	Lecture #2:	Summary introduction
Models and	Complexity of Robotic Networks	
Francesco B	ullo ¹ Jorge Cortés ² Sonia Martínez ² ¹ Department of Mechanical Engineering University of California, Santa Barbara bello@ngineering.uezb.edu ² Mechanical and Acrespace Engineering University of California, San Diego (cortes.soniand)@ccal.edu "Distributed Control of Robotic Networks" Conference on Decision and Control Cancun, December 8, 2008 cknowledgements: Emlilo Frazzoli	 Model for robotic networks that communicate and process information at discrete time instants, and move in continuous time Draw analogies with treatment on distributed algorithms for synchronous networks in previous lecture Special attention to spatial component – proximity graphs Illustrate complexity notions in simple agree-and-pursue example
		2/40
Direction agreeme	ent and equidistance	The agree-and-pursue algorithm
Network size is un- known to agents	Problem (Direction agreement & equidistance) Assume agents more in circle according to first-order integrator dynamics. Some move clockwise, others counterclockwise Agents talk to other agents within distance r Objective: agree on a common direction of motion and uniformly deploy over circle	 To solve the direction agreement and equidistance problem, each agent sets max UID received so far to its own UID initially transmits its direction of motion and UID to neighbors at each communication round: listens to messages from other agents and compares the received UIDs from agents moving toward its position with its own UID. If max UID is larger than own UID, resets UID and direction of motion between communication rounds: moves k_{prop} ∈ (0, 1/2) times the distance to the immediately next neighbors in chosen direction, or, if no neighbors, k_{prop} times communication range r

4/49

The agree-and-pursue algorithm - cont

The agree-and-pursue algorithm solves the direction agreement and equidistance problem on a circle

- all agents agree on a common direction of motion either clockwise or counterclockwise
- network asymptotically achieves uniform, equally-spaced rotating configuration

New issues arise when considering robotic networks

- As agents move, interconnection topology changes (e.g., network might be disconnected, and then leader election would not work)
- Tasks might not be achieved exactly, but asymptotically (e.g., equidistance)
- Need to rethink model and notions of complexity to account for spatial component

Proximity graphs model interconnection topology

Proximity graph

graph whose vertex set is a set of distinct points and whose edge set is a function of the relative locations of the point set

Appear in computational geometry and topology control of wireless networks

Definition (Proximity graph)

Let X be a d-dimensional space chosen among \mathbb{R}^d , \mathbb{S}^d , and $\mathbb{R}^{d_1} \times \mathbb{S}^{d_2}$, with $d_1 + d_2 = d$. Let $\mathbb{G}(X)$ be the set of all undirected graphs whose vertex set is an element of $\mathbb{F}(X)$ (finite subsets of X)

A proximity graph $\mathcal{G} : \mathbb{F}(X) \to \mathbb{G}(X)$ associates to $\mathcal{P} = \{p_1, \dots, p_n\} \subset X$ an undirected graph with vertex set \mathcal{P} and edge set $\mathcal{E}_{\mathcal{G}}(\mathcal{P}) \subseteq \{(p, q) \in \mathcal{P} \times \mathcal{P} \mid p \neq q\}$.

6/49

Examples of proximity graphs

- On $(\mathbb{R}^d, dist_2)$, $(\mathbb{S}^d, dist_g)$, or $(\mathbb{R}^{d_1} \times \mathbb{S}^{d_2}, (dist_2, dist_g))$
- the r-disk graph $\mathcal{G}_{disk}(r)$, for $r \in \mathbb{R}_{>0}$, with $(p_i, p_j) \in \mathcal{E}_{\mathcal{G}_{disk}(r)}(\mathcal{P})$ if $dist(p_i, p_j) \leq r$
- the Delaunay graph \mathcal{G}_{D} , with $(p_i, p_j) \in \mathcal{E}_{\mathcal{G}_{D}}(\mathcal{P})$ if $V_i(\mathcal{P}) \cap V_j(\mathcal{P}) \neq \emptyset$
- the r-limited Delaunay graph $\mathcal{G}_{LD}(r)$, for $r \in \mathbb{R}_{>0}$, with $(p_i, p_j) \in \mathcal{E}_{\mathcal{G}_{LD}(r)}(\mathcal{P})$ if $V_{i, \frac{r}{2}}(\mathcal{P}) \cap V_{j, \frac{r}{2}}(\mathcal{P}) \neq \emptyset$
- the relative neighborhood graph \mathcal{G}_{RN} , with $(p_i, p_j) \in \mathcal{E}_{\mathcal{G}_{RN}}(\mathcal{P})$ if $p_k \notin B(p_i, \operatorname{dist}(p_i, p_j)) \cap B(p_j, \operatorname{dist}(p_i, p_j))$ for all $p_k \in \mathcal{P}$

More examples of proximity graphs on Euclidean space

- the Gabriel graph \mathcal{G}_{G} , with $(p_i, p_j) \in \mathcal{E}_{\mathcal{G}_{G}}(\mathcal{P})$ if $p_k \notin B\left(\frac{p_i + p_j}{2}, \frac{\operatorname{dist}(p_i, p_j)}{2}\right)$ for all $p_k \in \mathcal{P}$
- the Euclidean minimum spanning tree G_{EMST}, that assigns to each P a minimum-weight spanning tree of the complete weighted digraph (P, {(p, j ∈ P × P | p ≠ q), A), with weighted adjacency matrix a_{ij} = ||p_i − p_j||₂, for i, j ∈ {1,...,n}
- given a simple polygon Q in ℝ², the visibility graph G_{vis}, with
 (p_i, p_j) ∈ E<sub>G_{vis}(P) if the closed segment [p_i, p_j] from p_i to p_j is contained
 in Q
 </sub>

