(pi+pj

2 ,
dist(pi,pj)

2

)
for

all pk ∈ P
2 the Euclidean minimum spanning tree GEMST, that assigns to each P a

minimum-weight spanning tree of the complete weighted digraph
(P, {(p, q) ∈ P × P | p 6= q}, A), with weighted adjacency matrix
aij = ‖pi − pj‖2, for i, j ∈ {1, . . . , n}

3 given a simple polygon Q in R2, the visibility graph Gvis,, with
(pi, pj) ∈ EGvis,(P) if the closed segment [pi, pj] from pi to pj is contained
in Q

GG GEMST Gvis,

8 / 49

Set of neighbors map

For proximity graph G, p ∈ X, and P = {p1, . . . , pn} ∈ F(X)

associate set of neighbors map NG,p : F(X) → F(X)

NG,p(P) = {q ∈ P | (p, q) ∈ EG(P ∪{p})}

Typically, p is a point in P, but this works for any p ∈ X

When does a proximity graph provide sufficient information to
compute another proximity graph?

9 / 49

Spatially distributed graphs

E.g., if a node knows position of its neighbors in the complete graph, then it
can compute its neighbors with respect to any proximity graph

Formally, given G1 and G2,
1 G1 is a subgraph of G2, denoted G1 ⊂ G2, if G1(P) is a subgraph of G2(P)

for all P ∈ F(X)

2 G1 is spatially distributed over G2 if, for all p ∈ P, Illustration

NG1,p(P) = NG1,p

(
NG2,p(P)

)
,

that is, any node equipped with the location of its neighbors with respect
to G2 can compute its set of neighbors with respect to G1

G1 spatially distributed over G2 =⇒ G1 ⊂ G2

Converse not true: GD ∩ Gdisk(r) ⊂ Gdisk, but GD ∩ Gdisk(r) not spatially
distributed over Gdisk(r) Illustration

10 / 49

Inclusion relationships among proximity graphs

Theorem
For r ∈ R>0, the following statements hold:

1 GEMST ⊂ GRN ⊂ GG ⊂ GD;
2 GG ∩Gdisk(r) ⊂ GLD(r) ⊂ GD ∩Gdisk(r)

3 GRN ∩Gdisk(r), GG ∩Gdisk(r), and GLD(r) are spatially distributed over
Gdisk(r)

The inclusion GLD(r) ⊂ GD ∩Gdisk(r) is in general strict

Since GEMST is by definition connected, (1) implies that GRN, GG and GD are
connected

11 / 49

Connectivity properties of Gdisk(r)

Theorem
For r ∈ R>0, the following statements hold:

1 GEMST ⊂ Gdisk(r) if and only if Gdisk(r) is connected;
2 GEMST ∩Gdisk(r), GRN ∩Gdisk(r), GG ∩Gdisk(r) and GLD(r) have the same

connected components as Gdisk(r) (i.e., for all point sets P ∈ F(Rd), all
graphs have the same number of connected components consisting of the
same vertices).

12 / 49

Spatially distributed maps

Given a set Y and a proximity graph G, a map T : Xn → Y n is spatially
distributed over G if ∃ a map T̃ : X × F(X) → Y such that for all
(p1, . . . , pn) ∈ Xn and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,pj
(p1, . . . , pn)),

where Tj denotes the jth-component of T

Equivalently,

the jth component of a spatially distributed map at (p1, . . . , pn) can be
computed with the knowledge of the vertex pj and the neighboring
vertices in the undirected graph G(P)

13 / 49

Physical components of a robotic network

Group of robots with the ability to ex-
change messages, perform local compu-
tations, and control motion

Mobile robot: continuous-time continuous-space dynamical system,
1 X is d-dimensional space chosen among Rd, Sd, and the Cartesian products

Rd1 × Sd2 , for some d1 + d2 = d, called the state space;
2 U is a compact subset of Rm containing 0, called the input space;
3 X0 is a subset of X, called the set of allowable initial states;
4 f : X × U → Rd is a smooth control vector field on X

14 / 49

Synchronous robotic network

Definition (Robotic network)

The physical components of a uniform robotic network S consist of a tuple
(I,R, Ecmm), where

1 I = {1, . . . , n}; I is called the set of unique identifiers (UIDs);
2 R = {R[i]}i∈I = {(X, U,X0, f)}i∈I is a set of mobile robots;
3 Ecmm is a map from Xn to the subsets of I × I; this map is called the

communication edge map.

