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A motivating example

Simplest distributed iteration is linear averaging:

you are given a graph
each node contains a value xi

each node repeatedly executes:

x+
i := average(xi, {xj , for all neighboring j})

Why does this algorithm converge and to what?
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Matrix theory: matrix sets

A matrix A ∈ Rn×n with entries aij , i, j ∈ {1, . . . , n}, is
1 nonnegative (resp., positive) if all its entries are nonnegative (resp.,

positive)
2 row-stochastic (or stochastic for brevity) if it is nonnegative and∑n

j=1 aij = 1, for all i ∈ {1, . . . , n}; that is

A1n = 1n

3 doubly stochastic if it is row-stochastic and column-stochastic
4 a permutation matrix if A has precisely one entry equal to 1 in each

row, one entry equal to 1 in each column, and all other entries equal to 0
(note: every permutation is doubly stochastic)
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Matrix sets: properties

row-stochastic matrix: each row is a “convex combination”
row-stochastic matrix: A1n = 1n means 1 is eigenvalue
column-stochastic map preserves “vector sum”

v 7→ Av,

n∑
i=1

(Av)i = 1T
nAv = 1T

nv =
n∑

i=1

vi

Birkhoff–Von Neumann Theorem
Equivalent statements:

A is doubly stochastic
A it is a convex combination of permutation matrices
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Matrix sets: cont’d

A non-negative matrix A ∈ Rn×n with entries aij , i, j ∈ {1, . . . , n}, is
1 irreducible if, for any nontrivial partition J ∪K of the index set
{1, . . . , n}, there exists j ∈ J and k ∈ K such that ajk 6= 0

or, is reducible if there exists a permutation matrix P such that PT AP is
block upper triangular

2 primitive if there exists k ∈ N such that Ak is positive

(primitive implies irreducible)
Bad examples: A1 reducible and A2 irreducible, but not primitive:

A1 =

[
1 1
0 0

]
and A2 =

[
0 1
1 0

]
Good examples: Non-negative, irreducible, and primitive:

A3 =
1

2

0 1 1
1 0 1
1 1 0

 and A4 =
1

2


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1


Bullo, Cortés, Mart́ınez (UCSB/UCSD) Lect#1 Distributed Algos December 23, 2008 7 / 59

Convergent matrices

Convergent and semi-convergent matrices

A square matrix A is
1 convergent if lim`→+∞A` exists and lim`→+∞A` = 0

2 semi-convergent if lim`→+∞A` exists

Spectral radiuses

Given a square matrix A,
its spectral radius is

ρ(A) = max{‖λ‖C | λ ∈ spec(A)}

if ρ(A) = 1 (e.g., A stochastic), then essential spectral radius

ρess(A) = max{‖λ‖C | λ ∈ spec(A) \ {1}}
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Convergent matrices: cont’d

Necessary and sufficient conditions for convergence

A is convergent if and only if ρ(A) < 1

Recall: row-stochastic matrix has eigenvalue 1
Indeed, row-stochastic matrix has spectral radius 1

Necessary and sufficient conditions for semi-convergence

A is semi-convergent if and only if
1 ρ(A) ≤ 1

2 ρess(A) < 1
i.e., 1 is an eigenvalue and is the only eigenvalue on the unit circle

3 the eigenvalue 1 is semisimple
i.e., 1 has equal algebraic and geometric multiplicity ≥ 1
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Perron-Frobenius theory

Perron-Frobenius theorem
Assume A is positive, or
assume A is non-negative, irreducible and primitive, then

1 ρ(A) > 0

2 ρ(A) is an eigenvalue that is simple and strictly larger than the
magnitude of any other eigenvalue

3 ρ(A) has an eigenvector with positive components

Implication for stochastic matrices

A is stochastic, irreducible and primitive =⇒ A is semiconvergent

Implication for linear averaging

Graph is such that A is primitive =⇒ linear averaging algorithm is convergent
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Basic graph notions