Set of neighbors map Spatially distributed graphs E.g., if a node knows position of its neighbors in the complete graph, then it can compute its neighbors with respect to any proximity graph For proximity graph \mathcal{G} , $p \in X$, and $\mathcal{P} = \{p_1, \ldots, p_n\} \in \mathbb{F}(X)$ Formally, given \mathcal{G}_1 and \mathcal{G}_2 , • \mathcal{G}_1 is a subgraph of \mathcal{G}_2 , denoted $\mathcal{G}_1 \subset \mathcal{G}_2$, if $\mathcal{G}_1(\mathcal{P})$ is a subgraph of $\mathcal{G}_2(\mathcal{P})$ associate set of neighbors map $\mathcal{N}_{\mathcal{G},p} : \mathbb{F}(X) \to \mathbb{F}(X)$ for all $\mathcal{P} \in \mathbb{F}(X)$ $\mathcal{N}_{G,p}(\mathcal{P}) = \{q \in \mathcal{P} \mid (p,q) \in \mathcal{E}_G(\mathcal{P} \cup \{p\})\}$ **9** G_1 is spatially distributed over G_2 if, for all $p \in P$, $\mathcal{N}_{G_{1,p}}(\mathcal{P}) = \mathcal{N}_{G_{1,p}}(\mathcal{N}_{G_{2,p}}(\mathcal{P})),$ Typically, p is a point in \mathcal{P} , but this works for any $p \in X$ that is, any node equipped with the location of its neighbors with respect to \mathcal{G}_2 can compute its set of neighbors with respect to \mathcal{G}_1 When does a proximity graph provide sufficient information to compute another proximity graph? \mathcal{G}_1 spatially distributed over $\mathcal{G}_2 \implies \mathcal{G}_1 \subset \mathcal{G}_2$ Converse not true: $\mathcal{G}_{D} \cap \mathcal{G}_{disk}(r) \subset \mathcal{G}_{disk}$, but $\mathcal{G}_{D} \cap \mathcal{G}_{disk}(r)$ not spatially distributed over $\mathcal{G}_{disk}(r)$ Inclusion relationships among proximity graphs Connectivity properties of $\mathcal{G}_{disk}(r)$ Theorem For $r \in \mathbb{R}_{>0}$, the following statements hold: Theorem For $r \in \mathbb{R}_{>0}$, the following statements hold: G_{EMST} ⊂ G_{disk}(r) if and only if G_{disk}(r) is connected; ♦ $\mathcal{G}_{RN} \cap \mathcal{G}_{disk}(r)$, $\mathcal{G}_{G} \cap \mathcal{G}_{disk}(r)$, and $\mathcal{G}_{LD}(r)$ are spatially distributed over $\mathcal{G}_{disk}(r)$ $\mathcal{G}_{\text{EMST}} \cap \mathcal{G}_{\text{disk}}(r), \mathcal{G}_{\text{RN}} \cap \mathcal{G}_{\text{disk}}(r), \mathcal{G}_{\text{G}} \cap \mathcal{G}_{\text{disk}}(r) \text{ and } \mathcal{G}_{\text{LD}}(r) \text{ have the same}$ connected components as $\mathcal{G}_{disk}(r)$ (i.e., for all point sets $\mathcal{P} \in \mathbb{F}(\mathbb{R}^d)$, all araphs have the same number of connected components consisting of the same vertices). The inclusion $\mathcal{G}_{I,D}(r) \subset \mathcal{G}_D \cap \mathcal{G}_{disk}(r)$ is in general strict Since G_{EMST} is by definition connected, (1) implies that G_{RN} , G_{C} and G_{D} are connected

Spatially distributed maps

Physical components of a robotic network

Given a set Y and a proximity graph \mathcal{G} , a map $T: X^n \to Y^n$ is spatially distributed over \mathcal{G} if \exists a map $\tilde{T}: X \times \mathbb{F}(X) \to Y$ such that for all $(p_1, \ldots, p_n) \in X^n$ and for all $j \in \{1, \ldots, n\}$,

$$T_j(p_1,...,p_n) = \tilde{T}(p_j, N_{G,p_j}(p_1,...,p_n)),$$

where T_j denotes the *j*th-component of T

Equivalently,

the jth component of a spatially distributed map at (p_1, \ldots, p_n) can be computed with the knowledge of the vertex p_j and the neighboring vertices in the undirected graph $\mathcal{G}(P)$ Group of robots with the ability to exchange messages, perform local computations, and control motion

Mobile robot: continuous-time continuous-space dynamical system,

- X is d-dimensional space chosen among ℝ^d, S^d, and the Cartesian products ℝ^{d₁} × S^{d₂}, for some d₁ + d₂ = d, called the state space;
- U is a compact subset of R^m containing 0, called the *input space*;
- X₀ is a subset of X, called the set of allowable initial states;
- $\textcircled{O}~f:X\times U\rightarrow \mathbb{R}^d$ is a smooth control vector field on X