Map x 7→ (I, Ecmm(x)) models topology of the communication service among
robots – proximity graph induced by network capabilities

15 / 49

A couple of examples

Locally-connected first-order robots in Rd: Sdisk

n points x[1], . . . , x[n] in Rd, d ≥ 1, obeying ẋ[i](t) = u[i](t), with
u[i] ∈ [−umax, umax]. These are identical robots of the form

(Rd, [−umax, umax]
d, Rd, (0, e1, . . . , ed))

Each robot can communicate to other robots within r, Gdisk(r) on Rd

Locally-connected first-order robots in S1: Scircle

n robots θ[1], . . . , θ[n] in S1, moving along on the unit circle with angular
velocity equal to the control input. Each robot is described by

(S1, [−umax, umax], S1, (0, e))

(e describes unit-speed counterclockwise rotation). Each robot can
communicate to other robots within r along the circle, Gdisk(r) on S1

16 / 49

Uniform control and communication law

1 communication schedule Z≥0 = {t`}`∈Z≥0
⊂ R≥0

2 communication alphabet A including the null message
3 processor state space W , with initial allowable W

[i]
0

4 message-generation function msg : Z≥0 ×X ×W × I → L

5 state-transition functions stf : X ×W × Ln → W

6 control function ctl : Z≥0 ×X ×W × Ln → U

Execution: discrete-time communication
discrete-time computation
continuous-time motion

Transmit

and receive

Update

processor

state

Move - update physical state

17 / 49

The agree-and-pursue algorithm – formally

Alphabet: A = S1 × {c, cc} × I ∪{null}
Processor State: w = (dir, max-id), where

dir ∈ {c, cc}, initially: dir[i] unspecified

max-id ∈ I, initially: max-id[i] = i for all i

function msg(θ, w, i)

1: return (θ, w)

function stf(w, y)

1: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) do
2: if (max-idrcvd > max-id) AND (distcc(θ, θrcvd) ≤ r AND dirrcvd = c) OR

(distc(θ, θrcvd) ≤ r AND dirrcvd = cc) then
3: new-dir := dirrcvd

4: new-id := max-idrcvd

5: return (new-dir, new-id)

function ctl(θsmpld, w, y)

1: dtmp := r
2: for each non-null message (θrcvd, (dirrcvd, max-idrcvd)) do
3: if (dir = cc) AND (distcc(θsmpld, θrcvd) < dtmp) then

4: dtmp := distcc(θsmpld, θrcvd) and utmp := kpropdtmp (kprop ∈ (0, 1
2
))

5: if (dir = c) AND (distc(θsmpld, θrcvd) < dtmp) then
6: dtmp := distc(θsmpld, θrcvd) and utmp := −kpropdtmp

7: return utmp

18 / 49

Evolution of a robotic network – formal definition

Evolution of (S, CC) from x
[i]
0 ∈ X0

[i] and w
[i]
0 ∈ W

[i]
0 , i ∈ I, is the collection of

curves x[i] : R≥0 → X [i] and w[i] : Z≥0 → W [i], i ∈ I

ẋ[i](t) = f
(
x[i](t), ctl[i]

(
t, x[i](btc), w[i](btc), y[i](btc)

))
,

where btc = max{` ∈ Z≥0 | ` < t}, and

w[i](`) = stf[i](x[i](`), w[i](`− 1), y[i](`)),

with x[i](0) = x
[i]
0 , and w[i](−1) = w

[i]
0 , i ∈ I

Here, y[i] : Z≥0 → An (describing the messages received by processor i) has
components y