A directed graph or digraph, of order n is G = (V,E)

V is set with n elements – vertices

E is set of ordered pair of vertices – edges

Digraph is complete if E = V × V . (u, v) denotes an edge from u to v

An undirected graph consists of a vertex set V and of a set E of unordered
pairs of vertices. {u, v} denotes an unordered edge

A digraph (V ′, E′) is
undirected if (v, u) ∈ E′ anytime (u, v) ∈ E′

a subgraph of a digraph (V,E) if V ′ ⊂ V and E′ ⊂ E

a spanning subgraph if it is a subgraph and V ′ = V
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Example graphs

Tree, directed tree, chain, and ring digraphs:
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Graph neighbors

In a digraph G with an edge (u, v) ∈ E, u is in-neighbor of v, and v is
out-neighbor of u

N in
G (v): set of in-neighbors of v – cardinality is in-degree

N out
G (v): set of out-neighbors of v – cardinality is out-degree

A digraph is topologically balanced if each vertex has the same in- and
out-degrees, i.e., same number of incoming and outgoing edges

Likewise, u and v are neighbors in a graph G if {u, v} is an undirected edge
NG(v): set of neighbors of v in the undirected graph G – cardinality is

degree
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Connectivity notions

A directed path in a digraph is an ordered sequence of vertices such that
any ordered pair of vertices appearing consecutively in the sequence is an
edge of the digraph

A vertex of a digraph is globally reachable if it can be reached from any
other vertex by traversing a directed path.
A digraph is strongly connected if every vertex is globally reachable

A directed tree is a digraph such that
there exists a vertex, called root, such that any other vertex of the
digraph can be reached by one and only one path starting at the
root

In a directed tree, every in-neighbor is a parent and every out-neighbor is
a child.
Directed spanning tree = spanning subgraph + directed tree
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Connectivity notions: cont’d

1 digraph with one sink and two sources
2 directed path which is also a cycle
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Cycles and periodicity

Given a digraph G

a cycle is a non-trivial directed path that
1 starts and ends at the same vertex
2 contains no repeated vertex except for initial and final

G is acyclic if it contains no cycles
G contains a finite number of cycles

G is aperiodic if there exists no k > 1 that divides the length of every
cycle of the graph.
i.e., G aperiodic if the greatest common divisor of cycle lengths is 1
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Cycles and periodicity: cont’d

(a) (b)

Figure: (a) A digraph whose only cycle has length 2 is periodic. (b) A digraph with
cycles of length 2 and 3 is aperiodic.
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Example graphs

Ring digraph, chain digraph (also called path digraph), directed tree, tree
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Connectivity in topologically balanced digraphs

Connectivity characterizations

Let G be a digraph:
1 G is strongly connected =⇒ G contains a globally reachable vertex and a

spanning tree
2 G is topologically balanced and contains either a globally reachable vertex

or a spanning tree =⇒ G is strongly connected

Analogous definitions can be given for the case of undirected graphs. If a vertex
of a graph is globally reachable, then every vertex is, the graph contains a
spanning tree, and we call the graph connected
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Decomposition in strongly connected components

A subgraph H ⊂ G is a strongly connected component if H is strongly
connected and any other subgraph containing H is not
Condensation digraph of G

1 the nodes are the strongly connected components of G
2 there exists a directed edge from node H1 to node H2 iff there exists a

directed edge in G from a node of H1 to a node of H2

Properties of the condensation digraph
1 every condensation digraph is acyclic
2 G contains a globally reachable node

iff C(G) contains a globally reachable node
3 G contains a directed spanning tree

iff C(G) contains a directed spanning tree
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Weighted digraphs

A weighted digraph is a triplet G = (V,E, A), where (V,E) is a digraph and
A is an n× n weighted adjacency matrix such that

aij > 0 if (vi, vj) is an edge of G, and aij = 0 otherwise

Scalars aij are weights for the edges of G. Weighted digraph is undirected if
aij = aji for all i, j ∈ {1, . . . , n}