4.0 / 20	20
Synchronous robotic network	A couple of examples
Definition (Robotic network) The physical components of a uniform robotic network S consist of a tuple (I, R, E _{com}), where • I = {1,,n}; I is called the set of unique identifiers (UIDs); • R = {R ^[b] } _{R∈I} = {(X, U, X_0, f)} _{I∈I} is a set of mobile robots; • R = communication edge map. Map x ↦ (I, E _{comm} (x)) models topology of the communication service among robots – proximity graph induced by network capabilities	$ \begin{array}{l} \textbf{Locally-connected first-order robots in } \mathbb{R}^d; \ \mathcal{S}_{disk} \\ n \ \text{points } x^{li}, \ldots, x^{[n]} \ \text{in } \mathbb{R}^d, \ d \geq 1, \ \text{obeying } \ddot{x}^{li}(t) = u^{li}(t), \ \text{with} \\ u^{li} \in [-u_{\max}, u_{\max}], \ \text{these are identical robots of the form} \\ (\mathbb{R}^d, [-u_{\max}, u_{\max}]^d, \mathbb{R}^d, (0, e_1, \ldots, e_d)) \\ \textbf{Each robot can communicate to other robots within } r, \ \mathcal{G}_{disk}(r) \ \text{on } \mathbb{R}^d \\ \textbf{Locally-connected first-order robots in } \mathbb{S}^1; \ \mathcal{S}_{circle} \\ n \ \text{robots } \theta^{li}, \ldots, \theta^{ln} \ \text{in } \mathbb{S}^1, \ \text{moving along on the unit circle with angular velocity equal to the control input. Each robot is described by \\ (\mathbb{S}^1, [-u_{\max}, u_{\max}], \mathbb{S}^1, (0, e)) \\ (e \ \text{describes unit-speed counterclockwise rotation). Each robot can communicate to other robots within r \ along the circle, \ \mathcal{G}_{disk}(r) \ on \ \mathbb{S}^1 \\ \end{array}$
15 / 49	

Uniform control and communication law	The agree-and-pursue algorithm – formally					
 communication schedule communication alphabet processor state space message generation function dentransition function control function mer Z₂0 × X × W × I² → U tr Z₂0 × X × W × I² → U tr Z₂0 × X × W × I² → U 	Alphabet: $A = \beta^{1} \times \{c, cc\} \times I \cup \{mull\}$ Processor State: w = {dir, max-id}, where dir = {c, cc}, initially: dirid unspecified max-id $\in I_{p}$ initially: max-id $\beta^{1} = i$ for all i function $ms(\theta, w, i)$ 1: return (θ, w) function $if(\theta, w)$ 1: for each non-mull message $(\theta_{evol}, (dir_{evol}, max-id_{evol}))$ do 2: if $(max-id_{evol} > max-id)$ ADD $(dist_{cc}(\theta, \theta_{evol}) \le r$ ADD $dir_{evol} = c)$ OR $(dist_{cc}(\theta_{evol}) \le r$ ADD $dir_{evol} = cc)$ the 3: new-dir: = dir_{evol} 3: new-dir: = dir_{evol} 5: for each non-mull ($(\theta_{evol}, (dir_{evol}, max-id_{evol}))$) do 3: if $(dir = cc)$ ADD $(dist_{cc}(\theta_{evol}, (dir_{evol}, max-id_{evol}))$ 1: $d_{imp} := 7$ 2: for each non-mull message $(\theta_{evol}, (dir_{evol}, max-id_{evol}))$ do 3: if $(dir = cc)$ ADD $(dist_{cc}(\theta_{evol}, \theta_{evol}) = dum)$ then 4: $d_{evol} = dist_{cc}(\theta_{evol}, \theta_{evol})$ and $u_{tmp} := -h_{parodupp}$ $(h_{prop} \in (0, \frac{1}{2}))$ 5: for each constant $dist_{cd}(\theta_{evol}, \theta_{evol}) = dum)$ then 6: $d_{evol} = dist_{cd}(\theta_{evol}, \theta_{evol})$ and $u_{tmp} := -h_{parodupp}$					
Evolution of a robotic network – formal definition	Processor state set and alphabet quantization					
Evolution of (<i>S</i> , <i>CC</i>) from $x_0^{[i]} \in X_0^{[i]}$ and $w_0^{[i]} \in W_0^{[i]}$, $i \in I$, is the collection of curves $x^{[i]} : \mathbb{R}_{\geq 0} \to X^{[i]}$ and $w^{[i]} : \mathbb{Z}_{\geq 0} \to W^{[i]}$, $i \in I$ $\dot{x}^{[i]}(t) = f\left(x^{[i]}(t), \operatorname{ctl}^{[i]}(t, x^{[i]}(\lfloor t \rfloor), w^{[i]}(\lfloor t \rfloor), y^{[i]}(\lfloor t \rfloor))\right)$, where $\lfloor t \rfloor = \max\{\ell \in \mathbb{Z}_{\geq 0} \mid \ell < t\}$, and	We allow the processor state set and the communication alphabet to contain an infinite number of symbols – equivalently, we neglect inaccuracies due to quantization					
$w^{[i]}(\ell) = \operatorname{std}^{[i]}(\ell), w^{[i]}(\ell - 1), y^{[i]}(\ell)),$ with $x^{[i]}(0) = x_0^{[i]}$, and $w^{[i]}(-1) = w_0^{[i]}$, $i \in I$	Convenient to allow messages to contain real numbers because, in many control and communication laws, the robots exchange their states, including both their processor and their physical states					
$\begin{split} & \text{Here, } y^{[i]}: \mathbb{Z}_{\geq 0} \to \mathbb{A}^n \text{ (describing the messages received by processor } i) \text{ has components } y^{[i]}_j(\ell), \text{ for } j \in I, \text{ given by} \\ & y^{[i]}_j(\ell) = \begin{cases} & \text{msg}^{[j]}(x^{[i]}(\ell), w^{[j]}(\ell-1), i), & \text{if } (j, i) \in E_{\text{cmm}}(x^{[1]}(\ell), \dots, x^{[n]}(\ell)) \\ & \text{ otherwise} \end{cases} \end{split}$	For such laws, communication alphabet $\mathbb{A} = \{X \times W\} \cup \{\texttt{null}\};$ and message generation function $\operatorname{meg}_{\operatorname{atd}}(x, w, j) = (x, w)$ is standard message-generation function					

Robotic networks with relative sensing

Kinematic motions

Alternative setting: robots do not communicate amongst themselves, but instead

- detect and measure each other's relative position through appropriate sensors
- \bullet perform measurements of the environment without having a priory knowledge