[i]
j (`), for j ∈ I, given by

y
[i]
j (`) =

{
msg[j](x[j](`), w[j](`− 1), i), if (j, i) ∈ Ecmm

(
x[1](`), . . . , x[n](`)

)
null, otherwise

19 / 49

Processor state set and alphabet quantization

We allow the processor state set and the communication alphabet to contain an
infinite number of symbols – equivalently, we neglect inaccuracies due to
quantization

Convenient to allow messages to contain real numbers because, in many control
and communication laws, the robots exchange their states, including both their
processor and their physical states

For such laws, communication alphabet A = (X ×W)∪{null}; and message
generation function msgstd(x,w, j) = (x,w) is standard message-generation
function

20 / 49

Robotic networks with relative sensing

Model assumes ability of each robot to know its own absolute position

Alternative setting: robots do not communicate amongst themselves, but
instead

detect and measure each other’s relative position through appropriate
sensors
perform measurements of the environment without having a priory
knowledge

Robots do not have the ability to perform measurements expressed in a
common reference frame

21 / 49

Kinematic motions

No common reference frame

p
fixed

z
fixed

y
fixed

xfixed

p
b

fixed

q

qfixed

p
b

x
b

y
b

z
b

qb

On Euclidean space R3, for a point q and a vector v,

qfixed = Rb
fixedqb + pb

fixed

vfixed = Rb
fixedvb

22 / 49

Physical components

n robots moving in Q ⊂ Rd, d ∈ {2, 3}

Reference frame Σ[i] attached to each
robot, for i ∈ {1, . . . , n}

Σ
fixed

Σ
[1]

Σ
[2]

Σ
[3]

Σ
[4]

Motion: Constant R
[i]
fixed and own control u

[i]
i (∈ U compact)

ṗ
[i]
fixed(t) = R

[i]
fixedu

[i]
i

Sensing: relative position of any object inside “sensor footprint”

23 / 49

Relative sensing

Sensing other robots’ positions: sensing alphabet Arbt (containing null)
and sensing function rbt-sns : Rd → Arbt. Robot i acquires

rbt-sns(p[j]
i) ∈ Arbt, j ∈ {1, . . . , n} \ {i}

Sensing the environment: environment sensing alphabet Aenv (containing
null) and environment sensing function env-sns : P(Rd) → Aenv. Robot i
acquires env-sns(Qi) ∈ Aenv

Σ
fixed

Σ
[i]

S
[i]

Σ
fixed

Σ
[i]

S [i]

No information about robots/boundaries outside sensor footprint S
[i]
i

24 / 49

A couple of examples

Disk sensor and corresponding relative-sensing network: Srs
disk

Disk sensor has sensor footprint B(0d, r)

Arbt = Rd ∪{null} and

rbt-sns(p[j]
i) =

{
p

[j]
i if robot j in B(0d, r)

null otherwise

Aenv = P(Rd) and env-sns(Qi) = Qi ∩B(0d, r)

Range-limited visibility sensor and corresponding relative-sensing
network: Srs

vis-disk

Range-limited visibility sensor has sensor footprint B(0d, r), performs
measurements of objects with unobstructed line of sight
Arbt = Rd ∪{null} and

rbt-sns(p[j]
i) =

{
p

[j]
i if robot j in Vidisk(02;Qi)

null otherwise

Aenv = P(Rd) and env-sns(Qi) = Vidisk(02;Qi)

25 / 49

Relative-sensing control law

Relative-sensing control law RSC for Srs consists of
1 W , called the processor state set, with corresponding set of allowable initial

values W0 ⊆ W ;
2 stf : W ×An

rbt ×Aenv → W , called the (processor) state-transition function;
and

3 ctl : W × An
rbt × Aenv → U , called the (motion) control function.