1

1
2

3

2

1

4

2

6

7

64
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Weighted digraphs: cont’d

Weighted out-degree and in-degree

dout(i) =
n∑

j=1

aij and din(i) =
n∑

j=1

aji

G is weight-balanced if each vertex has equal in- and out-degree

Weighted out-degree diagonal matrix Dout(G): (Dout(G))ii = dout(i)

Weighted in-degree diagonal matrix Din(G): (Din(G))ii = din(i)
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Algebraic Graph Theory

motivating example: linear averaging
when is certain matrix primitive
so far, graph theory: connectivity and periodicity
next, how to relate graphs to matrices
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Properties of the adjacency matrix

G is weighted digraph of order n

A is weighted adjacency matrix
Dout is weighted out-degree matrix

Weight-balanced digraph ! doubly stochastic adjacency matrix

F =

{
D−1

outA, if each out-degree is positive,
(In + Dout)

−1(In + A), otherwise.

1 F is row-stochastic; and
2 F is doubly stochastic if G is weight-balanced and the weighted degree is

constant for all vertices.

Bullo, Cortés, Mart́ınez (UCSB/UCSD) Lect#1 Distributed Algos December 23, 2008 25 / 59

Properties of the adjacency matrix: cont’d

A0,1 ∈ {0, 1}n×n is unweighted adjacency matrix
G possibly contains self-loops

Directed paths in digraph ! powers of the adjacency matrix

For all i, j, k ∈ {1, . . . , n}
1 the (i, j) entry of Ak

0,1 equals the number of directed paths of length k
(including paths with self-loops) from node i to node j

2 the (i, j) entry of Ak is positive if and only if there exists a directed path of
length k (including paths with self-loops) from node i to node j.
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Properties of the adjacency matrix: cont’d

1

2

3

1 1 1
0 1 1
0 1 1



vertices 2 and 3 are globally reachable
digraph is not strongly connected cause vertex 1 has no in-neighbor other
than itself
adjacency matrix is reducible
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Properties of the adjacency matrix: cont’d

Digraph connectivity ! powers of adjacency matrix

The following statements are equivalent:

1 G is strongly connected,

2 A is irreducible; and

3
∑n−1

k=0 Ak is positive.

For any j ∈ {1, . . . , n}, the following statements are equivalent:

4 the jth node of G is globally reachable; and

5 the jth column of
∑n−1

k=0 Ak has positive entries.
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Properties of the adjacency matrix: cont’d

Digraph connectivity ! powers of adjacency matrix: cont’d

Assume self-loops at each node.
The following statements are equivalent:

4 G is strongly connected; and

5 An−1 has positive entries.

For any j ∈ {1, . . . , n}, the following two statements are equivalent:

4 the jth node of G is globally reachable; and

5 the jth column of An−1 has positive entries.
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Properties of the adjacency matrix: final

G is weighted digraph of order n

A is weighted adjacency matrix

Strongly connected + aperiodic digraph

= primitive adjacency matrix

The following two statements are equivalent:

1 G is strongly connected and aperiodic; and

2 A is primitive, i.e., there exists k ∈ N such that Ak is positive.

Bullo, Cortés, Mart́ınez (UCSB/UCSD) Lect#1 Distributed Algos December 23, 2008 30 / 59



Algebraic Graph Theory: the Laplacian matrix

The graph Laplacian of the weighted digraph G is

L(G) = Dout(G)−A(G)

Properties of the Laplacian matrix

The following statements hold:
1 L(G)1n = 0

2 G is undirected iff L(G) is symmetric

3 if G is undirected, then L(G) is positive semidefinite

4 G contains a globally reachable vertex iff rankL(G) = n− 1

5 G is weight-balanced iff 1T
nL(G) = 0
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Disagreement function

Disagreement function

ΦG(x) =
1

2

n∑
i,j=1

aij(xj − xi)
2

If G weight-balanced,
ΦG(x) = xT L(G)x

If G weight-balanced and weakly connected,
λn(Sym(L)) ‖x−Ave(x)1n‖2 ≥ ΦG(x) ≥ λ2(Sym(L)) ‖x−Ave(x)1n‖2