Robots do not have the ability to perform measurements expressed in a common reference frame

On Euclidean space \mathbb{R}^3 , for a point q and a vector v,

 $q_{\text{fixed}} = R_{\text{fixed}}^{\text{b}}q_{\text{b}} + p_{\text{fixed}}^{\text{b}}$ $v_{\text{fixed}} = R_{\text{fixed}}^{\text{b}}v_{\text{b}}$

Physical components

n robots moving in $Q \subset \mathbb{R}^d$, $d \in \{2,3\}$ Reference frame $\Sigma^{[i]}$ attached to each robot, for $i \in \{1, ..., n\}$

Motion: Constant $R_{\text{fixed}}^{[i]}$ and own control $u_i^{[i]}$ ($\in U$ compact)

$$\dot{p}_{\mathrm{fixed}}^{[i]}(t) = R_{\mathrm{fixed}}^{[i]} u_i^{[i]}$$

Sensing: relative position of any object inside "sensor footprint"

Relative sensing

Sensing other robots' positions: sensing alphabet \mathbb{A}_{rbt} (containing null) and sensing function rbt-sns: $\mathbb{R}^d \to \mathbb{A}_{rbt}$. Robot *i* acquires

 $\operatorname{rbt-sns}(p_i^{[j]}) \in \mathbb{A}_{\operatorname{rbt}}, \quad j \in \{1, \dots, n\} \setminus \{i\}$

Sensing the environment: environment sensing alphabet \mathbb{A}_{env} (containing null) and environment sensing function env-sns : $\mathbb{P}(\mathbb{R}^d) \to \mathbb{A}_{env}$. Robot *i* acquires env-sns $(Q_i) \in \mathbb{A}_{env}$

No information about robots/boundaries outside sensor footprint $S_i^{[i]}$

A couple of examples

Disk sensor and corresponding relative-sensing network: $S_{\text{mak}}^{\text{int}}$ • D_{obs} sensor has sensor footprint $\overline{E}(0_d, r)$ • $A_{\text{rbt}} = \mathbb{R}^d \cup \{\text{null}\} \text{ and}$ $rbt-sns(p_i^{[j]}) = \left\{ p_i^{[j]} \text{ if robot } j \text{ in } \overline{B}(0_d, r) \\ \text{null otherwise} \right\}$ • $A_{\text{anv}} = \mathbb{P}(\mathbb{R}^d) \text{ and env-sns}(Q_i) = Q_i \cap \overline{E}(0_d, r)$ Range-limited visibility sensor and corresponding relative-sensing network: $S_{\text{vis-disk}}^{\text{vis-disk}}$ • $Range-limited$ visibility sensor has sensor footprint $\overline{E}(0_d, r)$, performs measurements of objects with unobstructed line of sight • $A_{\text{rbt}} = \mathbb{R}^d \cup \{\text{null}\} \text{ and}$ $rbt-sns(p_i^{[j]}) = \begin{cases} p_i^{[j]} & \text{ if robot } j \text{ in Vidisk}(0_2; Q_i) \\ \text{null otherwise} \end{cases}$	 Relative-sensing control law <i>RSC</i> for <i>S</i>^{rs} consists of <i>W</i>, called the processor state set, with corresponding set of allowable initial values <i>W</i> ⊂ <i>W</i>; att: <i>W</i> ∧ Aⁿ_{tht} × A_{env} → <i>W</i>, called the (processor) state-transition function; and ctl: <i>W</i> × Aⁿ_{tht} × A_{env} → <i>U</i>, called the (motion) control function. Equivalence can be established between invariant control and communication laws and relative-sensing control laws – equivalent evolutions
• $\mathbb{A}_{env} = \mathbb{P}(\mathbb{R}^d)$ and $env-sns(Q_i) = V_{idisk}(0_2; Q_i)$	20/0
COORDINATION TASKS	Task demitions via temporal logic
Coordination tasks for a robotic network? When does a control and communication law achieve a task? And with what time, space, and communication complexity? A coordination task for a robotic network S is a map $T: X^n \times W^n \to \{\text{true}, \text{false}\}$ Logic-based: agree, synchronize, form a team, elect a leader Motion: deploy, gather, flock, reach pattern Sensor-based: search, estimate, identify, track, map	Losely speaking, achieving a task means obtaining and maintaining a specified pattern in the robot physical or processor state In other words, the task is achieved if at some time and for all subsequent times the predicate evaluates to true along system trajectories