Equivalence can be established between invariant control and
communication laws and relative-sensing control laws – equivalent evolutions

26 / 49

Coordination tasks

What is a coordination task for a robotic network? When does a control and
communication law achieve a task? And with what time, space, and
communication complexity?

A coordination task for a robotic network S is a map
T : Xn ×Wn → {true, false}

Logic-based: agree, synchronize, form a team, elect a leader
Motion: deploy, gather, flock, reach pattern

Sensor-based: search, estimate, identify, track, map

A control and communication law CC achieves the task T if, for all initial
conditions x

[i]
0 ∈ X

[i]
0 and w

[i]
0 ∈ W

[i]
0 , i ∈ I, the corresponding network

evolution t 7→ (x(t), w(t)) has the property that there exists T ∈ R>0 such that
T(x(t), w(t)) = true for all t ≥ T

27 / 49

Task definitions via temporal logic

Loosely speaking, achieving a task means obtaining and maintaining a specified
pattern in the robot physical or processor state

In other words, the task is achieved if at some time and for all subsequent
times the predicate evaluates to true along system trajectories

More general tasks based on more expressive predicates on trajectories can be
defined through temporal and propositional logic, e.g.

periodically visiting a desired set of configurations

28 / 49

Direction agreement and equidistance tasks

Direction agreement task Tdir : (S1)n ×Wn → {true, false}

Tdir(θ, w) =

{
true, if dir[1] = · · · = dir[n]

false, otherwise

For ε > 0, equidistance task Tε-eqdstnc : (S1)n → {true, false} is true iff

∣∣ min
j 6=i

distc(θ
[i], θ[j])

−min
j 6=i

distcc(θ
[i], θ[j])

∣∣ < ε, for all i ∈ I

29 / 49

Complexity notions for control and communication laws

For network S, task T, and algorithm CC , define costs/complexity
control effort, communication packets, computational cost

Time complexity: maximum number of communication rounds required to
achieve T

Space complexity: maximum number of basic memory units required by a
robot processor among all robots

Communication complexity: maximum number of basic messages transmitted
over entire network

(among all allowable initial physical and pro-
cessor states until termination)

basic memory unit/message contain log(n) bits

30 / 49

More formally: time complexity

The time complexity to achieve T with CC from
(x0, w0) ∈

∏
i∈I X

[i]
0 ×

∏
i∈I W

[i]
0 is

TC(T, CC , x0, w0) = inf {` | T(x(tk), w(tk)) = true , for all k ≥ `} ,

where t 7→ (x(t), w(t)) is the evolution of (S, CC) from the initial condition
(x0, w0)

The time complexity to achieve T with CC is

TC(T, CC) = sup
{

TC(T, CC , x0, w0) | (x0, w0) ∈
∏
i∈I

X
[i]
0 ×

∏
i∈I

W
[i]
0

}
.

The time complexity of T is

TC(T) = inf{TC(T, CC) | CC compatible with T}

31 / 49

More formally: communication complexity

The set of all non-null messages generated during one communication round
from network state (x,w)

M(x,w) = {(i, j) ∈ Ecmm(x) | msg[i](x[i], w[i], j) 6= null}.

The mean communication complexity and the total communication
complexity to achieve T with CC from (x0, w0) ∈

∏
i∈I X

[i]
0 ×

∏
i∈I W

[i]
0 are,

MCC(T, CC , x0, w0) =
|A|basic

λ

λ−1∑
`=0

|M(x(`), w(`))|,

TCC(T, CC , x0, w0) = |A|basic

λ−1∑
`=0

|M(x(`), w(`))|,

where |A|basic is number of basic messages required to represent elements of A
and λ = TC(CC , T, x0, w0)