Bullo, Cortés, Mart́ınez (UCSB/UCSD) Lect#1 Distributed Algos December 23, 2008 32 / 59

Linear distributed iterations

Data exchange and fusion is a basic task for any network

Given graph G = ({1, . . . , n}, Ecmm), matrix F =
(fij) ∈ Rn×n is compatible if

fij 6= 0 if and only if (j, i) ∈ Ecmm

Given compatible F , Linear combination algorithm, starting from
w(0) ∈ Rn, is

w(` + 1) = F · w(`), ` ∈ Z≥0

In coordinates,

wi(` + 1) = fiiwi(`) +
∑

j∈N in(i)

fijwj(`)
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Time-dependent linear iterations

Discrete-time linear dynamical systems represent an important class of iterative
algorithms with applications in

optimization

systems of equations

distributed decision making

Linear combination procedure can be extended to sequence of time-dependent
state-transition functions associated with {F (`) | ` ∈ Z≥0} ⊂ Rn×n,

w(` + 1) = F (`) · w(`), ` ∈ Z≥0 and w(0) ∈ Rn
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Linear averaging over switching graphs: flocking example

Consider a group of agents in the plane moving with unit speed and adjusting
their heading as follows:

at integer instants of time, each agent senses the heading of its
neighbors (other agents within some specified distance r), and re-sets
its heading to the average of its own heading and its neighbors’ heading

Mathematically, if (xi, yi) is position of agent i,

ẋi = vi cos θi, ẏi = vi sin θi, |vi| = 1 (1)

θi(` + 1) =
1

1 + |Ni|

(
θi(`) +

∑
j∈Ni

θj(`)
)

= average(θi(`), θj(`) for all in-neighbors j})

Topology might change from one time instant to the next
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Averaging algorithms

A (distributed) averaging algorithm is a linear algorithm associated to a
(row) stochastic matrix F ∈ Rn×n

n∑
j=1

fij = 1 and fij ≥ 0 for all i, j ∈ {1, . . . , n}

Note: F · 1n = 1n. The vector subspace generated by 1n is the diagonal set
diag(Rn) of Rn. Points in diag(Rn) are agreeement configurations

An algorithm achieves agreement if it steers the network state towards the
set of agreement configurations
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Laplacian- or adjacency-based agreement

Let G = ({1, . . . , n}, Ecmm, A) be weighted digraph
Laplacian-based:

w(` + 1) = (In − εL(G)) · w(`)

where 0 < ε ≤ mini{1/dout(i)} to have In − εL(G) stochastic
Adjacency-based:

w(` + 1) = (In + Dout(G))−1(In + A(G)) · w(`)

resulting stochastic matrix has always non-zero diagonal entries

Any averaging algorithm may be written as Laplacian- or adjacency-based
If G is unweighted, undirected, and without self-loops, then
adjacency-based averaging = equal-neighbor rule = Vicsek’s
model

wi(` + 1) = average
(
wi(`), {wj(`) | j ∈ NG(i)}

)
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Stability of agreement configurations

Consider a sequence of stochastic matrices {F (`) | ` ∈ Z≥0} ⊂ Rn×n :
{F (`) | ` ∈ Z≥0} is non-degenerate if there exists α ∈ R>0 such that, for
all ` ∈ Z≥0,

fii(`) ≥ α, for all i ∈ {1, . . . , n} and
fij(`) ∈ {0}∪[α, 1], for all i 6= j ∈ {1, . . . , n}

for ` ∈ Z≥0, let G(`) be the unweighted graph associated to F (`)
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Stability – directed case

Theorem

Let {F (`) | ` ∈ Z≥0} be a non-degenerate sequence of stochastic matrices. The
following are equivalent:

1 the set diag(Rn) is globally attractive for the averaging algorithm
2 there exists a duration δ ∈ N such that, for all ` ∈ Z≥0, the digraph

G(` + 1)∪ · · · ∪G(` + δ)

contains a globally reachable vertex.