Direction agreement and equidistance tasks	Complexity notions for control and communication laws
Direction agreement task $\mathcal{T}_{dir} : (\mathbb{S}^1)^n \times W^n \to \{\texttt{true}, \texttt{false}\}$	For network S , task T , and algorithm CC , define costs/complexity control effort, communication packets, computational cost
$\mathcal{I}_{\text{true}}(\theta, w) = \begin{cases} \text{true}, & \text{if } \dim^{[1]} = \dots = \dim^{[n]} \end{cases}$	Time complexity: maximum number of communication rounds required to achieve $\mathcal T$
false, otherwise	Space complexity: maximum number of basic memory units required by a robot processor among all robots
For $\varepsilon > 0$, equidistance task $\mathcal{T}_{\varepsilon\text{-eqdstnc}} : (\mathbb{S}^1)^n \to \{\text{true}, \texttt{false}\}$ is true iff	Communication complexity: maximum number of basic messages transmitted over entire network
$ \min_{j \neq i} \operatorname{dist}_{c}(\theta^{[i]}, \theta^{[j]}) $ min dist. $(\theta^{[i]}, \theta^{[j]}) < c$, for all $i \in I$.	(among all allowable initial physical and pro- cessor states until termination)
$= \min_{j \neq i} \operatorname{usi}_{cc}(v^{i}, v^{-j}) < \varepsilon, \text{if } a i i \in I$	basic memory unit/message contain $log(n)$ bits
00.110	20.740
29 / 49	30/49
More formally: time complexity $$^{\scriptscriptstyle(2)}(*)($^{$	More formally: communication complexity
^{20/49} More formally: time complexity	³⁹⁷⁴⁹ More formally: communication complexity
More formally: time complexity The time complexity to achieve \mathcal{T} with \mathcal{CC} from $(x_0, w_0) \in \prod_{e \in I} X_0^{[e]} \times \prod_{i \in I} W_0^{[i]}$ is	More formally: communication complexity The set of all non-null messages generated during one communication round from network state (x, w)
$\begin{split} & \text{More formally: time complexity} \\ & \text{The time complexity to achieve \mathcal{T} with \mathcal{CC} from $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	More formally: communication complexity The set of all non-null messages generated during one communication round from network state (x, w) $\mathcal{M}(x, w) = \{(i, j) \in E_{cmm}(x) \mid msg^{[i]}(x^{[i]}, w^{[i]}, j) \neq \texttt{null}\}.$
More formally: time complexity The time complexity to achieve \mathcal{T} with \mathcal{CC} from $(x_0, w_0) \in \prod_{e \in \mathcal{T}} X_0^{[d]} \times \prod_{k \in \mathcal{I}} W_0^{[d]}$ is $TC(\mathcal{T}, \mathcal{CC}, x_0, w_0) = \inf \{\ell \mid \mathcal{T}(x(t_k), w(t_k)) = \mathtt{true}, \text{ for all } k \geq \ell\},$ where $t \mapsto (x(t), w(t))$ is the evolution of $(\mathcal{S}, \mathcal{CC})$ from the initial condition (x_0, w_0)	More formally: communication complexity The set of all non-null messages generated during one communication round from network state (x, w) $\mathcal{M}(x, w) = \{(i, j) \in E_{cmm}(x) \mid msg^{[i]}(x^{[i]}, w^{[i]}, j) \neq null\}.$ The mean communication complexity and the total communication the mean communication of w and w and $w \in W$.
More formally: time complexity The time complexity to achieve \mathcal{T} with \mathcal{CC} from $(x_0, w_0) \in \prod_{v \in \mathcal{I}} X_0^{[d]} \times \prod_{i \in \mathcal{I}} W_0^{[d]}$ is $TC(\mathcal{T}, \mathcal{CC}, x_0, w_0) = \inf \{\ell \mid \mathcal{T}(x(t_k), w(t_k)) = true, \text{ for all } k \ge \ell\},$ where $t \to (x(t), w(t))$ is the evolution of $(\mathcal{S}, \mathcal{CC})$ from the initial condition (x_0, w_0) The time complexity to achieve \mathcal{T} with \mathcal{CC} is	More formally: communication complexity The set of all non-null messages generated during one communication round from network state (x, w) $\mathcal{M}(x, w) = \{(i, j) \in E_{cmm}(x) \mid msg^{[i]}(x^{[i]}, w^{[i]}, j) \neq null\}.$ The mean communication complexity and the total communication complexity to achieve T with \mathcal{CC} from $(x_0, w_0) \in \prod_{i \in I} X_0^{[i]} \times \prod_{i \in I} W_0^{[i]}$ are,
More formally: time complexity The time complexity to achieve \mathcal{T} with \mathcal{CC} from $(x_0, w_0) \in \prod_{e \in I} X_0^{[d]} \times \prod_{e \in I} W_0^{[d]}$ is $TC(\mathcal{T}, \mathcal{CC}, x_0, w_0) = \inf \{\ell \mid \mathcal{T}(x(t_k), w(t_k)) = true, \text{ for all } k \ge \ell\},$ where $t \mapsto (x(t), w(t))$ is the evolution of $(\mathcal{S}, \mathcal{CC})$ from the initial condition (x_0, w_0) The time complexity to achieve \mathcal{T} with \mathcal{CC} is $TC(\mathcal{T}, \mathcal{CC}) = \sup \left\{ TC(\mathcal{T}, \mathcal{CC}, x_0, w_0) \mid (x_0, w_0) \in \prod_{e \in I} X_0^{[d]} \times \prod_{e \in I} W_0^{[d]} \right\}.$	More formally: communication complexity The set of all non-null messages generated during one communication round from network state (x, w) $\mathcal{M}(x, w) = \{(i, j) \in E_{cnm}(x) \mid msg^{[i]}(x^{[i]}, w^{[i]}, j) \neq null\}.$ The mean communication complexity and the total communication complexity to achieve \mathcal{T} with \mathcal{CC} from $(x_0, w_0) \in \prod_{i \in I} X_0^{[i]} \times \prod_{i \in I} W_0^{[i]}$ are, $\mathcal{M}CC(\mathcal{T}, \mathcal{CC}, x_0, w_0) = \frac{ \underline{A} _{basic}}{\lambda} \sum_{\ell=0}^{\lambda-1} \mathcal{M}(x(\ell), w(\ell)) ,$
More formally: time complexity The time complexity to achieve \mathcal{T} with \mathcal{CC} from $(x_0, w_0) \in \prod_{i \in I} X_0^{[i]} \times \prod_{i \in I} W_0^{[i]}$ is $TC(\mathcal{T}, \mathcal{CC}, x_0, w_0) = \inf \{\ell \mid \mathcal{T}(x(t_k), w(t_k)) = true, \text{ for all } k \geq \ell\},\$ where $t \mapsto (x(t), w(t))$ is the evolution of $(\mathcal{S}, \mathcal{CC})$ from the initial condition (x_0, w_0) The time complexity to achieve \mathcal{T} with \mathcal{CC} is $TC(\mathcal{T}, \mathcal{CC}) = \sup \left\{ TC(\mathcal{T}, \mathcal{CC}, x_0, w_0) \mid (x_0, w_0) \in \prod_{i \in I} X_0^{[i]} \times \prod_{i \in I} W_0^{[i]} \right\}.$ The time complexity of \mathcal{T} is	More formally: communication complexity The set of all non-null messages generated during one communication round from network state (x, w) $\mathcal{M}(x, w) = \{(i, j) \in E_{cmm}(x) \mid msg^{[i]}(x^{[i]}, w^{[i]}, j) \neq null\}.$ The mean communication complexity and the total communication complexity to achieve \mathcal{T} with \mathcal{CC} from $(x_0, w_0) \in \prod_{i \in I} X_0^{[i]} \times \prod_{i \in I} W_0^{[i]}$ are, $\mathcal{M}CC(\mathcal{T}, CC, x_0, w_0) = \frac{ A _{basic}}{\lambda} \sum_{\ell=0}^{\lambda-1} \mathcal{M}(x(\ell), w(\ell)) ,$ $TCC(\mathcal{T}, CC, x_0, w_0) = A _{basic} \sum_{\ell=0}^{\lambda-1} \mathcal{M}(x(\ell), w(\ell)) ,$