32 / 49

Variations and extensions

Asymptotic results

Complexities in O(f(n)), Ω(f(n)), or Θ(f(n)) as n →∞

1 Infinite-horizon mean communication complexity: mean
communication complexity to maintain true the task for all times

IH-MCC(CC , x0, w0) = lim
λ→+∞

|A|basic

λ

λ∑
`=0

|M(x(`), w(`))|

2 Communication complexity in omnidirectional networks: All
neighbors of a to receive the signal it transmits. Makes sense to count the
number of transmissions, i.e., a unit cost per node, rather than a unit cost
per edge of the network

3 Energy complexity
4 Expected notions, rather than worst-case notions

33 / 49

Time complexity of agree-and-pursue law

Let r : N →]0, 2π[be a monotone non-increasing function of number of agents
n – modeling wireless communication congestion

Theorem

In the limit as n → +∞ and ε → 0+, the network Scircle, the law
CCagree & pursue, and the tasks Tdir and Tε-eqdstnc together satisfy:

1 TC(Tdir, CCagree & pursue) ∈ Θ(r(n)−1);
2 if δ(n) = nr(n)− 2π is lower bounded by a positive constant as n → +∞,

then

TC(Tε-eqdstnc, CCagree & pursue) ∈ Ω(n2 log(nε)−1),

TC(Tε-eqdstnc, CCagree & pursue) ∈ O(n2 log(nε−1)).

If δ(n) is lower bounded by a negative constant, then CCagree & pursue does
not achieve Tε-eqdstnc in general.

34 / 49

Proof sketch - O bound for Tdir

Claim: TC(Tdir, CCagree & pursue) ≤ 2π/(kpropr(n))

By contradiction, assume there exists initial condition such that execution has
time complexity > 2π/(kpropr(n))
Without loss of generality, dir[n](0) = c. For ` ≤ 2π/(kpropr(n)), let

k(`) = argmin{distcc(θ
[n](0), θ[i](`)) | dir[i](`) = cc, i ∈ I}

Agent k(`) is agent moving counterclockwise that has smallest counterclockwise
distance from the initial position of agent n

Recall that according to CCagree & pursue

messages with dir = cc can only travel counterclockwise
messages with dir = c can only travel clockwise

Therefore, position of agent k(`) at time ` can only belong to the
counterclockwise interval from the position of agent k(0) at time 0 to the
position of agent n at time 0

35 / 49

Proof sketch - O bound for Tdir
How fast the message from agent n travels clockwise?

For ` ≤ 2π/(kpropr(n)), define

j(`) = argmax{distc(θ
[n](0), θ[i](`)) | max-id[i](`) = n, i ∈ I}

Agent j(`)

has max-id equal to n

is moving clockwise
and is the agent furthest from the initial position of agent n in the clockwise
direction with these two properties

Initially, j(0) = n. Additionally, for ` ≤ 2π/(kpropr(n)), we claim

distc(θ
[j(`)](`), θ[j(`+1)](` + 1)) ≥ kpropr(n)

36 / 49

Proof sketch - O bound for Tdir
TC(Tdir, CCagree & pursue) ≤ 2π/(kpropr(n))

This happens because either (1) there is no agent clockwise-ahead of θ[j(`)](`)
within clockwise distance r and, therefore, the claim is obvious, or (2) there are
such agents. In case (2), let m denote the agent whose clockwise distance to
agent j(`) is maximal within the set of agents with clockwise distance r from
θ[j(`)](`). Then,

distc(θ
[j(`)](`), θ[j(`+1)](` + 1))

= distc(θ
[j(`)](`), θ[m](` + 1))

= distc(θ
[j(`)](`), θ[m](`)) + distc(θ

[m](`), θ[m](` + 1))

≥ distc(θ
[j(`)](`), θ[m](`)) + kprop

(
r − distc(θ

[j(`)](`), θ[m](`))
)

= kpropr + (1− kprop) distc(θ
[j(`)](`), θ[m](`)) ≥ kpropr

Therefore, after 2π/(kpropr(n)) communication rounds, the message with
max-id = n has traveled the whole circle in the clockwise direction, and must
therefore have reached agent k(`) Contradiction

37 / 49

Proof sketch - O bound for Tε-eqdstnc

Assume Tdir has been achieved and all agents are moving clockwise
At time ` ∈ Z≥0, let H(`) be the union of all the empty “circular segments” of
length at least r,

H(`) = {x ∈ S1 | min
i∈I

distc(x, θ[i](`)) + min
j∈I

distcc(x, θ[j](`)) > r}.