In other words, the linear algorithm converges uniformly and asymptotically to
the vector subspace generated by 1n
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Stability – undirected case

Theorem

Let {F (`) | ` ∈ Z≥0} ⊂ Rn×n be a non-degenerate sequence of stochastic,
symmetric matrices. The following are equivalent:

1 the set diag(Rn) is globally attractive for the averaging algorithm
2 for all ` ∈ Z≥0, the following graph is connected⋃

τ≥`

G(τ)

In both results, each individual evolution converges to an specific point of
diag(Rn), rather than converging to the whole set
Non-degeneracy requirement in both results can not be removed to achieve
agreement
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Laplacian- and adjancency-based agreement
Convergence

The following statements are equivalent
1 Laplacian-based agreement algorithm is globally attractive with respect to

diag(Rn)

2 Adjancency-based agreement algorithm is globally attractive with respect
to diag(Rn)

3 G contains a globally reachable node
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Time-independent averaging algorithm

Consider the time-invariant linear system on Rn

w(` + 1) = Fw(`) (2)

Theorem (Time-independent averaging algorithm)

Assume
F ∈ Rn×n is stochastic
G(F ) denotes associated weighted digraph
v ∈ Rn is a left eigenvector of F with eigenvalue 1

assume either one of the two following properties:
1 F is primitive (i.e., G(F ) is strongly connected and aperiodic); or

2 F has non-zero diagonal terms and a column of F n−1 has positive entries
(i.e., G(F ) has self-loops at each node and has a globally reachable node).

Then every trajectory converges to (vT w(0)/vT 1n)1n.
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What is the agreement value?

Specific value upon which all wi, i ∈ {1, . . . , n} agree is unknown – complex
function of initial condition and specific sequence of matrices

Given time-dependent doubly stochastic {F (`) | ` ∈ Z≥0} ⊂ Rn×n satisfying
assumptions for convergence (direct or undirect, time-invariant), then

n∑
i=1

wi(` + 1) = 1T
nw(` + 1) = 1T

nF (`)w(`) = 1T
nw(`) =

n∑
i=1

wi(`)

Since in the limit all entries of w must coincide, average-consensus

lim
`→+∞

wj(`) =
1

n

n∑
i=1

wi(0), j ∈ {1, . . . , n}
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Synchronous networks

Previous examples of linear distributed iterations are particular class of
algorithms that can be run in parallel by network of computers

Theory of parallel computing and distributed algorithms studies general classes
of algorithms that can be implemented in static networks (neighboring
relationships do not change)
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Synchronous network: cont’d

Synchronous network is group of processors with ability to exchange
messages and perform local computations. Mathematically, a digraph
(I, Ecmm),

1 I = {1, . . . , n} is the set of unique identifiers (UIDs), and
2 Ecmm is a set of directed edges over the vertices I, called the

communication links
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Distributed algorithm

Distributed algorithm DA for a network S consists of the sets
1 A, a set containing the null element, called the communication

alphabet; elements of A are called messages;
2 W [i], i ∈ I, called the processor state sets;
3 W

[i]
0 ⊆ W [i], i ∈ I, sets of allowable initial values;

and of the maps
1 msg[i] : W [i] × I → A, i ∈ I, called message-generation functions;
2 stf[i] : W [i] × An → W [i], i ∈ I, called state-transition functions.