31/49

32/49

Variations and extensions

Time complexity of agree-and-pursue law

Asymptotic results

Complexities in O(f(n)), $\Omega(f(n))$, or $\Theta(f(n))$ as $n \to \infty$

• Infinite-horizon mean communication complexity: mean communication complexity to maintain true the task for all times

$$\mathsf{IH-MCC}(\mathcal{CC}, x_0, w_0) = \lim_{\lambda \to +\infty} \frac{|\mathbb{A}|_{\text{basic}}}{\lambda} \sum_{\ell=0}^{\lambda} |\mathcal{M}(x(\ell), w(\ell))$$

Communication complexity in omnidirectional networks: All neighbors of a to receive the signal it transmits. Makes sense to count the number of transmissions, i.e., a unit cost per node, rather than a unit cost per edge of the network

Energy complexity

Sected notions, rather than worst-case notions

Let $r:\mathbb{N}\to]0,2\pi[$ be a monotone non-increasing function of number of agents n – modeling wireless communication congestion

Theorem

In the limit as $n \to +\infty$ and $\varepsilon \to 0^+$, the network S_{circle} , the law $\mathcal{CC}_{AGREE\ \&\ PURSUE}$, and the tasks \mathcal{T}_{dir} and $\mathcal{T}_{\varepsilon\text{-eqdstnc}}$ together satisfy:

- $TC(T_{dir}, CC_{AGREE \& PURSUE}) \in \Theta(r(n)^{-1});$
- if δ(n) = nr(n) − 2π is lower bounded by a positive constant as n → +∞, then

$$\mathsf{TC}(\mathcal{I}_{\varepsilon \text{-eqdstnc}}, \mathcal{CC}_{AGREE \& PURSUE}) \in \Omega(n^2 \log(n\varepsilon)^{-1}),$$

 $\mathsf{TC}(\mathcal{I}_{\varepsilon \text{-eqdstnc}}, \mathcal{CC}_{AGREE \& PURSUE}) \in O(n^2 \log(n\varepsilon^{-1})).$

If $\delta(n)$ is lower bounded by a negative constant, then $CC_{AGREE \& PURSUE}$ does not achieve $T_{e-eqdstnc}$ in general.

Proof sketch - O bound for \mathcal{T}_{dir}

Claim: $TC(T_{dir}, CC_{AGREE \& PURSUE}) \le 2\pi/(k_{prop}r(n))$

By contradiction, assume there exists initial condition such that execution has time complexity $> 2\pi/(k_{prop}r(n))$ Without loss of generality, $dix^{[n]}(0) = c$. For $\ell \leq 2\pi/(k_{prop}r(n))$, let

 $k(\ell) = \operatorname{argmin} \{\operatorname{dist}_{cc}(\theta^{[n]}(0), \theta^{[i]}(\ell)) \mid \operatorname{dir}^{[i]}(\ell) = cc, i \in I\}$

Agent $k(\ell)$ is agent moving counterclockwise that has smallest counterclockwise distance from the initial position of agent n

Recall that according to $CC_{AGREE \& PURSUE}$

- messages with dir = cc can only travel counterclockwise
- messages with dir = c can only travel clockwise

Therefore, position of agent $k(\ell)$ at time ℓ can only belong to the counterclockwise interval from the position of agent k(0) at time 0 to the position of agent n at time 0

Proof sketch - O bound for \mathcal{T}_{dir} How fast the message from agent *n* travels clockwise?

For
$$\ell \leq 2\pi/(k_{\text{prop}}r(n))$$
, define
 $j(\ell) = \operatorname{argmax}\{\operatorname{dist}_{c}(\theta^{[n]}(0), \theta^{[i]}(\ell)) \mid \max - \operatorname{id}^{[i]}(\ell) = n, i \in I\}$

Agent $j(\ell)$

- has max-id equal to n
- is moving clockwise

and is the agent furthest from the initial position of agent n in the clockwise direction with these two properties

Initially, j(0) = n. Additionally, for $\ell \le 2\pi/(k_{prop}r(n))$, we claim

 $dist_{c}(\theta^{[j(\ell)]}(\ell), \theta^{[j(\ell+1)]}(\ell+1)) \ge k_{prop}r(n)$