H(`) does not contain any point between two agents separated by a distance
less than r, and each connected component has length at least r

Let nH(`) be number of connected components of H(`),
if H(`) is empty, then nH(`) = 0

nH(`) ≤ n

if nH(`) > 0, then t 7→ nH(` + t) is non-increasing

38 / 49

Proof sketch- O bound for Tε-eqdstnc
Number of connected components is strictly decreasing

Claim: if nH(`) > 0, then ∃t > ` such that nH(t) < nH(`)

By contradiction, assume nH(`) = nH(t) for all t > `. Without loss of
generality, let {1, . . . ,m} be a set of agents with the properties

distcc
(
θ[i](`), θ[i+1](`)

)
≤ r, for i ∈ {1, . . . ,m}

θ[1](`) and θ[m](`) belong to the boundary of H(`)

there is no other set with the same properties and more agents

One can show that, for τ ≥ ` and i ∈ {2, . . . ,m}

θ[1](τ + 1) = θ[1](τ)− kpropr

θ[i](τ + 1) = θ[i](τ)− kprop distc(θ
[i](τ), θ[i−1](τ))

39 / 49

Tridiagonal and circulant linear dynamical systems

Tridn(a, b, c) =

2666664
b c 0 . . . 0
a b c . . . 0
...

. . .
. . .

. . .
...

0 . . . a b c
0 . . . 0 a b

3777775 , Circn(a, b, c) =

2666664
b c 0 . . . a
a b c . . . 0
...

. . .
. . .

. . .
...

0 . . . a b c
c . . . 0 a b

3777775

Linear dynamical systems

y(` + 1) = Ay(`), ` ∈ Z≥0

Rates of convergence to set of equilibria can be characterized – carefully
look at eigenvalues. Statements of the form

if a ≥ 0, c ≥ 0, b > 0, and a + b + c = 1, then lim`→+∞ y(`) = yave1, where

yave = 1
n
1T y0, and maximum time required (over all initial conditions y0 ∈ Rn)

for ‖y(`)− yave1‖2 ≤ ε‖y0 − yave1‖2 is Θ
`
n2 log ε−1

´
40 / 49

Proof sketch- O bound for Tε-eqdstnc
Contradiction argument

For d(τ) =
(
distcc(θ

[1](τ), θ[2](τ)), . . . , distcc(θ
[m−1](τ), θ[m](τ))

)
,

d(τ + 1) = Tridm−1(kprop, 1− kprop, 0) d(τ) + r[kprop, 0, · · · , 0]T

Unique equilibrium point is r(1, . . . , 1). For η1 ∈]0, 1[, τ 7→ d(τ) reaches ball of
radius η1 centered at equilibrium in O(m log m + log η−1

1)

This implies that τ 7→
∑m

i=1 di(τ) is larger than (m− 1)(r − η1) in time
O(m log m + log η−1

1) = O(n log n + log η−1
1). After this time,

2π ≥ nH(`)r +

nH (`)∑
j=1

(r − η1)(mj − 1)

= nH(`)r + (n− nH(`))(r − η1) = nH(`)η1 + n(r − η1)

41 / 49

Proof sketch- O bound for Tε-eqdstnc

Take η1 = (nr − 2π)n−1 = δ(n)n−1, and the contradiction follows from

2π ≥ nH(`)η1 + nr − nη1

= nH(`)η1 + nr + 2π − nr = nH(`)η1 + 2π

Therefore nH(`) decreases by one in time O(n log n)

Iterating this argument n times, in time O(n2 log n) the set H becomes empty.
At that time, resulting network obeys

d(τ + 1) = Circn(kprop, 1− kprop, 0) d(τ)