If W [i] = W , msg[i] = msg, and stf[i] = stf for all i ∈ I, then DA is said to be
uniform and is described by a tuple (A,W, {W [i]

0 }i∈I ,msg, stf)
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Network evolution

Transmite

and

receive

Update

processor

state

Discrete-time communication and computation: evolution of (S,DA)

from initial conditions w
[i]
0 ∈ W

[i]
0 is the collection of trajectories

w[i] : Z≥0 → W [i] satisfying

w[i](`) = stf[i](w[i](`− 1), y[i](`))

where w[i](−1) = w
[i]
0 , i ∈ I, and y[i] : Z≥0 → An are the messages received by

processor i:

y
[i]
j (`) =

{
msg[j](w[j](`− 1), i), if (i, j) ∈ Ecmm,

null, otherwise.
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Complexity notions

How good is a distributed algorithm? How costly to execute?
Complexity notions characterize performance of distributed algorithms

Algorithm completion: an algorithm terminates when only null messages
are transmitted and all processors states become constants

Time complexity: TC(DA,S) is maximum number of rounds required by
execution of DA on S among all allowable initial states

Space complexity: SC(DA,S) is maximum number of basic memory units
required by a processor executing DA on S among all processors
and all allowable initial states

Communication complexity: CC(DA,S) is maximum number of basic messages
transmitted over the entire network during execution of DA
among all allowable initial states

until termination (basic memory unit, message contains log(n) bits)
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Leader election by comparison

Problem
Assume that all processors of a network have a state variable, say leader,
initially set to unknown

A leader is elected when one and only one processor has the state variable set to
true and all others have it set to false

Elect a leader

Le Lann-Chang-Roberts (LCR) algorithm solves leader election in rings with
complexities

1 time complexity n

2 space complexity 2

3 communication complexity Θ(n2)
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The LCR algorithm: informal description

1 First frame: the agent with the maximum UID is colored in red.
2 After 5 communication rounds, this agent receives its own UID from its

in-neighbor and declares itself the leader.
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The LCR algorithm

Network: Ring network
Alphabet: A = {1, . . . , n}∪{null}
Processor State: w = (my-id, max-id, leader, snd-flag), where

my-id ∈ {1, . . . , n}, initially: my-id[i] = i for all i
max-id ∈ {1, . . . , n}, initially: max-id[i] = i for all i
leader ∈ {true, unknown}, initially: leader[i] = unknown for all i
snd-flag ∈ {true, false}, initially: snd-flag[i] = true for all i

function msg(w, i)

1: if snd-flag = true then
2: return max-id
3: else
4: return null
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The LCR algorithm

function stf(w, y)

1: case
2: (y contains only null msgs) OR (largest identifier in y < my-id):
3: new-id := max-id
4: new-lead := leader
5: new-snd-flag := false
6: (largest identifier in y = my-id):
7: new-id := max-id
8: new-lead := true
9: new-snd-flag := false

10: (largest identifier in y > my-id):
11: new-id := largest identifier in y
12: new-lead := false
13: new-snd-flag := true
14: return (my-id, new-id, new-lead, new-snd-flag)
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Quantifying time, space, and communication complexity

Asymptotic “order of magnitude” measures. E.g., algorithm has time
complexity of order

1 Ω(f(n)) if, for all n, ∃ network of order n and initial processor values such
that TC is greater than a constant factor times f(n)

2 O(f(n)) if, for all n, for all networks of order n and for all initial processor
values, TC is lower than a constant factor times f(n)

3 Θ(f(n)) if TC is of order Ω(f(n)) and O(f(n)) at the same time
Similar conventions for space and communication complexity

Numerous variations of complexity definitions are possible
1 “Global” rather than “existential” lower bounds
2 Expected or average complexity notions
3 Complexity notions for problems, rather than for algorithms
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Summary and conclusions

A primer on graph theory
1 Basic graph-theoretic notions and connectivity notions
2 Adjacency and Laplacian matrices

Linear distributed iterations
1 Discrete-time linear dynamical systems
2 averaging algorithms and convergence results

Introduction to distributed algorithms
1 Model
2 Complexity notions
3 Leader election
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