This happens because either (1) there is no agent clockwise-ahead of $\theta^{[ij(0)]}(\ell)$ within clockwise distance r and, therefore, the claim is obvious, or (2) there are such agents. In case (2), let m denote the agent whose clockwise distance to agent $j(\ell)$ is maximal within the set of agents with clockwise distance r from $\theta^{[ij(0)]}(\ell)$. Then,

$$\begin{split} & \operatorname{dist}_{c}(\theta^{|j|}(\ell), \theta^{|j|}(\ell+1)|(\ell+1)) \\ &= \operatorname{dist}_{c}(\theta^{|j|}(\ell), \theta^{|m|}(\ell+1)) \\ &= \operatorname{dist}_{c}(\theta^{|j|}(\ell), \theta^{|m|}(\ell)) + \operatorname{dist}_{c}(\theta^{|j|}(\ell), \theta^{|m|}(\ell+1)) \\ &\geq \operatorname{dist}_{c}(\theta^{|j|}(\ell), \theta^{|m|}(\ell)) + k_{prop}(r - \operatorname{dist}_{c}(\theta^{|j|}(\ell), \theta^{|m|}(\ell))) \\ &= k_{prop}r + (1 - k_{prop}) \operatorname{dist}_{c}(\theta^{|j|}(\ell), \theta^{|m|}(\ell)) \geq k_{prop}r \end{split}$$

Therefore, after $2\pi/(k_{prop}r(n))$ communication rounds, the message with max-id = n has traveled the whole circle in the clockwise direction, and must therefore have reached agent $k(\ell)$ Contradiction

Proof sketch - O bound for $\mathcal{T}_{\varepsilon-\text{eqdstnc}}$

Assume \mathcal{T}_{air} has been achieved and all agents are moving clockwise At time $\ell \in \mathbb{Z}_{\geq 0}$, let $H(\ell)$ be the union of all the empty "circular segments" of length at least r,

$$\overset{G \mapsto H}{\overset{H}(\ell)} = \{ x \in \mathbb{S}^1 \mid \min_{i \in I} \operatorname{dist}_c(x, \theta^{[i]}(\ell)) + \min_{j \in I} \operatorname{dist}_{cc}(x, \theta^{[j]}(\ell)) > r \}.$$

 $H(\ell)$ does not contain any point between two agents separated by a distance less than r, and each connected component has length at least r

Let $n_H(\ell)$ be number of connected components of $H(\ell)$,

- if H(l) is empty, then n_H(l) = 0
- n_H(ℓ) ≤ n
- if n_H(ℓ) > 0, then t → n_H(ℓ + t) is non-increasing

Proof sketch- O bound for $\mathcal{T}_{\varepsilon\text{-eqdstnc}}$ Number of connected components is strictly decreasing

Claim: if
$$n_H(\ell) > 0$$
, then $\exists t > \ell$ such that $n_H(t) < n_H(\ell)$

By contradiction, assume $n_H(\ell) = n_H(t)$ for all $t > \ell$. Without loss of generality, let $\{1, \ldots, m\}$ be a set of agents with the properties

- dist_{cc} $(\theta^{[i]}(\ell), \theta^{[i+1]}(\ell)) \le r$, for $i \in \{1, ..., m\}$
- θ^[1](ℓ) and θ^[m](ℓ) belong to the boundary of H(ℓ)
- there is no other set with the same properties and more agents

One can show that, for $\tau \ge \ell$ and $i \in \{2, ..., m\}$

$$\begin{split} g^{[1]}(\tau + 1) &= \theta^{[1]}(\tau) - k_{\text{prop}}r \\ g^{[i]}(\tau + 1) &= \theta^{[i]}(\tau) - k_{\text{prop}} \operatorname{dist}_{c}(\theta^{[i]}(\tau), \theta^{[i-1]}(\tau)) \end{split}$$

Tridiagonal and circulant linear dynamical systems

	$\lceil b \rceil$	c	0		07		$\lceil b \rceil$	c	0		a]
	a	b	c		0		a	b	c		0
$Trid_n(a, b, c) =$	1:	÷.,	γ_{ij}	÷.,	:	, $Circ_n(a, b, c) =$	1:	14	γ_{ij}	÷.,	
	0		a	b	c		0		a	b	c
	Lο		0	a	b		c		0	a	b

Linear dynamical systems

$$y(\ell + 1) = Ay(\ell), \quad \ell \in \mathbb{Z}_{\geq 0}$$

Rates of convergence to set of equilibria can be characterized – carefully look at eigenvalues. Statements of the form

if $a \ge 0$, $c \ge 0$, b > 0, and a + b + c = 1, then $\lim_{\ell \to +\infty} y(\ell) = y_{ave}1$, where $y_{ave} = \frac{1}{n} \mathbf{1}^T y_0$, and maximum time required (over all initial conditions $y_0 \in \mathbb{R}^n$) for $||y(\ell) - y_{ave}1||_2 \le c||y_0 - y_{ave}1||_2$ is $\Theta(n^2 \log \varepsilon^{-1})$