In time O
(
n2 log ε−1

)
, the error 2-norm satisfies the contraction inequality

‖d(τ)− d∗
∥∥

2
≤ ε‖d(0)− d∗‖2, for d∗ = 2π

n 1

The conversion of this inequality into an appropriate inequality on ∞-norms
yields the result

42 / 49

Communication complexity of agree-and-pursue law

Theorem
Total communication complexity of agree-and-pursue law In the limit as
n → +∞ and ε → 0+, the network Scircle, the law CCagree & pursue, and the
tasks Tdir and Tε-eqdstnc together satisfy:

1 if δ(n) ≥ π(1/kprop − 2) as n → +∞, then

TCCunidir(Tdir, CCagree & pursue) ∈ Θ(n2r(n)−1),

otherwise if δ(n) ≤ π(1/kprop − 2) as n → +∞, then

TCCunidir(Tdir, CCagree & pursue) ∈ Ω(n3 + nr(n)−1),

TCCunidir(Tdir, CCagree & pursue) ∈ O(n2r(n)−1);

2 if δ(n) is lower bounded by a positive constant as n → +∞, then

TCCunidir(Tε-eqdstnc, CCagree & pursue)∈ Ω(n3δ(n) log(nε)−1),

TCCunidir(Tε-eqdstnc, CCagree & pursue)∈ O(n4 log(nε−1)).

43 / 49

Comparison with leader election

Leader election task is different from, but closely related to, Tdir
LCR algorithm operates on a static ring network, and achieves leader
election with time and total communication complexity, respectively, Θ(n)
and Θ(n2)

Agree-and-pursue law operates on robotic network with r(n)-disk
communication topology, and achieves Tdir with time and total
communication complexity, respectively, Θ(r(n)−1) and O(n2r(n)−1)

If wireless communication congestion is modeled by r(n) of order 1/n, then
identical time complexity and the LCR algorithm has better communication
complexity

Computations on a possibly disconnected, dynamic network are more complex
than on a static ring topology

44 / 49

Summary and conclusions

Cooperative robotic network model

proximity graphs
control and communication law, task, execution
time, space, and communication complexity
agree and pursue

Complexity analysis is challenging even in 1 dimension! Blend of math

Plenty of open problems

Quantization, asynchronism, delays
What is best algorithm to achieve a task?
What tools are useful to characterize complexity?
How does combination of algorithms affect individual complexities?

45 / 49

References

Proximity graphs:

J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their

relatives. Proceedings of the IEEE, 80(9):1502--1517, 1992

J. Cortés, S. Martı́nez, and F. Bullo. Spatially-distributed coverage

optimization and control with limited-range interactions. ESAIM. Control,

Optimisation & Calculus of Variations, 11:691--719, 2005

Robotic network model:

S. Martı́nez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic

networks { Part I: Models, tasks and complexity. IEEE Transactions on

Automatic Control, 52(12):2199--2213, 2007

46 / 49

Voronoi partitions

Let (p1, . . . , pn) ∈ Qn denote the positions of n points

The Voronoi partition V(P) = {V1, . . . , Vn} generated by (p1, . . . , pn)

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}
= Q ∩j HP(pi, pj) where HP(pi, pj) is half plane (pi, pj)

3 generators 5 generators 50 generators

Return

47 / 49

r-limited Voronoi partition

Let (p1, . . . , pn) ∈ Qn denote the positions of n points

The r-limited Voronoi partition Vr(P) =
{V1,r, . . . , Vn,r} generated by (p1, . . . , pn)

Vi,r(P) = Vi(P)∩B(pi, r)

Return

GLD(r) is spatially distributed over
Gdisk(r)

Return

48 / 49

GD and GD ∩ Gdisk(r) computation

GD GD ∩ Gdisk(r)

GD and GD ∩ Gdisk(r) are not spatially distributed over Gdisk(r)

Return

49 / 49