Proof sketch- O bound for $\mathcal{T}_{\varepsilon\text{-eqdstnc}}$	Proof sketch- O bound for $\mathcal{T}_{\varepsilon\text{-eqdstnc}}$
$ \begin{split} & \text{For } d(\tau) = \left(\text{dist}_{cc}(\theta^{[1]}(\tau), \theta^{[2]}(\tau)), \dots, \text{dist}_{cc}(\theta^{[m-1]}(\tau), \theta^{[m]}(\tau)))\right), \\ & d(\tau+1) = \text{Trid}_{m-1}(k_{\text{prop}}, 1-k_{\text{prop}}, 0) d(\tau) + r[k_{\text{prop}}, 0, \cdots, 0]^T \\ & \text{Unique equilibrium point is } r(1, \dots, 1). \text{ For } \eta_1 \in]0, 1[, \tau \mapsto d(\tau) \text{ reaches ball of radius } \eta_1 \text{ centered at equilibrium in } (Om \log m + \log \eta_1^{-1}) \\ & \text{This implies that } \tau \mapsto \sum_{i=1}^m d_i(\tau) \text{ is larger than } (m-1)(r-\eta_1) \text{ in time } \\ & O(m \log m + \log \eta_1^{-1}) = O(n \log n + \log \eta_1^{-1}). \text{ After this time,} \\ & 2\pi \ge n_H(\ell)r + \sum_{j=1}^{n_H(\ell)} (r-\eta_1)(m_j-1) \\ & = n_H(\ell)r + (n-n_H(\ell))(r-\eta_1) = n_H(\ell)\eta_1 + n(r-\eta_1) \end{split} $	Take $\eta_1 = (nr - 2\pi)n^{-1} = \delta(n)n^{-1}$, and the contradiction follows from $2\pi \ge n_H(\ell)\eta_1 + nr - n\eta_1$ $= n_H(\ell)\eta_1 + nr + 2\pi - nr = n_H(\ell)\eta_1 + 2\pi$ Therefore $n_H(\ell)$ decreases by one in time $O(n \log n)$ Iterating this argument n times, in time $O(n^2 \log n)$ the set H becomes empty. At that time, resulting network obeys $d(\tau + 1) = \operatorname{Circ}_n(k_{\operatorname{prop}}, 1 - k_{\operatorname{prop}}, 0) d(\tau)$ In time $O(n^2 \log \varepsilon^{-1})$, the error 2-norm satisfies the contraction inequality $\ d(\tau) - d_*\ _2 \le \varepsilon \ d(0) - d_*\ _2$, for $d_* = \frac{2\pi}{n}$ The conversion of this inequality into an appropriate inequality on ∞ -norms yields the result
41/49	42/49
Communication complexity of agree-and-pursue law	Comparison with leader election
Theorem Total communication complexity of agree-and-pursue law In the limit as $n \to +\infty$ and $\varepsilon \to 0^+$, the network $\mathcal{S}_{circler}$, the law $\mathcal{C}_{AGREE k}$ pursue, and the tasks T_{dir} and $T_{c-eqlatenc}$ together satisfy: • if $\delta(n) \ge \pi(1/k_{prop} - 2)$ as $n \to +\infty$, then $TCC_{undif}(T_{dir}, CC_{AGREE k}, pursue) \in \Theta(n^2r(n)^{-1})$, otherwise if $\delta(n) \le \pi(1/k_{prop} - 2)$ as $n \to +\infty$, then $TCC_{undif}(T_{dir}, CC_{AGREE k}, pursue) \in \Omega(n^3 + nr(n)^{-1})$, $TCC_{undif}(T_{dir}, CC_{AGREE k}, pursue) \in O(n^2r(n)^{-1})$;	 Leader election task is different from, but closely related to, T_{air} LCR algorithm operates on a static ring network, and achieves leader election with time and total communication complexity, respectively, Θ(n) and Θ(n²) Agree-and-pursue law operates on robotic network with r(n)-disk communication topology, and achieves T_{air} with time and total communication complexity, respectively, Θ(r(n)⁻¹) and O(n²r(n)⁻¹) If wireless communication congestion is modeled by r(n) of order 1/n, then identical time complexity and the LCR algorithm has better communication complexity
• if δ(n) is lower bounded by a positive constant as n → +∞, then TCC _{undif} (T _ε .eqdstnc; CC _{ACHEE} & PURSUE) ∈ Ω(n ³ δ(n) log(nε) ⁻¹), TCC _{undif} (T _ε .eqdstnc; CC _{ACHEE} & PURSUE) ∈ O(n ⁴ log(nε ⁻¹)).	Computations on a possibly disconnected, dynamic network are more complex than on a static ring topology

Summary and conclusions

Cooperative robotic network model

- proximity graphs
- control and communication law, task, execution
- time, space, and communication complexity
- agree and pursue

Complexity analysis is challenging even in 1 dimension! Blend of math

Plenty of open problems

- Quantization, asynchronism, delays
- What is best algorithm to achieve a task?
- What tools are useful to characterize complexity?
- How does combination of algorithms affect individual complexities?

References

Proximity graphs:

- J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives. Proceedings of the IEEE, 80(9):1502--1517, 1992
- J. Cortés, S. Martínez, and F. Bullo. Spatially-distributed coverage optimization and control with limited-range interactions. ESAIM. Control, Optimisation & Calculus of Variations, 11:601-719, 2005

Robotic network model:

 S. Martínez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic networks { Part I: Models, tasks and complexity. *IEEE Transactions on Automatic Control*, 52(12):2199-2213, 2007

Voronoi partitions

Let $(p_1, \ldots, p_n) \in Q^n$ denote the positions of n points

The Voronoi partition
$$\mathcal{V}(P) = \{V_1, \dots, V_n\}$$
 generated by (p_1, \dots, p_n)

$$\begin{split} V_i &= \overline{\{q \in Q \mid \|q - p_i\| \leq \|q - p_j\|, \forall j \neq i\}} \\ &= Q \cap_j \mathcal{HP}(p_i, p_j) \quad \text{where } \mathcal{HP}(p_i, p_j) \text{ is half plane } (p_i, p_j) \end{split}$$

5 generators

50 generators

r-limited Voronoi partition

Let $(p_1, \ldots, p_n) \in Q^n$ denote the positions of n points

The *r*-limited Voronoi partition $\mathcal{V}_r(P) = \{V_{1,r}, \dots, V_{n,r}\}$ generated by (p_1, \dots, p_n) $V_{i,r}(\mathcal{P}) = V_i(\mathcal{P}) \cap \overline{B}(p_i, r)$

 $\mathcal{G}_{\text{LD}}(r)$ is spatially distributed over $\mathcal{G}_{\text{disk}}(r)$

48/49

\mathcal{G}_{D} and $\mathcal{G}_{\mathrm{D}} \cap \mathcal{G}_{\mathrm{disk}}(r)$ computation

